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Introduction 

The U.S. Department of Housing and Urban Development (HUD)’s measure of housing 

affordability is the most widely used and the most conventional measure of housing affordability.  

According to the HUD measure, total housing costs at or below 30 percent of gross annual income 

are affordable (Belsky, Goodman & Drew, 2005). This is often considered as the definition of 

housing affordability (Linneman & Megbolugbe, 1992) and has shaped views of who has 

affordability problems, the severity of problems, and the extent of the problems (Belsky, Goodman 

& Drew, 2005).  It is simple to compute and the raw data is easily available from a few recognized 

sources (Bogdon & Can, 1997), such as the U.S. Census Bureau and the American Housing 

Survey. 

The HUD measure is also the legislative standard used to qualify applicants for housing 

assistance. It is used in the administration of rental housing subsidies, such as the Section 8 

housing vouchers (Bogdon & Can, 1997). Under these programs, participants can pay no less than 

30 percent, and no more than 40 percent, of their adjusted income toward housing rent. We can 

assume, therefore, that housing costs alone are affordable for households participating in HUD 

rental assistance programs. But is the housing under HUD rental assistance programs still 

affordable when taking into account the transportation costs?  

HUD has no way of knowing since transportation costs fall outside its purview and 

regulations. But transportation costs, after housing, is the second biggest expenses in the budgets 

of most American households, particularly for those settled along the urban fringe. Less costly 

alternatives to automobile travel, particularly public transit, are typically much less accessible and 

thus largely impractical in suburban and exurban locations relative to central cities. Since 2006, 

fuel costs have risen nationally, consuming progressively larger shares of income.  
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Previous studies show that there is a clear tradeoff between the housing and transportation 

expenses of working families. Families that spend more than half of their total household 

expenditures on housing put 7.5 percent of their budget towards transportation. By contrast, 

families that spend 30 percent or less of their total budget on housing spend nearly one-quarter of 

their budget on transportation - three times as much as those in less affordable housing (Dietz, 

1993; Lipman, 2006).  

This study seeks to determine whether HUD rental assistance programs provide “affordable 

housing” when transportation costs are factored in.  This study is built on the work of the Center 

for Neighborhood Technology (CNT) with their Housing + Transportation (H+T) Affordability 

Index and the more recent Location Affordability Index (LAI). Under CNT’s guideline, housing is 

affordable if the sum of H+T is no more than 45 percent of household income, and that 

transportation costs alone is no more than 15 percent of income. This study uses the same 

guideline, but we model household transportation costs very differently than does CNT, and 

estimate models that have greater validity and reliability than CNT’s because they are based on 

more robust data and an improvement in the methodology. Also the models in this study are 

specific to low-income households, a group that has received little attention in the travel literature.   

Using a large national sample (up to 34,000 properties) listed in HUD’s Multifamily 

Portfolio Dataset enables us to draw effective conclusions about HUD rental assistance programs. 

We will also draw effectiveness conclusions about DOT transit assistance programs, particularly 

New Starts, since they may prove responsible for keeping housing “affordable” in a holistic sense 

in areas of relatively high-priced housing.   
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Literature Review 

Housing Affordability 

The majority of studies of housing affordability focus on housing cost and its relationship to 

household income as the sole indicator of affordability (Belsky et al., 2005; Bogdon & Can, 1997; 

Combs et al., 1994; Linneman & Megbolugbe, 1992; O’Dell et al., 2004; Robinson et al., 2006; 

U.S. HUD, 2006; Yip & Lau, 2002). The main providers of affordability indexes in the U.S. are 

real estate institutes and government agencies. The National Association of Realtors (NAR), for 

example, publishes a Housing Affordability Index for existing single-family homes by 

metropolitan area. The NAR affordability index measures whether or not a typical family could 

qualify for a mortgage loan on a typical home. An index above 100 signifies that a family earning 

the median income has more than enough income to qualify for a mortgage loan on a median-

priced home, assuming a 20-percent down payment, while an index value less than 100 means that 

such a family cannot afford a median-priced home.    

These indices and standards are structurally flawed in that they only consider costs 

directly related to housing, ignoring those related to utilities and transportation. We know from the 

Consumer Expenditure Survey that the typical American household spends about 26.3 percent of 

income on housing, excluding utilities and public services costs. For the typical household, 

therefore, housing is affordable. But the typical household also spends 16.7 percent for 

transportation. Housing plus transportation costs consumed 43 percent of household income in 

2011. If a household's transportation costs were zero but its housing costs were 35 percent of 

income, we would say that its housing was unaffordable, when in fact the household would be no 

worse off than the typical American household. Likewise, if a household’s transportation costs 
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were 20 percent of income and is housing costs were 30 percent of income, we would say that 

housing was affordable when it, in fact, might not be. 

Addressing this issue, the Center for Neighborhood Technology (CNT) and the Center for 

Transit Oriented Development (CTOD) in 2006 developed an innovative tool called the “Housing 

+ Transportation Affordability Index” that measured true housing affordability. The H+T 

Affordability Index took into account not only the cost of housing, but also the intrinsic value of 

location, as quantified through transportation costs (CTOD & CNT, 2006). 

The H+T affordability index built on the analysis and theory of the location efficient 

mortgage (LEM), a lending product that was developed by a group of researchers for Fannie Mae 

in 2000. The LEM was rolled out in three regions. The LEM was very similar to the H+T 

affordability index in that it combined the costs of housing and transportation, and presumed that 

homebuyers could afford a bigger mortgage if they choose a neighborhood near public transit 

where they could realize significant savings on transportation (Holtzclaw et al., 2001).  However, 

the LEM (and related Smart Commute Mortgage) program was abandoned in 2008 due to a lack of 

uptake. Chatman and Voorhoeve (2010) attribute the failure of these programs to a lack of 

advertising amongst lenders, logistical difficulties and concerns about risk. Moreover, they noted 

that buyers did not benefit much in comparison to other loan products available at the time.  

Finally, transit agencies did not push strongly for such mortgage programs. 

In 2010-13, the departments of transportation and housing and development funded the 

development of a refined H+T-like index called the Location Affordability Index (LAI). The LAI 

is based on an updated methodology and uses the most recent and better quality data with more 

coverage. i 
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Shortcomings of CNT’s and LAI’s Transportation Cost Models 

The H+T Index has received praise for its assistance to planners and transit-oriented development 

advocates. However, it has also received criticism (Abt Associates, 2010; Econsult Corporation & 

Penn Institute for Urban Research, 2012; Tegeler, 2011).  

The first problem with these models is the limited characterization of the built 

environment.  The model of auto use (vehicle miles traveled, or VMT) only accounts for variations 

in two built-environment variables—gross density and average block size—plus demographic and 

socioeconomic variables.  Go back to the earliest travel behavior studies and the built environment 

was operationally defined strictly in terms of density. However, for the past 15 years, the built 

environment has been defined more broadly in terms of five types of D variables.  The original 

three Ds, coined by Cervero and Kockleman (1997), were density, diversity and design.  The Ds 

were later expanded to include destination accessibility and distance to transit (Ewing and Cervero, 

2001).  Excluding key built-environment variables—those related to diversity, destination 

accessibility, and distance to transit—limits the explanatory power of CNT’s auto use model and 

may introduce bias due to omitted variables. Destination accessibility has a particularly strong 

effect on household VMT (Ewing & Cervero, 2010). 

The second problem with the CNT models is the reliance on VMT data from only one state.  

The VMT model was calibrated with odometer readings from Massachusetts alone. Massachusetts’ 

households are not typical of U.S. households generally.  They drive about 15 percent fewer miles 

per year (CNT, 2010).  Drivers in Massachusetts also likely have better access to public 

transportation than those in many other places, which could affect the predicted relationships 

between auto use and the independent variables used in the model.  By relying on data for a single 
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state, the CNT auto use model lacks an important quality researchers refer to as external validity, 

which translates roughly as generalizability. 

The third problem with the CNT models is that auto ownership is modeled with aggregate 

data from the 2009 ACS.  CNT documentation states that average vehicles per occupied housing 

unit were calculated at the census-block group scale.  Models based on aggregate (block group) 

data rather than disaggregate (household) data may suffer from aggregate bias.  The data fail to 

account for variations in vehicle ownership and sociodemographic variables from household to 

household in the same block group. They also fail to account for variations in the built 

environment within the same census geography.   

The fourth problem with the CNT models is the treatment of transit costs.  CNT 

documentation states: “Because no direct measure of transit use was available at the block group 

level, a proxy was utilized for the measured data representing the dependent variable of transit use. 

From the ACS, Means of Transportation to Work was used to calculate a percent of commuters 

utilizing public transit.”  Beyond the problem of aggregation bias (whether for census-block 

groups or much larger census tracts), the obvious limitation of this approach is that non-

commuting trips by transit are ignored.   

The fifth problem with the CNT models is the use of national-level unit cost data. Auto 

operating costs are calculated using national-level fleet data and national average fuel costs, which 

may not be representative of individual metropolitan regions. There are substantial and persistent 

variations in fuel costs from region to region. In 2010, fuel cost ranged from $2.51 per gallon in 

Springfield, MO, to $ 3.37 per gallon in Honolulu, HI.  A review of statewide average fuel costs in 

the Texas Transportation Institute’s Urban Mobility Database suggests that variations from place 

to place have been persistent and relatively stable. 
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While LAI represents a vast improvement over the old H+T methodology of CNT, it still 

has important limitations in two of its three component models. The VMT model is now based on 

Illinois odometer readings for Chicago and St. Louis rather than odometer readings for 

Massachusetts. Massachusetts had lower VMT per capita than the U.S. as a whole, which may not 

be the case for Chicago and St. Louis. However, the two metropolitan areas are hardly 

representative of the entire U.S. As important, auto ownership is modeled with aggregate data from 

the ACS.  Models based on aggregate (block group or census tract) data rather than disaggregate 

(household) data may suffer from aggregation bias. For the past 20 years, vehicle ownership has 

been modeled in the peer-reviewed literature with disaggregate data.  Using aggregate data to 

model vehicle ownership represents a giant methodological step backwards.  

This study is built on the work of the CNT and the more recent LAI indices. But, 

addressing their shortcomings, we estimate models that have greater validity and reliability 

because they are based on more robust data and a more accurate methodology. Our models account 

for all the so-called D variables found to affect travel and vehicle ownership in the peer-reviewed 

literature.  The Ds are development density, land use diversity, street design, destination 

accessibility, and distance to transit. They have been shown to affect household travel decisions in 

more than 200 peer-reviewed studies (see the meta-analysis by Ewing & Cervero, 2010; also see 

literature reviews by Badoe & Miller, 2000; Brownstone, 2008; Cao, Mokhtarian & Handy, 2009a; 

Cervero, 2003; Crane, 2000; Ewing & Cervero, 2001; Handy, 2005; Heath, Brownson, Kruger, 

Miles, Powell & Ramsey, 2006; McMillan, 2005, 2007; Pont, Ziviani, Wadley, Bennet & Bennet, 

2009; Saelens, Sallis & Frank, 2003; Salon, Boarnet, Handy, Spears & Tala, 2012; Stead & 

Marshall, 2001). 

http://www.sciencedirect.com/science/article/pii/S136192091200051X
http://www.sciencedirect.com/science/article/pii/S136192091200051X
http://www.sciencedirect.com/science/article/pii/S136192091200051X
http://www.sciencedirect.com/science/article/pii/S136192091200051X
http://www.sciencedirect.com/science/article/pii/S136192091200051X


8 
 

Methods 

In this study, we use the same methodology as CNT and estimate household transportation costs as 

the sum of three terms: 

Household T Costs = [𝐶𝐶𝐴𝐴𝐴𝐴 ∗ 𝐹𝐹𝐴𝐴𝐴𝐴(𝑋𝑋)] +  [𝐶𝐶𝐴𝐴𝐴𝐴 ∗ 𝐹𝐹𝐴𝐴𝐴𝐴(𝑋𝑋)] +  [𝐶𝐶𝑇𝑇𝑇𝑇 ∗ 𝐹𝐹𝑇𝑇𝑇𝑇(𝑋𝑋)] 

where 

C = cost factor (i.e., dollars per mile) 

F = function of the independent variables (𝐹𝐹𝐴𝐴𝐴𝐴 is auto ownership, 𝐹𝐹𝐴𝐴𝐴𝐴is auto use, and 𝐹𝐹𝑇𝑇𝑇𝑇 is 

transit use) 

However, our Cs and the Fs will be different from CNT’s.  The availability of disaggregate 

data at the household level leads to better estimates of transportation costs for low-income 

households at any location.   

With the new models in hand, we then geolocate more than 34,000 rental housing 

assistance properties in HUD’s Multifamily Portfolio Dataset and apply the new transportation 

cost models to typical low-income households living at these locations to determine whether their 

transportation costs are more or less than 15 percent of household income.   

Sample 

This analysis is specific to low-income households who qualify for HUD rental assistance; that is, 

those with extremely low, very low, and low incomes (less than 30 percent, 50 percent and 80 

percent of area median household income). The travel and vehicle ownership patterns of low-

income households are likely to be qualitatively different from those of higher-income households. 

For the purpose of modeling, we use household travel survey databases for diverse regions 

in which have collected in the last few years. At present, we have consistent datasets for 13 
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regions. The resulting dataset consists of 51,497 households in the 13 regions (see Table 2). The 

regions are diverse as Boston and Portland at one end of the urban form continuum and Houston 

and Kansas City at the other. In our database, we have thousands of low-income households. 

Based on changes in the consumer price index, we have inflated reported household incomes for 

earlier survey years to 2012 dollars. We have then applied the HUD low-income standard for each 

region and household size to our surveyed households, and found that 17,916 households would 

qualify for HUD rental assistance, a number which will expand as we add regions to our household 

travel database.   

To our knowledge, this is the largest sample of household travel records ever assembled 

for such a study outside the National Household Travel Survey (NHTS).  And relative to NHTS, 

our database provides much larger samples for individual regions, and permits the calculation of a 

wide array of built-environment variables based on the precise location of households. NHTS 

provides geocodes (identifies households) only at the census-tract level. 

 
Table 1. Fifteen-Region Integrated Travel Database 

 
Survey 
Date 

All 
Households 

Low-Income 
Households 

Atlanta 2011 9,575 2,486 
Austin 2005 1,450 301 
Boston 2011 7,826 1,281 
Denver 2010 5,551 450 
Detroit 2005 939 416 
Eugene 2011 1,679 1,010 
Houston 2008 5,276 2,069 
Kansas City 2004 3,022 2,356 
Minneapolis-St. Paul 2010 8,234 1,198 
Portland 2011 4,513 517 
Provo-Orem 2012 1,464 1,126 
Sacramento 2000 3,520 923 
Salt Lake City 2012 3,491 615 
San Antonio 2007 1,563 1,022 
Seattle 2006 3,908 2,146 
Total  62,011 17,916 
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Data and Variables 

Our analysis is based on disaggregate (household) travel and vehicle ownership data for tens of 

thousands of households in many diverse metropolitan regions of the U.S. Our current household 

travel database consists of 13 metropolitan regions.  

All surveys provide XY coordinates for households and their trips. This allows travel to be 

modeled in terms of the precise built environment in which households reside and travel occurs.  

For individual trips, trip purpose, travel mode, travel time, and other variables are available from 

the survey dataset.  Distance traveled on each trip was either supplied or computed with GIS from 

the XY coordinates. For travelers, individual age, employment status, driver’s licensure, and other 

variables are available from the survey data set.  For households, household size, household 

income, vehicle ownership, and other variables are available from the survey dataset.  This allows 

us to control for sociodemographic influences on travel at the household level. 

Other datasets have been collected for the same years as the travel surveys in order to 

estimate values of many D variables for quarter-mile, half-mile and one-mile radius buffers around 

each household. These include a geocoded parcel land use layer; geocoded street and transit layers; 

and travel time skims, population, and employment by traffic analysis zone as supplied by the 

regions’ metropolitan planning organizations.  

Variables extracted from these datasets and used in subsequent modeling are shown in 

Table 2.  The table only makes reference to half-mile buffers, but data for quarter-mile and one-

mile buffers are also available. The variables in this study cover all of the Ds, from density to 

demographics. All variables are consistently defined from region to region. 
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Table 2. Category, Definition and Scale of Variables Proposed for Use in the Household 
Transportation Cost Model 

Category Symbol Definition Level 
Outcome variables 
 

vmt Household VMT Household 
transit Household number of transit trips Household 
veh Number of household vehicles Household 

Household 
sociodemographic 
variables 

hsize Number of household members Household 
emp Number of household workers Household 
inc Household income (in 1982 dollars) Household 

Transit variables rail Rail station within a half mile (dummy variable; 
yes=1, no=0) 

Household 

tfreq Aggregate frequency of transit service within 0.25 
miles of block group boundary per hour during 
evening peak period 

Block group 

Built-
environmental 
variables 
 

actden Activity density within a half mile (sum of population 
and employment divided by gross land area in square 
miles) 

Household 

jobpop Job-population balance within a  half mile  of a 
household (index ranging from 0, where only jobs or 
residents are present within a quarter mile, to 1, where 
there is one job per five residents) 

Household 

entropy Land use mix within a half mile of a household 
(entropy index based on net acreage in different land 
use categories that ranges from 0, where all developed 
land is in one use, to 1, where developed land is 
evenly divided among uses) 

Household 

intden Intersection density within a half mile (number of 
intersections divided by gross land area in square 
miles) 

Household 

int4way Proportion of 4-way intersections with a half mile (4 
or more way intersections divided by total 
intersections) 

Household 

emp10 Proportion of regional employment accessible within 
a 10 minute travel time via automobile 

Household 

emp20 Proportion of regional employment accessible within 
a 10 minute travel time via automobile 

Household 

emp30 Proportion of regional employment accessible within 
a 10 minute travel time via automobile 

Household 

sf Single family housing unit (dummy variable; yes=1, 
no=0) 

 

Regional 
variables 

rpop Total regional population Regional 
remp Total regional employment Regional 
ract Total regional activity (sum of population and 

employment) 
Regional 

index Regional compactness index (index measuring 
compactness vs. sprawl based on a combination of 
four factors that measure density, land use mix, degree 
of centering, and street accessibility); higher values 

Regional 
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signify great compactnessii (Ewing and Hamidi, 
2014) 

Statistical Methods 

As shown in Table 2, our data structure is multilevel with households “nested” within regions.   

This creates a dependence among households in the same region, which violates the independence 

assumption of ordinary least squares regression and leads to inefficient and biased regression 

coefficients and standard error estimates (Raudenbush & Bryk, 2002). That is to say, households in 

Boston are likely to have very different travel and vehicle ownership patterns than households in 

Houston, irrespective of their socioeconomic and neighborhood characteristics. Such a nested data 

structure requires multilevel modeling (MLM) to account for the shared characteristics of 

households in the same region. MLM partitions variance between the household/neighborhood 

level (Level 1) and the regional level (Level 2), and then seeks to explain the variance at each level 

in terms of D variables.    

The dependent variables are of two types: continuous (household VMT) and counts 

(household transit trips and household vehicle ownership).  VMT per household has two 

characteristics that complicate the modeling of it.  First, it is non-normally distributed, highly 

skewed to the left.  The solution to this problem is to take the natural logarithm of VMT, which 

becomes our dependent variable.  Second, it has a large number of zero values for households that 

generate no VMT.  These households use only alternative modes such as transit or walking.  

Twelve percent of households in the sample fall into this category.  When VMT is log 

transformed, these households have undefined values of the dependent variable.   

The proper solution to the problem of excess zero values (what is referred to in the 

econometric literature as “zero inflation”) is to estimate two-stage “hurdle” models (Greene, 2012, 

pp. 443, 824-826).  The stage 1 model categorizes households as either generating VMT or not.  
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The stage 2 model estimates the amount of VMT generated for households with any (positive) 

VMT.  The predicted VMT is just the product of the probability of households having VMT times 

and the amount of VMT generated by households with any VMT. We are aware of no previous 

application of hurdle models to the planning field. 

The other two variables that we wish to model are transit trip counts and household vehicle 

ownership.  Two basic methods of analysis are available when the dependent variable is a count, 

with nonnegative integer values, many small values and few large ones. The methods are Poisson 

regression and negative binomial regression.  The two models – Poisson and negative binomial – 

differ in their assumptions about the distribution of the dependent variable.  Poisson regression is 

appropriate if the dependent variable is equi-dispersed, meaning the variance of counts is equal to 

the mean. Negative binomial regression is appropriate if the dependent variable is overdispersed, 

meaning that the variance of counts is greater than the mean.  Popular indicators of overdispersion 

are the Pearson and χ2 statistics divided by the degrees of freedom, so-called dispersion statistics.  

If these statistics are greater than 1.0, a model is said to be overdispersed (Hilbe, 2011, pp. 88, 

142).  By these measures, we have overdispersion of trip counts in our data set, and the negative 

binomial model is more appropriate than the Poisson model.   

The other statistical complication is the excess number of zero values for the transit trip 

variable.  About 87 percent of households have no transit trips.  Again, the solution to the problem 

of zero inflation is to estimate two-stage hurdle models.  The first stage is the estimation of logistic 

regression models to distinguish between households with and without walk, bike or transit trips.  

The second stage is the estimation of negative binomial regression models for the number of trips 

by these modes for households that have such trips.  
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Models were estimated with HLM 7, Hierarchical Linear and Nonlinear Modeling software 

(Raudenbush, Bryk, Cheong & Congdon, 2010).  HLM 7 allows the estimation of multilevel 

models for continuous, dichotomous and count variables and, for the last of these, can account for 

overdispersion. 

There is no theoretically superior model involving different D variables and different buffer 

widths. Theoretically, buffers could be wide or narrow. Even a determinant as straightforward as 

walking distance could be anywhere from one quarter mile to one mile or more.  Different Ds may 

emerge as significant in different models.  So trial and error was used to arrive at the best-fit 

models for the travel outcomes of interest.  Variables were substituted into models to see if they 

were statistically significant and improved goodness-of-fit. For each dependent variable, we were 

looking for the model with the most significant t-statistics and the greatest log-likelihood. 

Transportation Models 

The best-fit model for the dichotomous variable, any VMT (1=yes, 0=no), is presented in Table 3. 

The likelihood of a household generating any VMT increases with household size, number of 

employed members, real household income and living in single-family housing.  The likelihood of 

any VMT declines with percentage of regional employment accessible within 10 minutes by 

automobile; with land use entropy within a quarter mile of a household; with intersection density 

within a half mile; with percentage of four-way intersections within a half mile; and with average 

transit frequency within a quarter mile of the block group.  Basically, those who live in highly 

accessible places (characterized by these five D variables) are better able to make do without 

automobile trips.  However, the probability of any VMT remains high for all cohorts.  

 
Table 3.  Logistic Regression Model of Log Odds of Any Household VMT 

 coefficient standard error t-ratio p-value 
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constant 1.72 0.172 9.96 <0.001 
hhsize 0.226 0.052 4.36 <0.001 
hhworkers 0.315 0.103 3.054 0.003 
hhincome 0.0331 0.0030 11.00 <0.001 
sf 0.850 0.102 8.33 <0.001 
emp10a -0.0224 0.0061 -3.67 0.001 
entropyqmi -0.709 0.115 -6.14 <0.001 
intdenhmi -0.0025 0.0006 -4.039 <0.001 
int4whmi -0.0129 0.0015 -8.51 <0.001 
tfreq -0.00092 0.0002 -5.33 <0.001 
-2 log-likelihood ratio  44,084 
pseudo-R2  0.62 

 

The best-fit model for the continuous variable natural logarithm of VMT (for households 

that generate VMT) is presented in Table 4. Results parallel those for the dichotomous variable of 

any VMT, though the exact specification of the model is different.  Household VMT increases 

with household size, number of employed household members, and real household income.  

Household VMT declines with percentage of regional employment accessible within 10 minutes 

by automobile, and with average transit frequency.  Household VMT also declines with two land 

use variables characterizing quarter-mile buffers around households: activity density and land use 

entropy.  Finally, household VMT declines with intersection density and percentage of four-way 

intersections within a half mile.  Again, those who live in highly accessible places (characterized 

by these D variables) generate less VMT than those in less accessible places.   

 
Table 4.  Linear Regression Model of Log of Household VMT (for households with any VMT) 

 coefficient standard error t-ratio p-value 
constant 2.55 0.081 31.69 <0.001 
hhsize 0.164 0.024 6.97 <0.001 
hhworkers 0.185 0.0076 24.28 <0.001 
hhincome 0.0072 0.0008 9.06 <0.001 
emp10a -0.0076 0.0018 -4.13 <0.001 
actdenhmi -0.0046 0.0014 -3.03 0.001 
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entropyhmi -0.297 0.037 -8.02 <0.001 
intdenhmi -0.0015 0.00018 -8.37 <0.001 
int4whmi -0.0026 0.0005 -5.49 <0.001 
tfreq -0.000089 0.00003 -3.39 0.001 
--2 log-likelihood ratio  40,294 
pseudo-R2  0.19 

 

The number of household vehicles increases with household size, number of employed 

members, real income and living in a single-family housing unit (see Table 5).  Household vehicle 

ownership declines with percentage of regional employment accessible within 10 minutes by 

automobile; activity density within a quarter mile; land use entropy within a quarter mile; 

percentage of four-way intersections within a half mile; intersection density within a half mile; and 

with transit frequency.   

Table 5.  Negative Binomial Model of Household Vehicle Ownership 
 coefficient standard error t-ratio p-value 
constant -0.108 0.042 -2.56 0.027 
hhsize 0.060 0.008 7.86 <0.001 
hhworkers 0.142 0.011 13.21 <0.001 
hhincome 0.0086 0.0006 14.71 <0.001 
sf 0.301 0.021 14.11 <0.001 
emp10a -0.0019 0.0009 2.094 0.036 
actdenqmi -0.0057 0.0010 -5.90 <0.001 
entropyqmi -0.142 0.021 -6.81 <0.001 
intdenhmi -0.00089 0.0001 -7.86 <0.001 
int4whmi -0.0013 0.0003 -4.90 <0.001 
tfreq -0.00029 0.00008 -3.83 <0.001 
-2 log-likelihood ratio  32,769 
pseudo-R2  0.30 

 
The likelihood of a household having any transit trips increases with household size and 

number of employed members, and declines with income and single-family housing (see Table 6).  

It also depends on land use diversity; entropy within a quarter mile of a household; design of the 
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environment around a household; intersection density; and percentage of four-way intersections 

within a half mile of a household’s location. Transit-oriented development is virtually defined by 

these variables. Also one transit service variable affects the likelihood of transit trips: transit 

frequency. 

 
Table 6.  Logistic Regression Model of Log Odds of Any Transit Trips 

 coefficient standard error t-ratio p-value 
constant -2.82 0.24 -12.10 <0.001 
hhsize 0.157 0.025 6.27 <0.001 
hhworkers 0.266 0.051 5.26 <0.001 
hhincome -0.021 0.0032 -6.43 <0.001 
sf -0.791 0.083 -9.47 <0.001 
entropyqmi 0.480 0.098 4.89 <0.001 
intdenhmi 0.0029 0.0003 9.34 <0.001 
int4whmi 0.013 0.0027 4.77 <0.001 
tfreq 0.00093 0.0002 5.93 <0.001 
-2 log-likelihood ratio 43,942 
pseudo-R2  0.51 

 

The number of household transit trips for the subset of households that use transit increases 

with household size and declines with household income (see Table 7).  The number increases 

with land use entropy within a quarter mile of a home.  It has long been speculated that mixed-use 

areas would generate more transit trips because of the feasibility of trip chaining on the access trip 

to transit; that is, stopping along the way to conduct other personal business.  Interestingly, 

controlling for these variables, transit trips do not appear to depend on the transit service variable 

of transit frequency.  It is as if once households make a decision to use transit, their frequency of 

use is determined only by sociodemographics and the built environment. 

Table 7. Negative Binomial Regression Model of Household Transit Trips 

 coefficient standard error t-ratio p-value 
constant 0.853 0.107 7.96 <0.001 
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hhsize 0.135 0.015 8.96 <0.001 
hhincome -0.0057 0.0015 -3.79 <0.001 
entropyqmi 0.173 0.084 2.05 0.040 
-2 log-likelihood ratio  3,215 
pseudo-R2  0.15 

 

In the preceding tables, -2 times log-likelihood ratios are shown as measures of model fit.  

The fitted model is being compared to the null model with only constant terms.  Multiplying by -2 

causes the resulting statistic to follow a chi-square distribution.  By this statistic, our models fit the 

data well.  Also shown are pseudo-R2s, largely because urban planners are used to dealing with 

R2s and may want this information.  Pseudo-R2s in multilevel modeling are not equivalent to R2s 

in ordinary least squares regression, and should not be interpreted the same way. The pseudo-R2 

bears some resemblance to the statistic used to test the hypothesis that all coefficients in the model 

are zero, but there is no construction by which it is a measure of how well the model predicts the 

outcome variable in the way that R2 does in conventional regression analysis. 

Travel Outcome Computations 

The models developed in this study give us natural logarithms, log odds, and expected values of 

variables.   Model outputs must be transformed to compute effects. The transformations involve 

several steps. 

For example, the logistic equation in Table 6 allows us to compute the odds of any transit 

trip by exponentiating the log odds, and then to compute the probability of any transit trip with the 

formula for the probability in terms of the odds.   

 Odds of any transit trips = exp (log odds any transit trips) 

probability of any transit trips = odds of any transit trips/(1 + odds of any transit trips) 
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From the negative binomial equation in Table 7, we next compute the expected number of 

any transit trips for households, again by exponentiating: 

number of transit trips (for households with transit trips) = exp (log of expected number of 

transit trips) 

The expected number of transit trips for all households is just the product of the two. 

Number of transit trips (for all households) = probability of any transit trips x number of 

transit trips (for households with transit trips) 

We followed the same procedure to predict VMT per household. 

Cost Calculations 

Transportation costs consist of vehicle costs (household’s expenses to own and use private 

vehicles) and public transit costs (transit fares). Vehicle costs are divided into fixed and variable 

costs. Fixed or ownership costs are not generally affected by the amount a vehicle is driven. 

Depreciation, insurance, and registration fees are considered fixed. Variable costs are the 

incremental costs which increase with vehicle mileage. Fuel is a variable vehicle cost; it is 

proportional to mileage (Litman, 2009). 

We computed vehicle fixed costs based on our household vehicle ownership model and the 

average cost of car ownership specific to the most popular cars for low-income households and 

also specific to the states which HUD rental assistance properties are located. Our average car 

ownership costs are based on a car ownership costs calculator called True Cost to Own®iii pricing 

(TCO®) system developed by Edmunds Inc. The components of TCO® are depreciation, interest 

on financing, taxes and fees, insurance premiums, fuel, maintenance, repairs and any federal tax 

credit that may be available. In this paper we used all categories but fuel because we treat fuel as a 
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variable vehicle cost.  Since some costs are often categorized as fixed, such as depreciation and 

insurance, but are not totally fixed and actually increase with vehicle mileage, TCO® assumes that 

vehicles will be driven 15,000 miles per year. TCO® calculated the costs of driving for cars made 

after 2009. 

 TCO® values are specific to states and also to the vehicle’s make, model and year. We 

were interested in costs for the most popular vehicles’ model and make for low-income 

households. Therefore, we created a sample of low-income households from the National 

Household Travel Database (NHTS) based on the HUD low-income standard and identified the 15 

most popular vehicles owned by households in this sample. These vehicles account for more than 

34 percent of vehicles owned by low-income households in the NHTS database. The most popular 

vehicle is the Ford F-series pickup, followed by the Chevrolet Silverado, Toyota Camry and 

Honda Accord (see Table. 8). We acquired, for each state, the five-year average costs of car 

ownership for these 15 vehicles for the earliest year (2009) reported by the TCO® since, according 

to the NHTS database, low-income households tend to buy and own older cars. We then weighted 

the five-year average costs by the popularity of each make and model for low-income households 

in the NHTS database to obtain the average vehicle ownership costs for each state. We multiplied 

this by the predicted number of cars owned by a household to obtain the household’s ownership or 

fixed vehicle costs. 

 
Table 8. Top 15 Popular Automobiles for Low-income Households According to NHTS 

Rank make name model name Number of cases 
1 FORD F-Series pickup 3,934 
2 CHEVROLET C, K, R, V-Series  pickup/Silverado 2,842 
3 TOYOTA Camry 2,691 
4 HONDA Accord  2,023 
5 FORD Taurus/Taurus X 2,018 
6 TOYOTA Corolla  1,781 
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7 DODGE Caravan/Grand Caravan  1,644 
8 FORD Ranger  1,642 
9 HONDA Insight 1,534 
10 FORD Bronco II/Explorer/Explorer Sport   1,272 
11 CHEVROLET Impala/Caprice 1,238 
12 DODGE Ram Pickup 1,194 
13 CHEVROLET Full-size Blazer/Tahoe 1,136 
14 JEEP Cherokee 1,088 
15 MERCURY Marquis/Monterey 990 

 

Second, we computed auto operating costs based on our household VMT model calibrated 

with data for low-income households from 15 metropolitan regions and gasoline price data specific 

to the regions in which HUD rental assistance properties are located.  As illustrated in Table 9, 

average gasoline prices vary greatly from region to region. We acquired metropolitan-level 

average gasoline prices for 2010 from the Oil Price Information Service, inflated them to 2014 

dollars and then multiplied the fuel costs per gallon by the predicated VMT to obtain the 

household’s operating or variable vehicle costs. 

Table 9. Five Most and Least Expensive Regions for Average Gasoline Price per Gallon (2010) 
Most expensive regions ($ per gallon) 
Honolulu, HI $3.37 
Anchorage, AK $3.35 
San Francisco, CA $3.19 
Bakersfield, CA $3.16 
Santa Barbara-Santa Maria, CA $3.15 
Least expensive regions ($ per gallon) 
Springfield, MO $2.55 
Joplin, MO $2.56 
Augusta-Aiken, GA-SC $2.56 
Greenville-Spartanburg, SC $2.57 
Cheyenne, WY $2.57 

 
Third, we computed transit costs based on our household transit trip model calibrated with 

data for low-income households from 15 metropolitan regions and average transit fares specific to 

the regions in which HUD rental assistance properties are located.  Transit fare data comes from 
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the National Transit Database. We computed average transit fare for each region by dividing the 

total transit revenue by total number of unlinked passenger trips for the region. We multiplied the 

amount of fare per transit trip by the predicted number of transit trips to obtain the household’s 

public transit costs. 

To estimate the overall household transportation costs for each property in our sample, we 

added up the three transportation cost components. Finally, we calculated the percentage of a 

household’s income spent on transportation for households who qualify for HUD rental assistance. 

That is, those with extremely low, very low, and low incomes (less than 30 percent, 50 percent, 

and 80 percent of county median household income). As for the household income, we used the 

income limit for low-income households (80 percent of county median household income). Since 

the average household size in our 15-region travel survey database for eligible households is 2.39, 

we used the income limit for a typical household size of three in our transportation affordability 

calculation. 

Results and Discussion 

We found that, on average, a typical low-income household that qualified for HUD assistance 

spends 15 percent of its budget on transportation, which agrees with LAI’s recommended 15-

percent threshold for transportation affordability. Figure 1 shows the frequency distribution of 

transportation affordability (percentage of income spent for transportation costs) for 18,030 

properties in our sample. Interestingly, properties with the lowest and highest transportation costs 

both are located in the same state, California. A typical low-income household that qualified for 

HUD assistance in downtown Los Angeles spends only $1,988 per year on transportation, which is 
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less than 3.5 percent of its budget. The same household in a distant and inaccessible location in 

Portland, ME, spends $13,950 (28 percent of its budget) on transportation. 

Figure 1. Frequency Distribution of Predicted Transportation Affordability (percentage of income 

spent for transportation costs) 

 

Figure 2 shows the variation of transportation costs for HUD multifamily properties in U.S. 

metropolitan areas. The red color shows unaffordable properties where a typical low-income 

household spends more than 15 percent of its budget on transportation. The orange color represents 

affordable properties where transportation costs are less than 15 percent for typical low-income 

households.  As shown in the figure, cities with good public transit service such as Portland, OR, 

have, in general, lower transportation costs, particularly in the downtown area. Properties in auto-

oriented cities such as Las Vegas, NV, and Orlando, FL, have high transportation costs, even 

housing units in downtown areas.  
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Figure 2. Transportation Affordability for HUD Multifamily Properties in U.S. Metropolitan Areas 

(The red color shows unaffordable properties  and the orange color represents affordable properties 

where transportation costs are less than 15 percent for typical low-income households.) 

 

 
Figures 3 and 4 show two compact (New York and San Francisco) and two sprawling 

metropolitan areas (Phoenix and Detroit-Warren).  As shown in the figures, transportation costs 

increase with distance from downtown. As one would expect, suburban areas have much higher 

transportation costs than properties in central cities. These results are in line with the LAI 

transportation costs calculator, which shows that a typical household in an accessible central 

location spends significantly less on transportation than the same household in a distant area (Jain 

& Brecher, 2014). 

We found that, out of 18,300 properties, households in 8,857 properties (48 percent of all 

properties in the sample) spend, on average, more than 15 percent of their income on transportation 
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costs. In other words, transportation is unaffordable by the CNT definition for low-income 

households at these properties. Pittsburgh, PA, has the highest number of unaffordable properties 

in terms of transportation, followed by Houston, TX; Cleveland, OH; Phoenix, AZ; and Atlanta, 

GA (see Table 10). Not surprisingly, these and other metropolitan areas in Table 10 are found to be 

among the most sprawling MSAs in the country by previous studies (Ewing & Hamidi, 2014). 

Accordingly, the more compact metropolitan areas are found to have the highest number of 

affordable housing supplied by HUD (See Table 11). This is not to suggest, of course, that rental 

assistance be limited to compact metropolitan areas, but rather to suggest that channeling subsidies 

into accessible neighborhoods is even more important in sprawling metropolitan areas than 

compact ones.   

Figure 3. Transportation Affordability for HUD Multifamily Properties in New York (left) and 

Chicago (right) 
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Figure 4. Transportation Affordability for HUD Multifamily Properties in Atlanta (left) and 

Detroit-Warren (right) 

 

 
Table 10: Fifteen Metropolitan Areas with Highest Number of Unaffordable HUD Assistance 

Properties in Terms of Transportation Costs 

MSA name Number of 
affordable 
properties 

Total number 
of properties 

% of properties 
affordable 

Columbus, OH  82 217 37.79 
Cincinnati-Middletown, OH-KY-IN  90 260 34.62 
Cleveland-Elyria-Mentor, OH  75 262 28.63 
Dallas-Plano-Irving, TX  60 212 28.3 
Atlanta-Sandy Springs-Marietta, GA  63 246 25.61 
Detroit-Livonia-Dearborn, MI  48 208 23.08 
Indianapolis-Carmel, IN  43 195 22.05 
Houston-Sugar Land-Baytown, TX  46 240 19.17 
Pittsburgh, PA  57 321 17.76 
Buffalo-Niagara Falls, NY  24 145 16.55 
San Antonio-New Braunfels, TX  18 133 13.53 
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Riverside-San Bernardino-Ontario, CA  11 129 8.53 
Tampa-St. Petersburg-Clearwater, FL  5 182 2.75 
Phoenix-Mesa-Glendale, AZ  5 191 2.62 
Warren-Troy-Farmington Hills, MI  1 147 0.68 

 

Table 11: Fifteen Metropolitan Areas with Highest Number of Affordable HUD Assistance 

Properties in Terms of Transportation Costs 

MSA name Number of 
affordable 
properties 

Total number of 
properties 

% of properties 
affordable 

San Francisco-San Mateo-Redwood City, CA  156 156 100 
Los Angeles-Long Beach-Glendale, CA  763 787 96.95 
Denver-Aurora-Broomfield, CO  220 233 94.42 
New York-White Plains-Wayne, NY-NJ 686 756 90.74 
Portland-Vancouver-Hillsboro, OR-WA  197 220 89.55 
Minneapolis-St. Paul-Bloomington, MN-WI  376 423 88.89 
Oakland-Fremont-Hayward, CA  160 181 88.4 
Washington-Arlington-Alexandria, DC-VA 311 353 88.1 
Chicago-Joliet-Naperville, IL 596 693 86 
Kansas City, MO-KS  164 208 78.85 
Philadelphia, PA  205 261 78.54 
Milwaukee-Waukesha-West Allis, WI  151 205 73.66 
Baltimore-Towson, MD  188 281 66.9 
Providence-New Bedford-Fall River, RI-MA  161 267 60.3 
St. Louis, MO-IL  168 281 59.79 

 

This study has limitations. Although we started with a national sample of 34,000 HUD 

rental assistance properties, due to lack of built environment and cost data availability, we were 

only able to estimate transportation costs for 18,300 properties. These properties are located in 

both metropolitan areas and urbanized areas. Also, we ultimately dropped properties in 

Massachusetts from our sample due to the lack of local employment dynamics data, a key data 

element for estimating transportation models.  
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Another limitation has to do with the transportation costs calculation. Our average fare 

variable is computed by dividing total fare revenue of transit agencies in urbanized areas by total 

unlinked passenger trips. We had no control over the mode of transit. Some modes such as 

commuter rail and ferryboats are more expensive, and perhaps less popular, than bus, light rail and 

heavy rail transit. This might be the reason for finding outliers in our sample is terms of average 

transit fare. Still, we believe that this is the best transit fare data available at the national scale and 

is more reliable than average base fare data from the American Public Transportation 

Association’s Public Transportation Fare Database. The reason is simple: The Public 

Transportation Fare Database does not account for transit passes and other forms of transit fare 

subsidies that apply to many transit users. 

Conclusions 

This study is the first attempt to evaluate the affordability for HUD rental assistance program units. 

The high quality of this research results from its unprecedented assemblage of household travel 

and vehicle ownership data for 15 diverse metropolitan regions; its unprecedented linkage of these 

data to built environmental and transit data for buffers around individual households; its 

unprecedented use of multilevel modeling to estimate relationships between the built environment, 

travel outcomes and transportation costs; and its unprecedented application of resulting models to 

housing affordability assessments for low-income households living in HUD-subsidized rental 

units. Finally, our models are specific to low-income households, a group that has received little 

attention in the travel literature.   

While the 15-region household travel dataset is proprietary, having been collected and 

processed over several years, the resulting models (Tables 3-7) are available to anyone who might 
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wish to duplicate our results for a specific HUD property or study transportation affordability 

generally for low-income households. This evidence-based research suggests that HUD rental 

assistance programs, when they subsidize housing in sprawling auto-dependent areas, are not 

holistically affordable. It also suggests that HUD can provide more affordable units to low-income 

families by directing subsidies to better (more compact, walkable and transit-served) locations.   
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Appendix A 

Percentage of HUD affordable properties in U.S metropolitan areas  

# MSA name # 
affordable 

 Total 
properties 

% 
affordable 

1 Akron, OH Metro Area 34 89 38.2 
2 Albany-Schenectady-Troy, NY Metro Area 47 77 61.0 
3 Albany, GA Metro Area 0 16 0.0 
4 Albuquerque, NM Metro Area 33 60 55.0 
5 Alexandria, LA Metro Area 0 14 0.0 
6 Allentown-Bethlehem-Easton, PA-NJ Metro Area 41 46 89.1 
7 Altoona, PA Metro Area 4 16 25.0 
8 Amarillo, TX Metro Area 12 14 85.7 
9 Ames, IA Metro Area 4 4 100.0 

10 Anderson, IN Metro Area 8 19 42.1 
11 Anderson, SC Metro Area 3 12 25.0 
12 Ann Arbor, MI Metro Area 29 31 93.6 
13 Anniston-Oxford, AL Metro Area 0 10 0.0 
14 Appleton, WI Metro Area 6 7 85.7 
15 Asheville, NC Metro Area 3 38 7.9 
16 Athens-Clarke County, GA Metro Area 3 13 23.1 
17 Atlanta-Sandy Springs-Marietta, GA Metro Area 63 246 25.6 
18 Auburn-Opelika, AL Metro Area 7 11 63.6 
19 Augusta-Richmond County, GA-SC Metro Area 3 45 6.7 
20 Austin-Round Rock-San Marcos, TX Metro Area 67 72 93.1 
21 Bakersfield-Delano, CA Metro Area 0 22 0.0 
22 Baltimore-Towson, MD Metro Area 188 281 66.9 
23 Bangor, ME Metro Area 6 23 26.1 
24 Baton Rouge, LA Metro Area 4 56 7.1 
25 Battle Creek, MI Metro Area 0 10 0.0 
26 Bay City, MI Metro Area 0 7 0.0 
27 Beaumont-Port Arthur, TX Metro Area 1 39 2.6 
28 Bellingham, WA Metro Area 9 11 81.8 
29 Bend, OR Metro Area 13 13 100.0 
30 Bethesda-Rockville-Frederick, MD Metro Division 125 141 88.7 
31 Billings, MT Metro Area 13 17 76.5 
32 Binghamton, NY Metro Area 4 13 30.8 
33 Birmingham-Hoover, AL Metro Area 14 86 16.3 
34 Bismarck, ND Metro Area 5 5 100.0 
35 Blacksburg-Christiansburg-Radford, VA Metro Area 12 21 57.1 
36 Bloomington-Normal, IL Metro Area 11 11 100.0 



34 
 

37 Bloomington, IN Metro Area 13 14 92.9 
38 Boise City-Nampa, ID Metro Area 31 32 96.9 
39 Bremerton-Silverdale, WA Metro Area 1 27 3.7 
40 Bridgeport-Stamford-Norwalk, CT Metro Area 77 81 95.1 
41 Brownsville-Harlingen, TX Metro Area 0 11 0.0 
42 Buffalo-Niagara Falls, NY Metro Area 24 145 16.6 
43 Burlington-South Burlington, VT Metro Area 23 27 85.2 
44 Camden, NJ Metro Division 35 70 50.0 
45 Canton-Massillon, OH Metro Area 18 34 52.9 
46 Cape Coral-Fort Myers, FL Metro Area 0 33 0.0 
47 Carson City, NV Metro Area 3 3 100.0 
48 Casper, WY Metro Area 8 10 80.0 
49 Cedar Rapids, IA Metro Area 18 19 94.7 
50 Champaign-Urbana, IL Metro Area 20 20 100.0 
51 Charleston-North Charleston-Summerville, SC Metro 

Area 
9 44 20.5 

52 Charleston, WV Metro Area 5 22 22.7 
53 Charlotte-Gastonia-Rock Hill, NC-SC Metro Area 42 137 30.7 
54 Charlottesville, VA Metro Area 18 18 100.0 
55 Chattanooga, TN-GA Metro Area 0 48 0.0 
56 Cheyenne, WY Metro Area 11 11 100.0 
57 Chicago-Joliet-Naperville, IL Metro Division 596 693 86.0 
58 Chico, CA Metro Area 0 15 0.0 
59 Cincinnati-Middletown, OH-KY-IN Metro Area 90 260 34.6 
60 Clarksville, TN-KY Metro Area 0 12 0.0 
61 Cleveland-Elyria-Mentor, OH Metro Area 75 262 28.6 
62 Cleveland, TN Metro Area 2 15 13.3 
63 College Station-Bryan, TX Metro Area 0 12 0.0 
64 Colorado Springs, CO Metro Area 25 34 73.5 
65 Columbia, MO Metro Area 7 10 70.0 
66 Columbia, SC Metro Area 10 58 17.2 
67 Columbus, GA-AL Metro Area 4 25 16.0 
68 Columbus, IN Metro Area 19 19 100.0 
69 Columbus, OH Metro Area 82 204 40.2 
70 Corpus Christi, TX Metro Area 9 34 26.5 
71 Crestview-Fort Walton Beach-Destin, FL Metro Area 0 6 0.0 
72 Cumberland, MD-WV Metro Area 3 7 42.9 
73 Dallas-Plano-Irving, TX Metro Division 60 212 28.3 
74 Danville, IL Metro Area 8 13 61.5 
75 Davenport-Moline-Rock Island, IA-IL Metro Area 36 45 80.0 
76 Dayton, OH Metro Area 26 124 21.0 
77 Decatur, AL Metro Area 0 9 0.0 
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78 Decatur, IL Metro Area 14 17 82.4 
79 Deltona-Daytona Beach-Ormond Beach, FL Metro 

Area 
0 20 0.0 

80 Denver-Aurora-Broomfield, CO Metro Area 220 233 94.4 
81 Des Moines-West Des Moines, IA Metro Area 33 39 84.6 
82 Detroit-Livonia-Dearborn, MI Metro Division 48 208 23.1 
83 Dothan, AL Metro Area 1 10 10.0 
84 Dubuque, IA Metro Area 5 6 83.3 
85 Duluth, MN-WI Metro Area 18 37 48.7 
86 Durham-Chapel Hill, NC Metro Area 21 43 48.8 
87 Eau Claire, WI Metro Area 17 25 68.0 
88 Edison-New Brunswick, NJ Metro Division 31 118 26.3 
89 El Centro, CA Metro Area 0 13 0.0 
90 El Paso, TX Metro Area 2 40 5.0 
91 Elkhart-Goshen, IN Metro Area 0 18 0.0 
92 Elmira, NY Metro Area 0 9 0.0 
93 Erie, PA Metro Area 5 42 11.9 
94 Eugene-Springfield, OR Metro Area 34 37 91.9 
95 Evansville, IN-KY Metro Area 21 44 47.7 
96 Fargo, ND-MN Metro Area 15 18 83.3 
97 Farmington, NM Metro Area 0 6 0.0 
98 Fayetteville-Springdale-Rogers, AR-MO Metro Area 1 24 4.2 
99 Fayetteville, NC Metro Area 0 34 0.0 

100 Flagstaff, AZ Metro Area 0 7 0.0 
101 Flint, MI Metro Area 0 33 0.0 
102 Florence-Muscle Shoals, AL Metro Area 2 20 10.0 
103 Fond du Lac, WI Metro Area 3 7 42.9 
104 Fort Collins-Loveland, CO Metro Area 21 23 91.3 
105 Fort Lauderdale-Pompano Beach-Deerfield Beach, FL 

Metro Division 
24 56 42.9 

106 Fort Smith, AR-OK Metro Area 0 15 0.0 
107 Fort Wayne, IN Metro Area 14 34 41.2 
108 Fort Worth-Arlington, TX Metro Division 15 95 15.8 
109 Fresno, CA Metro Area 1 30 3.3 
110 Gadsden, AL Metro Area 0 13 0.0 
111 Gainesville, FL Metro Area 1 24 4.2 
112 Gainesville, GA Metro Area 3 6 50.0 
113 Gary, IN Metro Division 2 61 3.3 
114 Glens Falls, NY Metro Area 1 3 33.3 
115 Goldsboro, NC Metro Area 0 8 0.0 
116 Grand Forks, ND-MN Metro Area 17 18 94.4 
117 Grand Junction, CO Metro Area 15 18 83.3 
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118 Grand Rapids-Wyoming, MI Metro Area 5 51 9.8 
119 Great Falls, MT Metro Area 11 14 78.6 
120 Greeley, CO Metro Area 12 16 75.0 
121 Green Bay, WI Metro Area 12 13 92.3 
122 Greensboro-High Point, NC Metro Area 1 56 1.8 
123 Greenville-Mauldin-Easley, SC Metro Area 8 46 17.4 
124 Greenville, NC Metro Area 5 11 45.5 
125 Gulfport-Biloxi, MS Metro Area 0 21 0.0 
126 Harrisburg-Carlisle, PA Metro Area 13 30 43.3 
127 Harrisonburg, VA Metro Area 1 5 20.0 
128 Hartford-West Hartford-East Hartford, CT Metro Area 80 161 49.7 
129 Hattiesburg, MS Metro Area 0 18 0.0 
130 Hickory-Lenoir-Morganton, NC Metro Area 0 33 0.0 
131 Hinesville-Fort Stewart, GA Metro Area 0 7 0.0 
132 Holland-Grand Haven, MI Metro Area 4 15 26.7 
133 Houma-Bayou Cane-Thibodaux, LA Metro Area 0 12 0.0 
134 Houston-Sugar Land-Baytown, TX Metro Area 46 240 19.2 
135 Huntington-Ashland, WV-KY-OH Metro Area 0 36 0.0 
136 Huntsville, AL Metro Area 12 19 63.2 
137 Idaho Falls, ID Metro Area 9 9 100.0 
138 Indianapolis-Carmel, IN Metro Area 43 195 22.1 
139 Iowa City, IA Metro Area 8 8 100.0 
140 Ithaca, NY Metro Area 3 5 60.0 
141 Jackson, MI Metro Area 7 18 38.9 
142 Jackson, MS Metro Area 1 56 1.8 
143 Jackson, TN Metro Area 2 11 18.2 
144 Jacksonville, FL Metro Area 15 96 15.6 
145 Jacksonville, NC Metro Area 0 9 0.0 
146 Janesville, WI Metro Area 7 14 50.0 
147 Jefferson City, MO Metro Area 11 11 100.0 
148 Johnson City, TN Metro Area 2 29 6.9 
149 Johnstown, PA Metro Area 2 7 28.6 
150 Jonesboro, AR Metro Area 0 13 0.0 
151 Joplin, MO Metro Area 0 11 0.0 
152 Kalamazoo-Portage, MI Metro Area 3 41 7.3 
153 Kankakee-Bradley, IL Metro Area 13 13 100.0 
154 Kansas City, MO-KS Metro Area 164 208 78.9 
155 Kennewick-Pasco-Richland, WA Metro Area 9 24 37.5 
156 Killeen-Temple-Fort Hood, TX Metro Area 0 7 0.0 
157 Kingsport-Bristol-Bristol, TN-VA Metro Area 2 28 7.1 
158 Kingston, NY Metro Area 7 14 50.0 
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159 Kokomo, IN Metro Area 8 10 80.0 
160 La Crosse, WI-MN Metro Area 8 12 66.7 
161 Lafayette, IN Metro Area 21 23 91.3 
162 Lafayette, LA Metro Area 0 23 0.0 
163 Lake Charles, LA Metro Area 4 17 23.5 
164 Lake County-Kenosha County, IL-WI Metro Division 51 58 87.9 
165 Lakeland-Winter Haven, FL Metro Area 1 16 6.3 
166 Lancaster, PA Metro Area 14 19 73.7 
167 Lansing-East Lansing, MI Metro Area 8 39 20.5 
168 Laredo, TX Metro Area 0 10 0.0 
169 Las Vegas-Paradise, NV Metro Area 0 67 0.0 
170 Lawrence, KS Metro Area 8 8 100.0 
171 Lawton, OK Metro Area 3 13 23.1 
172 Lebanon, PA Metro Area 1 6 16.7 
173 Lewiston, ID-WA Metro Area 7 16 43.8 
174 Lexington-Fayette, KY Metro Area 30 49 61.2 
175 Lima, OH Metro Area 18 20 90.0 
176 Lincoln, NE Metro Area 31 31 100.0 
177 Little Rock-North Little Rock-Conway, AR Metro Area 13 74 17.6 
178 Longview, TX Metro Area 1 16 6.3 
179 Longview, WA Metro Area 7 7 100.0 
180 Los Angeles-Long Beach-Glendale, CA Metro Division 763 787 97.0 
181 Louisville/Jefferson County, KY-IN Metro Area 48 143 33.6 
182 Lubbock, TX Metro Area 0 15 0.0 
183 Lynchburg, VA Metro Area 6 26 23.1 
184 Macon, GA Metro Area 1 30 3.3 
185 Madera-Chowchilla, CA Metro Area 1 4 25.0 
186 Madison, WI Metro Area 56 56 100.0 
187 Manchester-Nashua, NH Metro Area 46 48 95.8 
188 Mansfield, OH Metro Area 4 16 25.0 
189 McAllen-Edinburg-Mission, TX Metro Area 0 33 0.0 
190 Medford, OR Metro Area 8 21 38.1 
191 Memphis, TN-MS-AR Metro Area 1 111 0.9 
192 Merced, CA Metro Area 0 10 0.0 
193 Miami-Miami Beach-Kendall, FL Metro Division 62 158 39.2 
194 Michigan City-La Porte, IN Metro Area 0 14 0.0 
195 Milwaukee-Waukesha-West Allis, WI Metro Area 151 205 73.7 
196 Minneapolis-St. Paul-Bloomington, MN-WI Metro 

Area 
376 423 88.9 

197 Mobile, AL Metro Area 1 67 1.5 
198 Modesto, CA Metro Area 1 20 5.0 
199 Monroe, LA Metro Area 1 20 5.0 
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200 Monroe, MI Metro Area 0 2 0.0 
201 Montgomery, AL Metro Area 7 33 21.2 
202 Mount Vernon-Anacortes, WA Metro Area 0 3 0.0 
203 Muncie, IN Metro Area 8 13 61.5 
204 Muskegon-Norton Shores, MI Metro Area 2 19 10.5 
205 Myrtle Beach-North Myrtle Beach-Conway, SC Metro 

Area 
0 6 0.0 

206 Naples-Marco Island, FL Metro Area 3 6 50.0 
207 Nashville-Davidson--Murfreesboro--Franklin, TN 

Metro Area 
11 96 11.5 

208 Nassau-Suffolk, NY Metro Division 107 109 98.2 
209 New Haven-Milford, CT Metro Area 86 127 67.7 
210 New Orleans-Metairie-Kenner, LA Metro Area 18 82 22.0 
211 New York-White Plains-Wayne, NY-NJ Metro Division 686 756 90.7 
212 Newark-Union, NJ-PA Metro Division 144 204 70.6 
213 North Port-Bradenton-Sarasota, FL Metro Area 5 32 15.6 
214 Norwich-New London, CT Metro Area 13 29 44.8 
215 Oakland-Fremont-Hayward, CA Metro Division 160 181 88.4 
216 Ocala, FL Metro Area 0 15 0.0 
217 Odessa, TX Metro Area 4 8 50.0 
218 Oklahoma City, OK Metro Area 7 58 12.1 
219 Olympia, WA Metro Area 9 9 100.0 
220 Omaha-Council Bluffs, NE-IA Metro Area 50 88 56.8 
221 Orlando-Kissimmee-Sanford, FL Metro Area 1 76 1.3 
222 Oshkosh-Neenah, WI Metro Area 6 27 22.2 
223 Owensboro, KY Metro Area 6 11 54.6 
224 Oxnard-Thousand Oaks-Ventura, CA Metro Area 15 17 88.2 
225 Palm Bay-Melbourne-Titusville, FL Metro Area 0 29 0.0 
226 Panama City-Lynn Haven-Panama City Beach, FL 

Metro Area 
1 15 6.7 

227 Parkersburg-Marietta-Vienna, WV-OH Metro Area 1 14 7.1 
228 Pensacola-Ferry Pass-Brent, FL Metro Area 0 1 0.0 
229 Peoria, IL Metro Area 26 50 52.0 
230 Philadelphia, PA Metro Division 205 261 78.5 
231 Phoenix-Mesa-Glendale, AZ Metro Area 5 191 2.6 
232 Pine Bluff, AR Metro Area 0 14 0.0 
233 Pittsburgh, PA Metro Area 57 321 17.8 
234 Pocatello, ID Metro Area 9 11 81.8 
235 Port St. Lucie, FL Metro Area 0 9 0.0 
236 Portland-South Portland-Biddeford, ME Metro Area 1 80 1.3 
237 Portland-Vancouver-Hillsboro, OR-WA Metro Area 197 220 89.6 
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238 Poughkeepsie-Newburgh-Middletown, NY Metro 
Area 

3 22 13.6 

239 Providence-New Bedford-Fall River, RI-MA Metro 
Area 

161 267 60.3 

240 Pueblo, CO Metro Area 7 13 53.9 
241 Punta Gorda, FL Metro Area 0 8 0.0 
242 Racine, WI Metro Area 22 23 95.7 
243 Raleigh-Cary, NC Metro Area 50 51 98.0 
244 Rapid City, SD Metro Area 5 20 25.0 
245 Reading, PA Metro Area 9 11 81.8 
246 Redding, CA Metro Area 2 12 16.7 
247 Reno-Sparks, NV Metro Area 16 18 88.9 
248 Richmond, VA Metro Area 71 101 70.3 
249 Riverside-San Bernardino-Ontario, CA Metro Area 11 129 8.5 
250 Roanoke, VA Metro Area 9 26 34.6 
251 Rochester, MN Metro Area 18 18 100.0 
252 Rochester, NY Metro Area 34 78 43.6 
253 Rockford, IL Metro Area 22 41 53.7 
254 Rocky Mount, NC Metro Area 0 18 0.0 
255 Rome, GA Metro Area 0 5 0.0 
256 Sacramento--Arden-Arcade--Roseville, CA Metro Area 68 117 58.1 
257 Saginaw-Saginaw Township North, MI Metro Area 0 15 0.0 
258 Salem, OR Metro Area 18 27 66.7 
259 Salinas, CA Metro Area 0 18 0.0 
260 Salt Lake City, UT Metro Area 66 75 88.0 
261 San Angelo, TX Metro Area 5 10 50.0 
262 San Antonio-New Braunfels, TX Metro Area 18 133 13.5 
263 San Diego-Carlsbad-San Marcos, CA Metro Area 117 145 80.7 
264 San Francisco-San Mateo-Redwood City, CA Metro 

Division 
156 156 100.0 

265 San Jose-Sunnyvale-Santa Clara, CA Metro Area 94 94 100.0 
266 San Luis Obispo-Paso Robles, CA Metro Area 7 8 87.5 
267 Santa Ana-Anaheim-Irvine, CA Metro Division 83 83 100.0 
268 Santa Barbara-Santa Maria-Goleta, CA Metro Area 14 15 93.3 
269 Santa Cruz-Watsonville, CA Metro Area 20 20 100.0 
270 Santa Fe, NM Metro Area 16 16 100.0 
271 Santa Rosa-Petaluma, CA Metro Area 34 35 97.1 
272 Scranton--Wilkes-Barre, PA Metro Area 13 47 27.7 
273 Seattle-Bellevue-Everett, WA Metro Division 134 186 72.0 
274 Sheboygan, WI Metro Area 4 9 44.4 
275 Sherman-Denison, TX Metro Area 0 5 0.0 
276 Shreveport-Bossier City, LA Metro Area 0 58 0.0 
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277 Sioux City, IA-NE-SD Metro Area 12 24 50.0 
278 Sioux Falls, SD Metro Area 31 31 100.0 
279 South Bend-Mishawaka, IN-MI Metro Area 17 29 58.6 
280 Spartanburg, SC Metro Area 0 21 0.0 
281 Spokane, WA Metro Area 27 54 50.0 
282 Springfield, IL Metro Area 13 16 81.3 
283 Springfield, MO Metro Area 4 25 16.0 
284 Springfield, OH Metro Area 6 13 46.2 
285 St. Cloud, MN Metro Area 16 21 76.2 
286 St. Joseph, MO-KS Metro Area 10 14 71.4 
287 St. Louis, MO-IL Metro Area 168 281 59.8 
288 State College, PA Metro Area 1 1 100.0 
289 Stockton, CA Metro Area 3 22 13.6 
290 Sumter, SC Metro Area 0 16 0.0 
291 Syracuse, NY Metro Area 13 61 21.3 
292 Tacoma, WA Metro Division 10 48 20.8 
293 Tallahassee, FL Metro Area 4 19 21.1 
294 Tampa-St. Petersburg-Clearwater, FL Metro Area 5 182 2.8 
295 Terre Haute, IN Metro Area 5 12 41.7 
296 Toledo, OH Metro Area 12 89 13.5 
297 Topeka, KS Metro Area 8 25 32.0 
298 Trenton-Ewing, NJ Metro Area 2 7 28.6 
299 Tucson, AZ Metro Area 3 56 5.4 
300 Tulsa, OK Metro Area 3 58 5.2 
301 Tuscaloosa, AL Metro Area 0 19 0.0 
302 Tyler, TX Metro Area 1 13 7.7 
303 Utica-Rome, NY Metro Area 8 25 32.0 
304 Vallejo-Fairfield, CA Metro Area 14 19 73.7 
305 Vineland-Millville-Bridgeton, NJ Metro Area 2 8 25.0 
306 Virginia Beach-Norfolk-Newport News, VA-NC Metro 

Area 
121 155 78.1 

307 Visalia-Porterville, CA Metro Area 2 10 20.0 
308 Waco, TX Metro Area 1 14 7.1 
309 Warren-Troy-Farmington Hills, MI Metro Division 1 147 0.7 
310 Washington-Arlington-Alexandria, DC-VA-MD-WV 

Metro Division 
311 353 88.1 

311 Waterloo-Cedar Falls, IA Metro Area 3 18 16.7 
312 Wausau, WI Metro Area 7 7 100.0 
313 West Palm Beach-Boca Raton-Boynton Beach, FL 

Metro Division 
11 41 26.8 

314 Wheeling, WV-OH Metro Area 0 17 0.0 
315 Wichita Falls, TX Metro Area 2 12 16.7 
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316 Wichita, KS Metro Area 3 46 6.5 
317 Williamsport, PA Metro Area 5 6 83.3 
318 Wilmington, DE-MD-NJ Metro Division 55 69 79.7 
319 Wilmington, NC Metro Area 0 24 0.0 
320 Winchester, VA-WV Metro Area 3 4 75.0 
321 Winston-Salem, NC Metro Area 18 46 39.1 
322 Yakima, WA Metro Area 8 19 42.1 
323 York-Hanover, PA Metro Area 0 13 0.0 
324 Youngstown-Warren-Boardman, OH-PA Metro Area 3 61 4.9 
325 Yuba City, CA Metro Area 1 10 10.0 
326 Yuma, AZ Metro Area 0 7 0.0 

 

 

 

 

 

 

 

i http://www.locationaffordability.info/ Accessed January 5, 2015. 

ii For more information on the regional sprawl index and how it is calculated, see Ewing et al. (2002), 
“Measuring Sprawl and Its Impacts,” available at 
http://www.smartgrowthamerica.org/resources/measuring-sprawl-and-its-impact/. 

iii http://www.edmunds.com/tco.html  Accessed January 5, 2015.  
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