### Portland State University

## **PDXScholar**

Anthropology Faculty Publications and Presentations

Anthropology

12-22-2014

# Flight Test of Pacific Spaceflight Pressure Garment Mark II in Bell 206 Jet Ranger

Cameron M. Smith Portland State University, b5cs@pdx.edu

Follow this and additional works at: https://pdxscholar.library.pdx.edu/anth\_fac

Part of the Archaeological Anthropology Commons, and the Other Anthropology Commons Let us know how access to this document benefits you.

### **Citation Details**

Smith, C. (2014). Flight Test of Pacific Spaceflight Pressure Garment Mark II in Bell 206 Jet Ranger. Pacific Spaceflight Research Brief #2014-1.

This Technical Report is brought to you for free and open access. It has been accepted for inclusion in Anthropology Faculty Publications and Presentations by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: pdxscholar@pdx.edu.

### Pacific Spaceflight Research Brief #2014-1

Flight Test of Pacific Spaceflight Pressure Garment Mark II in Bell 206 Jet Ranger



Cameron M. Smith, PhD b5cs@pdx.edu 22 Dec 2014

#### Abstract

Pacific Spaceflight's Mark II pressure garment (model *Gagarin*) was test flown to 17,200 feet MSL (5,242m) while worn and operated by Dr. C.M. Smith. The garment and its portable life support system (PLSS) maintained appropriate pressure, temperature and carbon dioxide levels throughout the 47-minute flight. The suit also provided sufficient elbow mobility, due to its convolute joints, for the suited person to operate the portable life support system's manual suit pressure setting valve and the hand-held radio.

#### 1. Introduction

In Summer 2013 Pacific Spaceflight members CM Smith and JF Haslett tested the Mark I pressure garment (model *Tsiolkovski*) in a hypobaric chamber at the Copenhagen University Hospital, Denmark. In that test, a simulated altitude of 13,000 FT MSL (c.4,000m) was produced in the chamber, and the suit occupant's blood oxygenation and pulse were recorded for a roughly 36-minute 'flight' during which suit pressure and temperature were suitably maintained, and blood oxygenation remained above 90%, a figure expected for an altitude of 8,500 FT MSL (2,590m) [1]. This proved the essential function of the pressure garment, that of stably maintaining a lower perceived altitude inside the suit than the ambient (simulated pressure) altitude.

Following that test, from January - March 2014 constant-volume convolute elbow sections were designed, built and tested (**Figure 1**) and in April 2014, installed in the Mark I suit, graduating it to Mark II status (model change to *Gagarin*) (**Figure 2**). To continue the overall Pacific Spaceflight plan of gradually increasing the altitude at which our pressure garments are tested, it was decided in May 2014 to make an ascent to c.25,000 FT MSL in a local aircraft.

Making the ascent in an aircraft rather than altitude chamber was also planned to begin gaining experience in flight planning and operations. For recordkeeping purposes, the flight discussed in this report is referred to as Test Flight 2014-1.

#### 2. Events

On 23 August 2014 the Pacific Spaceflight team composed of CM Smith, AW Knapton, B Wilson, K MacAllister, A Magruder and R Kraft, accompanied by a professional film team from VICE media and aviatorcameraman D.O'Bryan (who would serve as Flight Safety Officer), transported Pacific Spaceflight's Mark II pressure garment (model Gagarin) to JL Aviation in Boring, Oregon. There, JL Aviation Services was contracted to fly the suit, with a person inside, and the portable life support system (PLSS) to an altitude approximating the service ceiling of the Bell 206 Jet Ranger, c.20,000 FT MSL (the 25,000 FT MSL aircraft not being available). Due to the ambient temperature and other factors, the JL aviation pilot estimated that we could reach about 18,000 FT MSL, and that he would try to take us as high as safely possible; in the event, 17,200 FT MSL was the maximum altitude attained.

**Figure 3** indicates the essential configuration of the pressure garment and the PLSS in the back seat of the Bell 206 Jet Ranger and **Figure 4** shows the actual PLSS.

In **Figure 3**, the test subject is supplied by Portable Life Support System (PLSS) using normal air (c.20% oxygen, c.80% nitrogen) as the breathing gas, delivered from a standard 82 cubic-foot aluminum SCUBA tank pressurized to c.2,800PSI and secured to the PLSS frame (1). This breathing gas was delivered through a pressure-reducing manifold and handactuated flowmeter where (2) it was set to 28 liters (60 cubic feet) per minute (a rate unchanged through the test), delivered to the to the helmet (3) by a hose; inside the helmet, breathing gas was routed by hoses such that some blew towards the mouth while the remainder was blown down and onto the interior of the visor to prevent fogging (this was effective). Exhaled gas was vented from the suit through a thigh port (4) that led, via a hose, to the pressure setting needle valve; by adjusting the setting needle, the gas allowed to exit the suit was regulated and the desired suit pressure (indicated on a 5 PSI WIKA pressure gauge mounted on the PLSS) maintained: this dumped suit gas flowed past a carbon dioxide monitor (model RAD030) to monitor carbon dioxide levels in the suit gas. The left thigh was also furnished with an automatic overpressure valve set to open at 4.0 PSI and a manually-activated emergency pressure release valve. Communication was via handheld Motorola Talkabout walkie-talkie; this lasted for the first 3 minutes of flight, after which communication was lost; contact was made again in last few minutes of approaching the landing tarmac.

**Figure 5a** shows the installation of the PLSS in the Jet Ranger's rear starboard seat; a hacksaw was used to shorten some elements, a good reminder of the importance of carrying a full tool kit to each field operation. While the PLSS was installed, Dr. Smith was suited by A Magruder, the PLSS was powered and checked by AW Knapton, and Dr. Smith was installed in the rear port seat (**Figure 5b**). Aviation student and aerial cameraman D O'Bryan sat in the front left seat as the Flight Safety Officer, the helicopter being flown by Peter M. Emerson, Director of Maintenance & Lead Pilot/Company Instructor Pilot of JL Aviation, Inc, Boring, Oregon. On several occasions D. O'Bryan visually checked in with Dr. Smith, who hand-signaled "A-OK" as the two did not have a radio link.

Takeoff (**Figure 7**) occurred just past local noon. **Figures 8** and **9** (a crude transcription of the suit voice recorder into which Dr. Smith made a running commentary through the flight) indicates that in just under 30 minutes, the maximum altitude of c.17,200 feet was attained; at this point Dr. Smith reported a suit pressure of 2.3 PSI and a good CO2 figure of <300 PPM and generally reported "all well", which was consistent through the 47-minute flight.

#### 3. Results

#### 3.1 Breathing Gas Delivery

Normal air was used as the breathing gas in this test, although pilot Emerson and Flight Safety Officer O'Bryan breathed 100% Aviators Breathing Oxygen in a diluted from from oral-nasal masks fed by a Sky-Ox SKY-10460 regulator that was manually set by D. O'Bryan at various altitudes to deliver the proper volume of gas. The transcripts in **Figures 8** and **9** indicate that Dr. Smith reported a good rate of breathing gas delivery throughout the flight. Occasionally, perhaps due to nervousness, breathing gas was inhaled deeply from the opening where it was diverted towards the mouth; longer tests will determine whether this was due to a genuine deficiency of delivered breathing gas (a blood oxygenation monitor, noted in **Section 3.3**, will also be used in all following tests).

#### 3.2 Suit Pressure Maintenance

Table 2 indicates the pressure schedule set for the ascent to 17,000 feet and Table 2 the pressure schedule for descent. This schedule was designed based on fight physiology data [2] to prevent Altitude Decompression Sickness by use of suit pressure to keep the body physiologically at 'low' altitude. The various pressures were maintained during flight by Dr. Smith manually operating the suit dump valve (a needle valve) according to settings noted on a card posted clearly in view (Figure 10). During ascent, vertical speed (often about 800 feet per minute) was low enough to keep up with the settings, but sometimes on the rather faster descent Dr. Smith noted difficulty in keeping track of his C02 levels, breathing gas tank pressure, proper suit pressure setting, attempts at communications, and general awareness of the flight situation. This observation indicates the importance of simulations to accustom the eventual high altitude balloon flight pilot to such information-rich environments.

**Figure 11** indicates the essential flight pressures against altitudes and time. The highest suit pressure was between 2.3 PSI and 2.5 PSI, while most of the flight was carried out at pressures between 1.2 PSI and 2.0PSI. The suit maintained these pressures with no audible or otherwise evident leaks. At the flight apogee of 17,200 FT MSL, the suit pressure of 2.3PSI was added to the ambient pressure of 7.6 PSI for a total suit pressure of 9.9 PSI, yielding a physiologicallyperceived altitude of 10,500 FT MSL, an altitude 6,500 feet below the 17,000 FT MSL altitude threshold where altitude decompression sickness typically begins for unacclimated aviators [2], normally after some 10's of minutes of exposure.

Just before takeoff it was noticed that even with the suit pressure regulator needle valve at the fullyopen position, suit gas was not being vented. This was fixed by adjusting the leg inside the suit so that the thigh did not block the gas dump port; this was another instance of a recurring problem that has been dealt with in Summer 2014 by entirely removing gas dump fittings from the thighs and movement to the mid-torso area for clear venting.

#### 3.3 Carbon Dioxide Levels

**Figure 12** indicates C02 levels in the 900's PPM below 12,000 feet and a significant drop below this, into the sub-300 PPM levels above 15,000 feet, only rising slightly by the time of landing. Generally speaking, C02 PPM levels above 400 are abnormal outdoors, but they may rise to c.1,000 PPM without cognitive detriment in office buildings, and a report by the National Academies Press allows for 8,000PPM in military submarines [3]. **Figure 11** recapitulates findings of Satish et al., who reported normally mild cognitive impairment at levels below 2,500 PPM, though with some exceptions [4]; Pacific Spaceflight is currently researching C02 levels and designing solutions including high suit gas flowthrough rates and a prototype C02 scrubbing system, which is complete in prototype form as of November 2014 and ready for testing in early 2015; also ready at this time, but not at the time of the flight, is a blood oxygenation monitor and data-logger.

#### 3.4 Suit Temperature

Suit temperature was maintained by circulating a coolant fluid through the suit's coolant garment via the 12v DC PLSS pump. Days before the flight test the suit and PLSS had been tested in a frozen food chamber in Washougal, Washington, at -20F / -28C, during which the thermal mitigation fluid (warm water) quickly froze in the PVC hoses (a report of this test is in production). After adding granulated sugar as an antifreeze the system performed well in the freezing chamber, so commercial antifreeze was added in low concentration during the flight test. While ambient temperature at 17,000 FT MSL was roughly -1.6F / -18C, the coolant fluid flowed well and a very comfortable suit-interior temperature was maintained throughout the flight.

#### 3.4 Suit Mobility

Throughout the flight the suit's convolute elbow sections provided significantly easier flexion of the forearm than the Mark I garment's simple gastight cylinder-sleeves. Though the Mark II butyl convolutes are heavy, and heavily reinforced with steel cables and tubular nylon webbing and other materials, they were designed as proof-of-concept items not for the eventual high altitude flight. In terms of remaining gastight and mobile at high pressure, and under control of the restraint mesh, the convolute elbows proved to be a successful solution to the problem of forearm mobility at suit pressure exceeding about 1.8 PSI.

#### 4. Commentary

The test flight was an excellent operation in terms of both suit performance and planning and

execution. The crew successfully installed the PLSS and Dr. Smith into the pressure suit and the helicopter, communications were good until range was too great, and all systems functioned well, resulting in a comfortable and trouble-free flight. This was only the case because of weeks of intensive preparations and check-outs of the various hardware, checklists and plans.

For further flight tests before the balloon flights scheduled for later 2015, Table 4 indicates some air operators and their capabilities in the immediate Portland area.

#### 5. References

[1] Smith, C.M. 2013. Pacific Spaceflight Research Brief #2013-1: *Hypobaric Chamber Test of Pacific Spaceflight Pressure Garment Mark I at Copenhagen University Hospital*. Online at https://www.academia.edu/5414347/Hypobaric\_Chamb er\_Test\_of\_Pacific\_Spaceflight\_Pressure\_Garment\_Ma rk\_I\_at\_Copenhagen\_University\_Hospital.

[2] Smith, C.M. 2013. Pacific Spaceflight Research Brief #2013-2: Review of High Altitude Aviation Preoxygenation / Denitrogenization Procedures andDraft Pressure Schedule for Open-Cockpit Balloon Flight to 65,000 Feet. Online at http://www.academia.edu/5414350/Review\_of\_High\_Alti tude\_Aviation\_Preoxygenation\_Denitrogenization\_Proc edures\_and\_Draft\_Pressure\_Schedule\_for\_Open-Cockpit\_Balloon\_Flight\_to\_65\_000\_Feet.

[3] National Academies Press. 2007. Emergency and Continuous Exposure Guidance Levels for Selected Submarine Contaminants. Online at http://www.nap.edu/catalog/11170/emergency-andcontinuous-exposure-guidance-levels-for-selectedsubmarine-contaminants.

[4] Satish, U. et al. 2014. Is CO2 an Indoor Pollutant? Direct Effects of Low to Moderate CO2 Concentrations on Human Decision?Making Performance. *Environmental Health Perspectives*. Online at doi:10.1289/ehp.1104789. Table 1. Provisional Schedule of Activities for Crew Members on Flight Day. Note plan here was for flight to 25,000 FT MSL, and included a prebreathing period that was not carried out on the flight reported in this file. MOL=Molalla, Oregon, unusued site of first planned flight.

| TIME        | GENERAL ACTIVITY            | SUIT PLT (CMS)       | SUIT TECH 1 (BW)           | SUIT TECH 2<br>(AM) | PLSS TECH 1<br>(AK) |
|-------------|-----------------------------|----------------------|----------------------------|---------------------|---------------------|
| Flight - 5  | Move gear Portland -        |                      |                            |                     |                     |
| hours       | airstrip                    | PDX-MOL              | PDX-MOL                    | PDX-MOL             | PDX-MOL             |
| Flight - 4  |                             |                      |                            |                     |                     |
| hours       | Arrive airstrip, stage gear | Stage Gear           | Stage Gear                 | Stage Gear          | Stage Gear          |
| Flight - 3  |                             |                      |                            | Suit Preparation    | PLSS Prepara-       |
| hours       | Preflight preparations      | Review flight plan   | Suit Preparation Checklist | Checklist           | tion Checklist      |
| Flight - 2  |                             |                      |                            |                     | PLSS Install in     |
| hours       | Preflight preparations      | Don Suit             | Suitup Checklist           | Suitup Checklist    | Aircraft Checklist  |
| Flight - 1  |                             | Prebreathe / Review  |                            | Prebreathe          | PLSS final          |
| hour        | Preflight preparations      | revised flight plan  | Prebreathe Checklist       | Checklist           | checkout            |
| Flight - 40 |                             |                      |                            | Install PLT in      |                     |
| min         | Move to aircraft            | Take seat            | Install PLT in aircraft    | aircraft            | Standby             |
| Flight - 30 |                             |                      |                            |                     |                     |
| min         | Final Checks                | Comm check           | Standby                    | Standby             | Standby             |
| Flight - 10 |                             | Respond to CAP-      |                            |                     |                     |
| Min         | Begin Flight Test           | COM                  | Standby                    | Standby             | Standby             |
|             |                             | Respond to CAP-      |                            |                     |                     |
| Flight      | Flight Test                 | COM                  | Standby                    | Standby             | Standby             |
| Flight + 40 | Arrive apogee, begin        | Respond to CAP-      | Stage gear for extracting  | Stage gear for      | Stage gear for      |
| min         | descent                     | COM                  | PLT                        | extracting PLT      | extracting PLSS     |
|             |                             | Disconnect from ship |                            | Extract PLT from    | Extract PLSS        |
| Flight + 60 | Landing                     | systems              | Extract PLT from aircraft  | aircraft            | from aircraft       |
|             |                             |                      |                            |                     |                     |
| Flight + 70 | Deplane                     | Suit Doff            | Suit Doff                  | Suit Doff           | Pack PLSS           |
|             | Destage / Pack for          |                      |                            |                     |                     |
| Flight + 80 | Transport                   | standby              | standby                    | standby             | standby             |
| Flight + 90 | Move gear to Portland       | standby              | standby                    | standby             | standby             |

TABLE 2. Pressure Suit Pressure Schedule for Ascent to 25,000 FT MSL. ALT=Feet MSL, APSI=Ambient Pressure in PSI, SUIT PRESS=Suit Pressure Setting in PSI, PHYS PRESS=Pressure felt by body in PSI, SUIT ALT=Body's Perceived Altitude in FT MSL.

|                |            | ASCEN            | <u>r</u>     |             |
|----------------|------------|------------------|--------------|-------------|
| ALT            | APSI       | SUIT PH<br>PRESS | YS<br>PRESS  | SUIT<br>ALT |
| 0              | 14.7       | 0.5              | 15.2         | -200        |
| 500            | 14.4       | 0.5              | 14.9         | -100        |
| 1000           | 14.2       | 0.5              | 14.7         | 250         |
| 1500           | 13.9       | 0.5              | 14.4         | 500         |
| 2000           | 13.7       | 0.5              | 14.2         | 1000        |
| 2500           | 13.4       | 0.5              | 13.9         | 1500        |
| 3000           | 13.2       | 0.5              | 13.7         | 2000        |
| 3500           | 12.9       | 1.0              | 13.9         | 1500        |
| 4000           | 12.7       | 1.0              | 13.7         | 2000        |
| 4500           | 12.5       | 1.0              | 13.5         | 2200        |
| 5000           | 12.2       | 1.0              | 13.2         | 3000        |
| 5500           | 12.0       | 1.0              | 13.0         | 3400        |
| 6000           | 11.8       | 1.0              | 12.8         | 3800        |
| 6500           | 11.6       | 1.5              | 13.1         | 3000        |
| 7000           | 11.3       | 1.5              | 12.8         | 3700        |
| 7500           | 11.1       | 1.5              | 12.6         | 4200        |
| 8000           | 10.9       | 1.5              | 12.4         | 4600        |
| 8500           | 10.7       | 1.5              | 12.2         | 5000        |
| 9000           | 10.5       | 1.5              | 12.0         | 5500        |
| 9500           | 10.3       | 1.8              | 12.1         | 5000        |
| 10000<br>10500 | 10.1       | 1.8              | 11.9         | 6200        |
|                | 9.9        | 1.8              | 11.7         | 6700        |
| 11000<br>11500 | 9.7        | 1.8              | 11.5         | 7000        |
| 12000          | 9.5<br>9.3 | 1.8              | 11.3         | 7500        |
| 12500          | 9.2        | 1.8              | 11.1<br>11.0 | 7600        |
| 13000          | 9.0        | 1.8              | 10.8         | 8200        |
| 13500          | 8.8        | 1.8              | 10.6         | 8700        |
| 14000          | 8.6        | 1.8              | 10.4         | 9200        |
| 14500          | 8.5        | 1.8              | 10.3         | 9500        |
| 15000          | 8.3        | 1.8              | 10.1         | 10000       |
| 15500          | 8.1        | 1.8              | 9.9          | 10500       |
| 16000          | 8.0        | 1.8              | 9.8          | 10700       |
| 16500          | 7.8        | 1.8              | 9.6          | 11250       |
| 17000          | 7.6        | 2.3              | 9.9          | 10500       |
| 17500          | 7.5        | 2.3              | 9.8          | 10700       |
| 18000          | 7.3        | 2.4              | 9.7          | 11000       |
| 18500          | 7.2        | 2.4              | 9.6          | 11200       |
| 19000          | 7.0        | 2.6              | 9.6          | 11500       |
| 19500          | 6.9        | 2.7              | 9.6          | 11250       |
| 20000          | 6.8        | 2.8              | 9.6          | 11250       |
| 20500          | 6.6        | 3.0              | 9.6          | 11250       |
| 21000          | 6.5        | 3.0              | 9.5          | 11500       |
| 21500          | 6.3        | 3.0              | 9.3          | 12000       |
| 22000          | 6.2        | 3.0              | 9.2          | 12500       |
| 22500          | 6.1        | 3.0              | 9.1          | 12700       |
| 23000          | 5.9        | 3.0              | 8.9          | 13250       |
| 23500          | 5.8        | 3.0              | 8.8          | 13500       |
| 24000          | 5.7        | 3.0              | 8.7          | 13700       |
| 24500          | 5.6        | 3.0              | 8.6          | 14200       |
| 25000          | 5.5        | 3.0              | 8.5          | 14500       |

TABLE 3. Pressure Suit Pressure Schedule for Descent from 25,000 FT MSL. ALT=Feet MSL, APSI=Ambient Pressure in PSI, SUIT PRESS=Suit Pressure Setting in PSI, PHYS PRESS=Pressure felt by body in PSI, SUIT ALT=Body's Perceived Altitude in FT MSL.

|              |      | DESCEN           | IT          |              |
|--------------|------|------------------|-------------|--------------|
| ALT          | APSI | SUIT PH<br>PRESS | YS<br>PRESS | SUIT<br>ALT  |
| 24500        | 5.6  | 3.0              | 8.6         | 14200        |
| 24000        | 5.6  | 3.0              | 8.6         | 14200        |
| 23500        | 5.7  | 3.0              | 8.7         | 13700        |
| 23000        | 5.8  | 3.0              | 8.8         | 13500        |
| 22500        | 5.9  | 3.0              | 8.9         | 13250        |
| 22000        | 6.1  | 3.0              | 9.1         | 12700        |
| 21500        | 6.2  | 3.0              | 9.2         | 12500        |
| 21000        | 6.3  | 3.0              | 9.3         | 12000        |
| 20500        | 6.5  | 3.0              | 9.5         | 11500        |
| 20000        | 6.8  | 2.8<br>2.7       | 9.6         | 11250        |
| 19500        | 6.9  | 2.7              | 9.6         | 11250        |
| 19000        | 7.0  | 2.6              | 9.6         | 11250        |
| 18500        | 7.0  | 2.6              | 9.6         | 11250        |
| 18000        | 7.3  | 2.4              | 9.7         | 11000        |
| 17500        | 7.3  | 2.4              | 9.7         | 11000        |
| 17000        | 7.6  | 2.3              | 9.9         | 10500        |
| 16500        | 7.6  | 2.3              | 9.9         | 10500        |
| 16000        | 7.8  | 2.3              | 10.1        | 10000        |
| 15500        | 8.0  | 2.3              | 10.3        | 9500         |
| 15000        | 8.1  | 2.3              | 10.4        | 9200         |
| 14500        | 8.3  | 2.3              | 10.6        | 8700         |
| 14000        | 8.5  | 1.8              | 10.3        | 9500         |
| 13500        | 8.6  | 1.8              | 10.4        | 9200         |
| 13000        | 8.8  | 1.8              | 10.6        | 8700         |
| 12500        | 9.0  | 1.8              | 10.8        | 8200         |
| 12000        | 9.2  | 1.6              | 10.8        | 8200         |
| 11500        | 9.3  | 1.6              | 10.9        | 8000         |
| 11000        | 9.5  | 1.6              | 11.1        | 7500         |
| 10500        | 9.7  | 1.6              | 11.3        | 7000         |
| 10000        | 9.9  | 1.6              | 11.5        | 6700         |
| 9500         | 10.3 | 1.5              | 11.8        | 6000         |
| 9000         | 10.3 | 1.5              | 11.8        | 6000         |
| 8500         | 10.5 | 1.5              | 12.0        | 5500         |
| 8000         | 10.7 | 1.5              | 12.2        | 5000         |
| 7500         | 10.9 | 1.5              | 12.4        | 4700         |
| 7000         | 11.1 | 1.1              | 12.2        | 5000         |
| 6500         | 11.3 | 1.1              | 12.4        | 4700         |
| 6000         | 11.6 | 1.1              | 12.7        | 4000         |
| 5500         | 11.8 | 1.1              | 12.9        | 3500         |
| 5000         | 12.0 | 1.1              | 13.1        | 3250         |
| 4500         | 12.2 | 1.1              | 13.3        | 2700         |
| 4000         | 12.5 | 0.7              | 13.2        | 3000         |
| 3500         | 12.7 | 0.7              | 13.4        | 2500         |
| 3000         | 12.9 | 0.7              | 13.6        | 2250         |
| 2500<br>2000 | 13.2 | 0.7              | 13.9        | 1500<br>1700 |
|              | 13.4 | 0.7              | 14.1        |              |
| 1500<br>1000 | 13.7 | 0.7              | 14.4        | 500<br>150   |
| 500          | 13.9 | 0.7              | 14.6        | -100         |
|              | 14.2 | 0.7              | 14.9        |              |
| 0            | 14.7 | 0.5              | 15.2        | -200         |

# TABLE 4. Flight Operators and Options Local to Portland, Oregon.

| SITE                                 | Dis-<br>tance | Aircraft to<br>Rent                                       | Aircraft<br>Ceiling | Cost<br>Per<br>Hour                    | Web                                 | Phone              | Email                     | Address                                                      |
|--------------------------------------|---------------|-----------------------------------------------------------|---------------------|----------------------------------------|-------------------------------------|--------------------|---------------------------|--------------------------------------------------------------|
| Konect<br>Aviation                   | 1 hour        | Robinson<br>R22 (helo)                                    | 14000               | not rental,<br>tour only<br>(?)        | http://www.konect-<br>aviation.com/ | 503-376-<br>0190   | none                      | Konect<br>Aviation                                           |
| McMinnville                          |               | Robinson<br>R44 (helo)                                    | 14000               | not rental,<br>tour only               |                                     |                    |                           | 4040 SE<br>Cirrus Ave                                        |
|                                      |               | Cessna 172<br>Single                                      | 13500               | (?)<br>not rental,<br>tour only<br>(?) |                                     |                    |                           | McMinnville,<br>OR 97128                                     |
| Fly-Oregon<br>(Twin Oaks<br>Airport) | 30 min        | Piper<br>Comanche                                         | 19500               | 185                                    | http://twinoaksairpark.com/         | (503) 348-<br>2027 | kwiprud@gmail.com         | Twin Oaks<br>Airpark                                         |
| Portland                             |               | Piper Aztec<br>Twin                                       | 18950               | 260                                    |                                     | 503-451-<br>3480   |                           | 12405 SW<br>River Rd                                         |
|                                      |               | Piper<br>Geronimo<br>Apache<br>Twin (down<br>for repairs) | 18950               | 219                                    |                                     |                    |                           | Hillsboro, OR<br>97123                                       |
| Gorge<br>Winds<br>Aviation           |               | Cessna<br>310Q Twin                                       | 20000               | 297                                    |                                     | 503-661-<br>1044   |                           | Gorge Winds<br>Aviation                                      |
| Troutdale                            | 1 hour        | Cessna 182<br>Single                                      | 18100               | 178                                    | http://www.gorgewindsinc.com<br>/   | 503-665-<br>2823   |                           | 920 NW<br>Perimeter<br>Way<br>Troutdale, OR                  |
| Aurora<br>Aviation                   | 30 min        | Beechcraft<br>Baron Twin                                  | 19700               | not listed<br>for rental               | http://auroraaviation.com/          | (503)678-<br>1217  | office@auroraaviation.com | 97060<br>Aurora Avia-<br>tion                                |
| Aurora                               |               | Piper<br>Seminole                                         | 15000-<br>17000     | (?)<br>not listed<br>for rental        |                                     |                    |                           | 22785 Airport<br>Road NE                                     |
|                                      |               | Twin<br>Cessna 172<br>Single                              | 13500               | (?)<br>113                             |                                     |                    |                           | Aurora,<br>Oregon<br>97002                                   |
|                                      |               | Cessna 162<br>Single                                      | 14625               | 113                                    |                                     | 000 705            |                           |                                                              |
| Aero<br>Maintenance<br>Flight Center | 1 hour        | Cessna 150<br>Single                                      | 14000               | 70                                     | http://www.aeromt.com/              | 360-735-<br>9441   | none                      | Aero Flight<br>Center                                        |
| Vancouver,<br>Washington             |               | Cessna 172<br>Single<br>Piper<br>Cherokee                 | 13500<br>14300      | 120<br>130                             |                                     |                    |                           | 101 E Re-<br>serve St.<br>Vancouver,<br>SA 98661             |
| Wilamette                            | 1 hour        | Single<br>Piper                                           | 14300               | 139                                    | http://www.willametteair.com/       | 503-678-           | info@willametteair.com    | Willamette                                                   |
| Aviation<br>Service                  |               | Cherokee<br>Single<br>Piper<br>Apache                     | 18950               | 282                                    |                                     | 2252               |                           | Aviation<br>Service<br>23115 Airport<br>Road NE              |
|                                      |               | Twin<br>Cessna 177<br>Single                              | 14600               | 188                                    |                                     |                    |                           | Aurora, OR<br>97002                                          |
|                                      |               | Cessna 172<br>Single                                      | 13500               | 163                                    |                                     |                    |                           | 01002                                                        |
|                                      |               | Diamond<br>DA40<br>Diamond<br>Star Single                 | 16400               | 191                                    |                                     |                    |                           |                                                              |
| Spana Flight                         | 2 hours       | Piper<br>Cherokee<br>Arrow                                | 16000               | 164                                    | http://www.spanaflight.com/         | 253-848-<br>2020   | flight@spanaflight.com    | SpanaFlight                                                  |
| Puyallup,<br>Washington              |               | Single<br>Cessna 152<br>Single                            | 14700               | 93                                     |                                     |                    |                           | 16705 103rd<br>Avenue Court<br>East                          |
| (just south of<br>Tacoma)            |               | Cessna 172<br>Single                                      | 13500               | 122                                    |                                     |                    |                           | Puyallup,<br>Washington<br>98374                             |
| JL Aviation<br>Boring, OR            | 1 hour        | Bell Jet<br>Ranger<br>Bell Long                           | 20,000<br>13,500    | 1,000<br>1,000                         | http://www.jlaviation.net           | 503-249-<br>2770   | info@jlaviation.net       | JL Aviation<br>PO Box 515                                    |
| bonny, UK                            |               | Ranger                                                    | 13,300              | 1,000                                  |                                     |                    |                           | PO Box 515<br>Boring, OR                                     |
|                                      |               |                                                           |                     |                                        |                                     |                    |                           | 97009<br>PHONE: (503<br>) 249-2770<br>FAX: (503)<br>663-9764 |

FIGURE 1. Video Frames of Constant Volume Convolute Elbow Joint Being Flexed and Extended Without Difficulty at 3.5 PSIG; upper frames include team member W Magruder and lower, Dr. CM Smith. Video is online at <u>https://www.youtube.com/watch?v=j5gl36VwuHM&list=UUup7MB9ZJJMGYd2NVk</u> <u>K\_kJQ</u>.



FIGURE 2. Finished Constant Volume Elbow Joint (left) and Joints Installed in Pressure Garment (right).



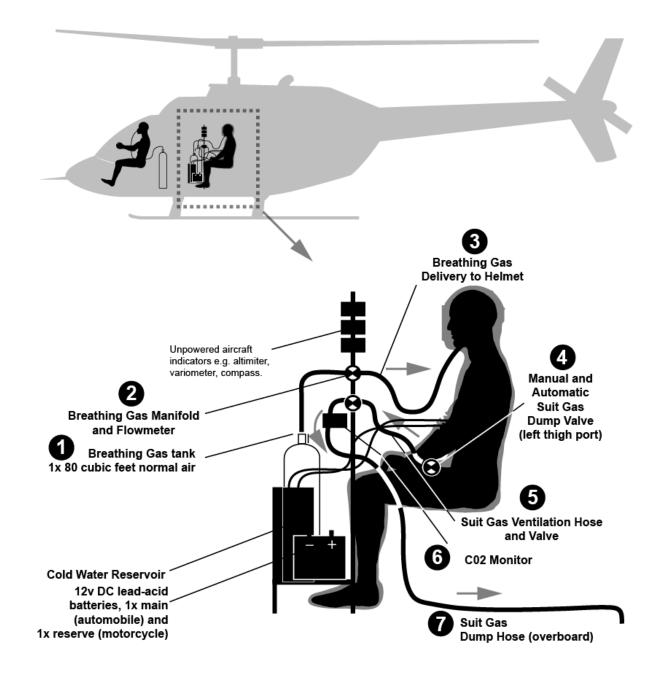



FIGURE 3. Essential Configuration of the Pressure Suit and Portable Life Support System in Bell 206 Jet Ranger.

FIGURE 4. Pacific Spaceflight Crewmember AK Knapton With the Portable Life Support System (PLSS) Prepared for Use in Bell 206 Jet Ranger, Before Custom Fitting. SCUBA tank noted in Figure 3 not installed in this photo. This strippeddown PLSS manifestation was named 'Skeletor' as it was significantly reduced in bulk and weight from prior builds.




FIGURE 5. (A) Impromptu Custom Fitting of PLSS to Bell 206 Jet Ranger's Starboard Rear Seat by Pacific Spaceflight Team Members B Wilson, K MacAllister and R Kraft, and Dr. Smith Installed in the Rear Seat (B).



FIGURE 7. Helicopter Fuelling and Final Preflight Preparations (A) and Takeoff (B).

Α



В



| 1            | з            | 36       | all well  | AOK from Duncan, bad comms with ground | 9        | comm check (no reply) | x        | 12       | Э        |              | allwell  | t?       |            | я        | r          | slightly choppy air (turbulence) | *        | ų        | allwell  | comm check (picking you up but garbled) | (garbled comms from ground) | comm check (picking you up but garbled) | 3        | (garbled comms from ground) |          | everything's good, feeling good | ascent rate has slowed dramatically, some turbulence | bringing suit pressure to 2.3 | all well  | comm check (no reply) | all well, beginning descent |
|--------------|--------------|----------|-----------|----------------------------------------|----------|-----------------------|----------|----------|----------|--------------|----------|----------|------------|----------|------------|----------------------------------|----------|----------|----------|-----------------------------------------|-----------------------------|-----------------------------------------|----------|-----------------------------|----------|---------------------------------|------------------------------------------------------|-------------------------------|-----------|-----------------------|-----------------------------|
|              |              |          |           | AC                                     |          |                       |          |          |          |              |          |          |            |          |            |                                  |          |          |          | 0                                       |                             | 0                                       |          |                             |          |                                 | ascent                                               |                               |           |                       |                             |
| 3 <b>6</b> 8 | 3            | Ŷ        | ï         | r                                      | 3        | 2                     | Ŷ        | ac.      | 8        | Plus 1000    | Ŷ        | ĸ        |            | 3î       | Ŷ          | r:                               | 115      | a.       | ¥        | v                                       |                             | 34                                      | а<br>С   | £                           | Plus 500 | 34                              | Plus 200                                             | r                             | Plus 1000 | -                     | -                           |
| 1            |              |          | <u>34</u> |                                        | 100      | ł                     | X        |          | 1        | F            | Å.       |          | 100        | ×.       | ž,         | i.                               | 1        |          | ž        | ł.                                      | 1                           | 3                                       | ÷        |                             | 1        | ł                               | ÷                                                    | ł.                            |           | 170                   | ł                           |
| a S          | ä            | •        |           |                                        | 8        | i.                    | ł        | E.       | 8        | ii.          | ×        |          | 2          | 3        | ž          |                                  | 15       | ÷        |          |                                         | 76                          | 8                                       |          | i.                          | 75       | ä                               |                                                      | 5                             |           | S.                    | 3                           |
| 2600         | ä            | 8        |           | 12.22                                  | 1        | 8                     | 2000     | į,       | 1        | 3            | 8        |          | ŝ.         | 1        | 8          | 1                                | , C      | 1700     |          | ŝ                                       | 78                          | ā                                       | 8        | ŝ                           | 16       | 1500                            | 1                                                    | 1100                          | 1000      | 100                   |                             |
| 05           | ,            | poob     | *         | 989                                    | 19       | a                     | 992      | 10       | 10       | 910          | ×.       | R.       | <i>7</i> 2 | a.       | ×          | ų.                               | 015      | 39       | ×        | £                                       | 003                         | э                                       | ×        | green                       | poob     | 2                               | 2                                                    | 298                           | 250       | 10                    | 4                           |
| 00           | .,           | ×        | e.        | 41.6F                                  | 12       | a.                    | ×        | ŝ        | æ        | X            | ×        | 5        | <u>58</u>  | st.      | ×          | 10                               | ак)<br>( | ,        | 2        |                                         | (142)                       | .,                                      |          | 36.6F                       |          |                                 | a.                                                   | 38F                           | <u>8</u>  |                       | a.                          |
|              | 9            | X        | ÷         | •                                      | 3        | ł                     | ÷        | •        | 5        | ÷            |          | ł.       | i.         | ž        | ÷          | •                                |          |          | ž        | •                                       | •                           | •                                       | ×        | 82.00%                      | 84.00%   | 3                               | ×.                                                   |                               | 5         |                       | 88.00%                      |
| 0.5          |              | F        | s         | 1.5                                    | -        | 3                     | 1.1      | 1.7      | 1.9      | 2            | <u>*</u> | 1.8      | 2.2        | 2.2      | 1.8        | 92                               | 2        | 2.5/2.4  | 2        | 5                                       | 3 <b>9</b> 2                |                                         |          | 1.8                         | 1.5      | 2.5                             | •                                                    | 2                             | 2.3       | 12                    | 2.5/2.4                     |
| 21.9C/71.2F  | 34           | pood     | ÷         | pood                                   | 35       | ŝi                    | pood     |          |          | 22.6C / 74.8 | Ŷ        | ĸ        | 25         | -        | 92)<br>92) | 15                               | 115      | 31       | s.       | ĩ                                       | 178                         | a                                       |          | 24.2C/79F                   | - 75     | 8                               | Ŷ                                                    | 82F                           | 15        | 25                    | 25.40/77.7F                 |
| (c)          | 0            | 1000     | 2000      | 4400                                   | 5400     |                       | 7000     | 7500     | 0006     | 10000        | 10000    | 0066     | 10200      | 10500    | 11000      | 12000                            | 12000    | 14000    | 14000    | •                                       | 15000                       |                                         | 15000    | 15000                       | 15000    | 16000                           | 16100                                                | 16450                         | 17000     | 17000                 |                             |
| Visor Down   | Engine Start | 3        | i.        | R                                      | 100      |                       | •        | 12       | 8        | ų.           | 2        |          | 92         | ų.       | ł          |                                  | - E      |          |          | i.                                      | 18                          | 9                                       |          | i.                          | 78       | i.                              | •                                                    |                               |           |                       | 2                           |
| 1            | ā            |          |           | ¢.                                     | 10m27sec | 2                     | 11m59sec | đ        |          | 14m20sec     | ł        |          | 1          | 3        | 16m00sec   |                                  | 18m20sec | 19m00sec | 20m00sec | 5                                       | 78                          | ā                                       |          | 23m00sec                    | 24m00sec | 28m00sec                        | 8                                                    | 28m00sec                      |           | 1                     | 2                           |
| 7m27sec      | 19m30sec     | 22m49sec | 24m30sec  | 25m55sec                               | 26m49sec | 27m33sec              | 28m28sec | 29m09sec | 29m36sec | 30m25sec     | 31m08sec | 31m42sec | 31m58sec   | 32m22sec | 32m55sec   | 33m48sec                         | 34m39sec | 35m19sec | 36m40sec | 37m45sec                                | 38m11sec                    | 39m00sec                                | 39m20sec | 39m49sec                    | 41m00sec | 42m54sec                        | 43m14sec                                             | 44m41sec                      | 48m01sec  | 49m35sec              | 50m00sec                    |

FIGURE 8. Transcript of Audio Record of Ascent Phase of Test Flight.

|             | all well, very comfortable | 1.5        |            | comm check (no reply) | fast descent | comm check (no reply) | comm check (no reply) | feeling very frosty (in a good sense) |            |        |        | comm check (no reply) | comm check (no reply) | comm check (no reply) | all well sign from Duncan | comm check (no reply) | 2           | comm check (no reply) | comm check (no reply) | banking left to landing zone | comm check (no reply) | comm check (no reply) | comm check (no reply) | comm check (back in comms) | back in comms |             |
|-------------|----------------------------|------------|------------|-----------------------|--------------|-----------------------|-----------------------|---------------------------------------|------------|--------|--------|-----------------------|-----------------------|-----------------------|---------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-------------|-----------------------|-----------------------|------------------------------|-----------------------|-----------------------|-----------------------|----------------------------|---------------|-------------|
| x           | *                          | Minus 1000 | Minus 1400 | a                     | Minus 1800   | . 15                  | 3                     | *                                     | Minus 2000 |        |        | ж                     | •                     | 10                    | 3                         | з                     | ×                     | •                     | 14                    | Minus 1000  | *                     | 10                    | 10                           | a.                    | ×                     | 6                     | 1                          |               | ĸ           |
| ж           | +                          |            | э          | ×                     | Ł            | (1)                   | 4                     | 7                                     | <b>x</b> ) |        |        |                       | ¢                     | (6)                   | 3                         |                       | x                     | e                     | 59                    | Ł           | ×                     | e                     | •                            | ×                     | x                     | e                     | <b>v</b>                   |               |             |
| Q.          | 10                         | Mis.       | 24         | ŝ                     | 10           | 578                   | ä                     | 10                                    | P          |        |        | ÷                     | ¥                     | 5168                  | 3                         | s.                    | ÷                     | 15                    | ŝi.                   | 10          | ŝ                     | 12                    | -55                          | 3                     | ÷                     | R                     | 85                         | a,            | ÷           |
| ÷           | v                          | 1775       | 24         | ŝ.                    | >1000        | - 65                  | ä                     | 32                                    | >1000      | Page 1 | Sheet1 | Ŷ                     | ÷                     | 1775                  | a                         | Ŷ                     | ï                     | E.                    | 55                    | 3           | <u>.</u>              | 12                    | <1000                        | a.                    | ï                     | E.                    | 800                        | Si.           | ï           |
| 215         |                            | ÷          | 168        | ž                     | 400's        |                       | •                     | green                                 | wo         |        |        | đ                     | •                     |                       | ÷                         | ÷                     | 1                     | ł.                    | 1                     | pood        | 1                     | ł                     | 1                            | Ĩ                     | ÷                     | i.                    | 378                        | ï             |             |
|             | •                          |            | 39.2F      | X                     | 37.6F        |                       | 3                     | ×.                                    | 39.6F      |        |        | ï                     | ÷                     |                       | i.                        | ×.                    |                       | i.                    | 1                     | 41.8F       |                       | ÷                     | 40F                          | 4                     | í.                    | ŭ                     | 39F / 41.5                 | 42            | *           |
| ×           |                            |            |            | ÷                     | •            |                       | 9                     | æ                                     | ı.         |        |        | a.                    | ·                     |                       | 84.00%                    | ×                     | ÷                     | 2                     | 6                     |             | ×                     | e                     | 82.00%                       | •                     | ×                     | 8                     | 84.00%                     | 84            | ×           |
|             | 2.5                        | 2          | 2          | ł                     | 1.8          | 1                     |                       | 2                                     | 0.9        |        |        | ,                     | •                     |                       | ٣                         | ł                     | 8                     |                       | 277.0                 |             |                       | 100                   | 0.5                          |                       | ŝ.                    |                       | 0.5                        | 0.5           | X           |
| 36.0C/96.8F | 2.5.5C/75F                 |            | 83.6F      |                       | 21.1C/71.4F  | 115                   | 9                     | 68.3F                                 |            |        |        | æ                     | •                     | 06                    | 2                         | æ                     | ×                     |                       | 8                     | 23.2C/73.7F | ×                     | e                     | 20.3C/68.5F                  | a                     | ×                     | 22                    | 21.6C/70F                  | 21.4C/70.5    | ×           |
| s           | 15000                      | 15000      | 15000      |                       | 14000        | 00                    | э                     | 11000                                 | 10000      |        |        | ×                     | 10                    | 545                   | 6000                      | ж                     | ×                     | e                     | 3                     | ×           | x                     | æ                     | <1000                        |                       | x                     | e                     | -                          | э             | æ           |
| ¥.          | Ŧ                          | hirs)      | 3          | Ŷ                     | r            | 16                    | ä                     | ġ.                                    | ¥.         |        |        | Ŷ                     | ÷                     | 1175                  | а                         | Ŷ                     | ŝ                     | R.                    | 3                     | Si.         | ÷                     | R                     | 55                           | Ξł                    | ï                     | Engine Off            | 85                         | a.            | Visor Up    |
| 4           | Ŧ                          | 1.55       | 36m00sec   | ×                     | 38m00sec     |                       | 3                     | ×.                                    | 40m00sec   |        |        | ï                     | P                     | 1.5                   | 41m02sec                  | •                     | Ŷ                     | р.                    | 55                    | Si .        | 44m00sec              |                       | 45m00sec                     | ΞĨ.                   | ÷                     | 15                    | 47m00sec                   | ä             | ÷           |
| 50m35sec    | 51m21sec                   | 52m18sec   | 52m58sec   | 53m33sec              | 54m13sec     | 55m18sec              | 55m32sec              | 55m53sec                              | 56m44sec   |        |        | 57m30sec              | 57m40sec              | 57m45sec              | 58m02sec                  | 58m36sec              | 58m50sec              | 59m45sec              | 59m50sec              | 1h00m27sec  | 1h01m03sec            | 01h01m54sec           | 01h02m05sec                  | 01h03m00sec           | 01h03m10sec           | 01h03m35sec           | 01h04min00sec              | 01h05min00sec | 01h12m14sec |

# FIGURE 9. Transcript of Audio Record of Descent Phase of Test Flight.

FIGURE 10. Pressure Setting Card Indicator Posted in Prominent View of Suit Operator During Flight.

| ALT      | F     | PSI  | SUIT  | SUM   | SUIT ALT |
|----------|-------|------|-------|-------|----------|
| Feet MSL |       |      | PRESS | PRESS | Feet MSL |
|          |       | A    |       |       |          |
| 0        | 59.0  | 14.7 | 0.5   | 15.2  | -200.0   |
| 3500     | 46.5  | 12.9 | 1.0   | 13.9  | 1500     |
| 6500     | 35.8  | 11.6 | 1.5   | 13.1  | 3000     |
| 9500     | 25.1  | 10.3 | 1.8   | 12.1  | 5000     |
| 17000    | -1.6  | 7.6  | 2.3   | 9.9   | 10500    |
| 18000    | -5.2  | 7.3  | 2.4   | 9.7   | 11000    |
| 19000    | -8.8  | 7.0  | 2.6   | 9.6   | 11500    |
| 19500    | -10.5 | 6.9  | 2.7   | 9.6   | 11250    |
| 20000    | -12.3 | 6.8  | 2.8   | 9.6   | 11250    |
| 20500    | -14.1 | 6.6  | 3.0   | 9.6   | 11250    |
|          |       | D    | ESCEN | Т     |          |
| 20000    | -12.3 | 6.8  | 2.8   | 9.6   | 11250    |
| 19500    | -10.5 | 6.9  | 2.7   | 9.6   | 11250    |
| 19000    | -8.8  | 7.0  | 2.6   | 9.6   | 11500    |
| 18000    | -5.2  | 7.3  | 2.4   | 9.7   | 11000    |
| 17000    | -1.6  | 7.6  | 2.3   | 9.9   | 10500    |
| 14000    | 7.3   | 8.5  | 1.8   | 10.3  | 9000     |
| 12000    | 14.4  | 9.2  | 1.6   | 10.8  | 7800     |
| 9500     | 25.1  | 10.3 | 1.5   | 11.8  | 5500     |
| 7000     | 32.3  | 11.1 | 1.1   | 12.2  | 4500     |
| 4000     | 43.0  | 12.5 | 0.7   | 13.2  | 2500     |
| 0        | 57.2  | 14.7 | 0.5   | 15.2  | -200.0   |

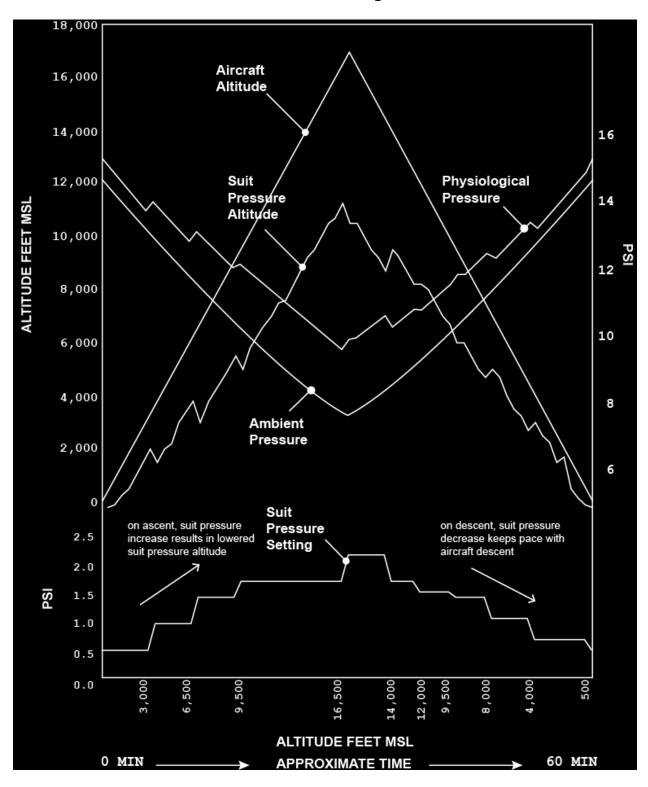
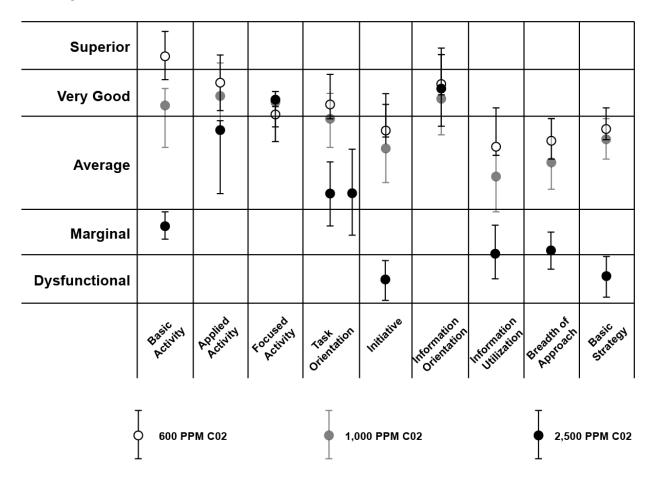




FIGURE 11. Essential Pressure Data for Test Flight 2014-1.

FIGURE 12. Carbon Dioxide Levels and Impairment Effects, 600 PPM – 2,500 PPM (from Satish et al. 2014). Note that effects differ not only by C02 level but also by variety of cognitive action; nevertheless, levels below 600PPM may be considered generally acceptable and levels above 1,000 PPM may be considered generally unacceptable.

