2004

Calibrating an Intracranial Pressure Dynamics Model With Clinical Data - A Progress Report

Wayne W. Wakeland
Portland State University, wakeland@pdx.edu

Brahm Goldstein
Oregon Health & Science University

James McNames
Portland State University

Let us know how access to this document benefits you.

Follow this and additional works at: https://pdxscholar.library.pdx.edu/sysc_fac

Part of the Biomedical Commons

Citation Details

This Presentation is brought to you for free and open access. It has been accepted for inclusion in Systems Science Faculty Publications and Presentations by an authorized administrator of PDXScholar. For more information, please contact pdxscholar@pdx.edu.
Calibrating an Intracranial Pressure Dynamics Model with Annotated Clinical Data--a Progress Report

W. Wakeland1 B. Goldstein2 J. McNames3

1Systems Science Ph.D. Program, Portland State University
2Complex Systems Laboratory, Oregon Health & Science University
3Biomedical Signal Processing Laboratory, Portland State University

This work was supported in part by the Thrasher Research Fund
Background: Intracranial Pressure (ICP)

- Traumatic brain injury often causes ICP to increase
 - Frequently due, at least initially, to internal bleeding (hematoma)
- Persistent elevated ICP \rightarrow reduced blood flow
 \rightarrow insufficient tissue perfusion (ischemia)
 \rightarrow secondary injury \rightarrow poor outcome
- Poor outcomes often occur despite the availability of many treatment options
 \rightarrow The pathophysiology is complex and only partially understood
Background: ICP Dynamic Modeling

• Many computer models of ICP have been developed
 ➔ Models have sophisticated logic
 ➔ Potentially very helpful in a clinical setting
• However, clinical impact of models has been minimal
 ➔ Complex models are difficult to understand and use
• Another issue is that clinical data often lack the annotations needed to facilitate modeling
 ➔ Exact timing for medications, CSF drainage, ventilator adjustments, etc.
Research Objective

- Use an IRB approved protocol to collect prospective clinical data
 - Carefully annotate the data regarding timing of therapy and mild physiologic challenges
- Use the data to calibrate a computer model of ICP dynamics
- Use the calibrated model to estimate patient response to treatment and challenges
- Compare model response to actual patient response
- Improve the model and the calibration process
Method: Experimental Protocol

- Change the angle of the head of the bed (HOB)
 - From 30° to 0° for example, and vice versa
 - Such changes directly influence ICP
- Change the minute ventilation (VR)
 - Clinician adjusts VR to achieve specified ETCO$_2$
 - Decreasing ETCO$_2$ (mild hyperventilation) triggers cerebrovascular autoregulatory (AR) response
 - Intracranial vessels constrict \rightarrow intracranial blood volume decreases \rightarrow ICP decreases
 - Increasing ETCO$_2$ has the opposite effect
Method: ICP Dynamic Model

- Core model logic
 - State variables: fluid volumes and AR status
 - Estimated parameters: compliance, resistance, hematoma volume and rate, control parameters
 - Computed variables: fluid flows and pressures
- Six intracranial volumes (state variables)
 - Arterial blood (ABV), Capillary blood (CBV)
 - Venous blood (VBV), Cerebral spinal fluid (CSF)
 - Brain tissue (BTV), Hematoma (HV)
Method: Diagram showing Volumes & Flows
Method: Model Logic for Pressures

- **Total Cranial Volume** = \(ABV + CBV + VBV + CSF + BTV + HV \)
- **Intracranial Pressure (ICP)**
 \[
 \text{ICP} = \text{Base ICP} \times 10^{\frac{(\text{Total Cranial Volume} - \text{Base Cranial Volume})}{\text{PVI}}}
 \]
 - PVI (pressure-volume index) is the amount of added fluid that would cause pressure to increase by a factor of 10
- **Arterial, capillary, and venous pressures**
 - \(P_{ab} = \text{ICP} + \frac{(ABV)}{(Arterial Compliance)} \)
 - \(P_{cb} = \text{ICP} + \frac{(CBV)}{(Capillary Compliance)} \)
 - \(P_{vb} = \text{ICP} + \frac{(VBV)}{(Venous Compliance)} \)
Method: Model Logic for Cerebrovascular AR

- Arteriolar resistance changes in order to maintain needed blood flow rate
 - higher resistance = constriction
 - Lower resistance = dilation
 - Time constant for adjustment process: 2-3 minutes
 - Upper and lower bounds

- Cerebrovascular AR responds to multiple stimuli
 - Changing Metabolic needs (e.g., asleep vs. awake)
 - Changing ICP, arterial blood pressure, HOB, and VR
Results: Clinical Data, HOB Changes
Results: Clinical Data, ETCO2 Changes

![Graph showing changes in ICP over time with annotations VR:12 and VR:15](image)

- **ICP (mmHg)**
- **Time (seconds)**
- **VR:12**
- **VR:15**
Results: Model Response to HOB Decrease

Note: Actual ICP data has been low-pass filtered and decimated to remove the pulsatile component.
Results: Model Response to HOB Increase

Note: Actual ICP data has been low-pass filtered and decimated to remove the pulsatile component.
Results: Model Response to ETCO$_2$ Increase

Note: Actual ICP data has been low-pass filtered and decimated to remove the pulsatile component.
Results: Model Response to ETCO$_2$ Decrease

Note: Actual ICP data has been low-pass filtered and decimated to remove the pulsatile component.
Discussion: Model vs. Actual Response

- Model response to raising HOB is very similar to actual response
- Model Response to lowering the HOB is less similar
 - This is plausible since lowering HOB increases ICP, and the body has several mechanisms to resist such increases
 - Most of these are not included in the current model
- Response to ETCO$_2$ changes did not fully reflect the patient’s actual response
 - This is not unexpected, for the same reason:
 - Reliance on a single cerebrovascular AR mechanism in the model
Discussion: Summary

- A model of ICP dynamics was calibrated to replicate the ICP recorded from specific patient during an experimental protocol.
- The calculated ICP closely resembles actual ICP.
- The cerebrovascular AR logic in the model only partially captures the patient’s response to respiration change.
- Next steps: (1) refine the AR logic in the model (2) use optimization to automate the calibration process (3) predict response.