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ABSTRACT 
 
In this paper we explore the use of Priority-progress 
streaming (PPS) for live video streaming applications 
with tight latency constraints. PPS is a technique for the 
delivery of continuous media over variable bit-rate 
channels. It is based on the simple idea of reordering 
media components within a time window into priority 
order before transmission. The main concern when using 
PPS for live video streaming is the time delay introduced 
by reordering. In this paper we describe how PPS can be 
extended to support live streaming and show that the 
delay inherent in the approach can be reduced to as little 
as 400 milliseconds while still supporting relatively fine-
grain adaptation. 

 

1. INTRODUCTION 
 

 
Streaming video over the Internet requires us to deal with 
bandwidth and delay that vary over time. Many video 
streaming applications address this problem by adapting 
the quality of scalable video [25]. Scalable video encoding 
allows us to play a single video stream at full quality 
when network conditions allow, and to degrade gracefully 
when network resources are insufficient. However, 
scalable video encoding is only part of the solution for 
adaptive video distribution. Another critical component is 
an adaptive streaming mechanism for detecting the 
network conditions and choosing the appropriate scalable 
video components to send in order to achieve the best 
possible video quality given those network conditions.  

Priority-progress streaming (PPS) is such an adaptive 
streaming mechanism [14] [15]. It uses a time-window-
based approach in which all data packets with timestamps 
within a certain period of time are placed in a window 
and reordered into priority order before transmission. It 
then transmits these packets for the time duration of the 
window only. At the end of the window duration, it 
discards unsent packets and moves on to the next 
window. In this way, the available bandwidth is used to 
send the most important elements of the stream and the 
least important elements are dropped.  

The main advantage of PPS is to support fine-grain 
dynamic adaptation over a variety of congestion control 
protocols. PPS avoids the problems of trying to estimate 
the target rate by monitoring the underlying transport 
protocol’s sending rate, as is done in feedback-based 
schemes [2] [11] [17]. Our implementation of PPS in the 
Quasar video pipeline [23] [13] shows that PPS is good 
for streaming stored video because it never 
underestimates the available bandwidth, it ensures that 
the buffered data is not delayed longer than some 
threshold (determined by the window length), and it uses 
a buffer for priority reordering which has the benefit of 
smoothing video quality changes. Since PPS is a generic 
approach based on very simple mechanisms, it is possible 
to implement it with high efficiency and deploy it in 
network nodes. 

The reordering window in PPS introduces latency, 
however, and this latency might be problematic for live 
video streaming applications. The latency characteristics 
of the video pipeline’s streaming mechanisms partially 
determine the freshness of the video content. The 
freshness of the video content, which is measured by the 
end-to-end latency from a frame being captured to its 
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display, tends to be important for live video streaming 
applications.  

Most live video streaming applications have 
requirements for video freshness; in other words, they 
have requirements for end-to-end latency. Some live 
video applications, such as remote surgery and remote 
control systems, have very stringent latency requirements 
and cannot run on the Internet at all. Others can run on 
the Internet but are difficult to deploy widely without 
quality of service extensions in the core of the Internet. 
High quality video-conferencing, which is interactive and 
allows a maximum latency of 200 milliseconds, is an 
example of an application that stresses the limits of the 
current Internet. Yet others such as video surveillance 
and live event broadcasting, which have relatively loose 
latency requirements, could possibly run on the current 
Internet with suitable choice of low-latency adaptation 
mechanisms. Examples of surveillance applications and 
live event broadcasting applications include remote child-
care monitoring that allows parents to watch their 
children from work, automobile routing that allows the 
detection of congested roadways through video sensors so 
that drivers can reduce their travel time, environmental 
observation systems that help scientists monitor physical 
phenomena of the earth, unmanned aerial vehicles 
equipped with cameras for military surveillance, 
multicasting sport games that are unavailable through 
local TV channels, and on-line lectures for distance 
learning. These applications can tolerate latencies in the 
range of half a second to a few minutes. 

In this paper, we explore how much of a problem the 
latency in PPS is for live video streaming and determine 
the range of video surveillance applications it can 
support. This paper describes how PPS can be extended to 
support live video streaming, and evaluates the latency 
implications of the approach. Our experiments show that 
even with fairly rudimentary scalable video technology, 
the latency due to adaptation in PPS can be reduced to as 
little as 400 milliseconds while maintaining fine-grain 
adaptation. This means that applications with a latency 
tolerance of a half second can be supported using TCP-
friendly protocols on a coast to coast link in the US 
(where propagation delay is typically less than 100 
milliseconds). 

This paper is organized as follows. Section 2 
introduces the basic idea of PPS and describes how it 
works for stored video streaming. Section 3 discusses the 
problems of using PPS for live video streaming. Section 4 
outlines a series of experiments for evaluating the latency 
and adaptation granularity characteristics of PPS with 
different reordering window sizes, and presents results. 
Related work is discussed in Section 5. Finally, Section 6 
concludes the paper and discusses future work. 

 

 
2. PRIORITY-PROGRESS STREAMING FOR 

STORED VIDEO 
 
PPS is a time-window-based, adaptive streaming 
protocol. PPS uses timestamps and priority labels to 
perform adaptive streaming. A window in PPS contains 
all data packets with timestamps within a certain period 
of time. The window is called an adaptation window; and 
the size of the adaptation window is the length of the time 
period, not the number of packets or number of bytes in 
this window. Data packets in an adaptation window are 
sorted into priority order before transmission. PPS then 
transmits these packets for the time duration of the 
window only; at the end of the window duration, a timer 
expires, unsent packets in the current window are 
discarded and the next window starts streaming. 
Dropping happens when the available bandwidth is less 
than the data rate. 

PPS is well-suited to video streaming, but it can be 
used to stream any data flow that can be packetized such 
that each data packet can be time-stamped and 
prioritized. 
 
2.1. Basic Streaming 
 
Figure 1 shows an ideal example of PPS streaming with 
sufficient bandwidth and constant delay. Data packets 
with timestamps and priority labels are grouped into 
windows in time order. Suppose the timestamps are in 
milliseconds, and the window size is 100 milliseconds. 
Within each 100-millisecond window, packets are sorted 
and sent in priority order, assuming that a small number 
represents a high priority. Packets in a window are sent 
out as fast as possible. Hence, when PPS runs over TCP, 
it can take full advantage of TCP’s burstiness. In this 
example, we have 100 milliseconds to send out the data 
in each window; and because the bandwidth is higher 
than the data rate, there is spare time in the 100-
milisecond period. The spare time can be used for work-
ahead or bandwidth skimming [13]. Streaming with 
insufficient bandwidth and with varying network delay is 
discussed in Section 2.2. 

Conceptually, PPS has three components: a sender, a 
receiver, and a regulator, as shown in Figure 2. The 
regulator has a clock for the sender and a clock for the 
receiver. The sender clock tells the sender to start sending 
a new window when the time for the current window is 
over. The receiver clock tells the receiver when to stop 
receiving the current window and push whatever it has 
received for this window to the next stage in the pipeline. 
Data from this window that arrives after this point in time 
is considered to be too late for processing (i.e., the 
window has already been committed to the decoder). To 
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ensure that all data is not considered to be late at the 
receiver, there is an offset between the two clocks. 
Specifically, the receiver clock runs behind the sender 
clock to account for processing and network propagation 
delay. The regulator can adjust the offset to adapt to 
variations in the network delay, as discussed in Section 
2.2.  
 

 
Figure 1 PPS Streaming 

 

 
Figure 2 PPS Modules 

The regulator can be part of the sender, part of the 
receiver, or a separate component. In our experiments, it 
resides on the receiver machine. 

 
2.2. Adaptation 
 
As shown in Figure 3, PPS can adapt to the available 
bandwidth. If the bandwidth is lower than the data rate, 
some data packets are unsent when the window time is 
over. These data packets, which have low priorities, are 
dropped. PPS makes efficient use of the limited 
bandwidth by transferring the data packets with highest 
priority first. 

Figure 4 shows how PPS deals with increased delay 
by asking the sender to send data earlier so that it has 
more time to reach the receiver. When the receiver gets a 
packet after its window’s deadline, it asks the regulator to 
push forward the sender clock so the offset between the 
sender clock and the receiver clock increases. The 
increased offset accommodates the larger network delay. 
If the delay decreases, PPS could either change back to 
the old sending schedule to keep the receiver buffer fill-

level low, or keep the current schedule so as to prime the 
receiver-side buffer in anticipation of future delay and 
bandwidth variations. 
 

 
Figure 3 Adaptation to Bandwidth 

 
Figure 4 Adaptation to Delay (stored video) 

In practice, bandwidth reduction and delay increase 
often happen together. The two adaptation mechanisms 
cooperate to match the varying network conditions. 

 
2.3. Preparation for Video Streaming 
 
In this section, we discuss packetization, timestamping, 
and prioritization for video streams. 

A video stream consists of video frames; the video 
frames could be the data packets for PPS. However, how 
the video frames are encoded determines the space for 
adaptation. Scalable encoding is preferred because the 
video stream can work at different data rates and we can 
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achieve different quality levels under different network 
conditions. The Quasar pipeline uses a scalable 
compression format called SPEG (Scalable MPEG), 
extending MPEG-1 video with SNR scalability [13]. Each 
MPEG video frame is divided into four layers, in which 
the base layer contains the most significant bits of the 
DCT coefficients and the successive layers contain the 
less significant bits. Each layer of an MPEG frame is 
encapsulated in an SPEG packet.1 

Video frames have inherent timestamps: the play 
time. SPEG packets are given the timestamps of the 
corresponding MPEG frames. 

Prioritization exposes the video scalability to PPS in 
a generic way, enabling PPS to do wise adaptation 
without understanding the complex semantics of video 
encoding. In the Quasar pipeline, prioritization reflects 
temporal scalability and SNR scalability by reflecting 
dependencies among SPEG packets. For example, the 
base layer of an I frame has higher priority than the base 
layers of any P frames that depend on it, and a base layer 
has higher priority than the enhancement layers in the 
same MPEG frame. However, dependencies decide only a 
partial order among SPEG packets. For the importance of 
the base layer of a P frame over an enhancement layer of 
an I frame, Quasar’s prioritization mechanism takes into 
account how much a user prefers frame rate over picture 
signal to noise ratio (SNR). These user preferences are 
provided to the Quasar pipeline in the form of utility 
functions [23]. To reflect the importance of an SPEG 
packet to the user and its importance in the video stream, 
Quasar’s prioritization mechanism does not simply assign 
a priority according to the frame type and layer; instead, 
it uses a priority mapper [13] to calculate utility loss of 
the whole adaptation window to the user, assuming a 
particular packet is dropped. Then it decides the priority 
for the packet based on the utility loss. This window-
based prioritization scheme results in many more priority 
levels for a video stream than a one-frame-based 
algorithm and hence supports much finer granularity 
adaptation. The larger the window, the more priority 
levels can be utilized. We combine some quality levels 
that are indistinguishable by human eyes and we define at 
most 16 priority levels at any given time in the Quasar 
pipeline. Details of the algorithm can be found in our 
earlier papers [13] [23]. 

SPEG is just an example scalable video format. It 
illustrates the effects and benefit of PPS. Other scalable 

                                                
1 At the time we developed SPEG there was no other openly available 
scalable video encoding free of problematic licensing restrictions. We 
developed SPEG in order to exercise our adaptation mechanisms. Since this 
time new scalable video encoding approaches, such as MPEG-4 FGS [16], 
have been developed. These new codecs have better compression efficiency 
and finer-grain adaptation than SPEG and hence offer an even more 
favorable platform for PPS. 

compression formats such as MPEG-2 and MPEG-4 can 
be streamed in a similar way. We also expect that more 
scalability mechanisms will be available in the future, 
such as spatial scalability of image size, chrome 
scalability of color fidelities, content adaptation through 
addition and removal of objects, and region-of-interest. 
PPS can work well as long as prioritization can reflect the 
scalabilities. 

 
3. LIVE STREAMING 

 
3.1. Adaptation for Live Video 
 
Using PPS for live video introduces much more than 
simply replacing the stored video file with a video 
camera. A big difference between stored video and live 
video is that live video has its own capture clock. Hence, 
live video cannot be generated faster or slower than its 
capture rate, while stored video can be read whenever it is 
needed. This difference implies that the work-ahead 
mechanism described in Section 2.1 for dealing with 
increased delay cannot be used for live video. The capture 
clock also introduces the notion of end-to-end latency, 
which is the time from a frame being captured to its being 
displayed. Reducing this end-to-end latency is a goal 
specific to live video streaming. 

 

Figure 5 Adaptation to Delay (live video) 

In the work-ahead mechanism, increases in 
propagation delay caused the sender to read-ahead in the 
video file source, and hence increase its “work-ahead”—  
the time difference between its clock and the receiver’s 
clock. For live video, since it is not possible to “read 
ahead”, we instead introduce delay at the receiver by 
pushing back the receiving deadlines, as shown in Figure 
5. When the receiver gets a late frame, the regulator 
increases the offset between the sender clock and the 
receiver clock by pushing back the receiver clock to allow 
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the increased delay. In order to avoid causing burstiness 
in the playback, modification of the receiving deadlines is 
done gradually using a low-pass filter in the regulator. 

Note that this mechanism is suitable for multicast 
because each receiver can adjust its receiving deadlines to 
compensate for its own network delay. 

 
3.2. Latency for Streaming 
 
The end-to-end latency from a frame being captured to its 
display is the main concern for live streaming. For stored 
video streaming, applications do require that frames 
arrive on time for display, but it does not matter when the 
frame is read from a file or how long it stays in buffers as 
long as it is on time for display. 

There are two main sources of latency: the end 
machines and the network. Latency from the end 
machines includes the processing time and the buffering 
time on the sender and the receiver.  On both the sender 
and the receiver, the processing time does not vary much.  
For example, the time for encoding, decoding, reordering, 
and prioritizing is fixed unless we improve the algorithms 
or switch to faster computers. Therefore we can assume 
that in general that these times are fixed.  

Two types of buffers contribute to the total buffering 
time. Some buffers enable asynchrony among pipeline 
components. For example, the capture buffer keeps raw 
video frames from being dropped while the CPU is 
occupied by encoding or prioritizing; similarly the display 
buffer allows a smooth playback when a complex frame 
takes longer than its display duration to decode. These 
buffers need only be large enough to prevent the pipeline 
from stalling. The other type of buffer permits adaptation. 
The time spent in these buffers is determined by the 
adaptation window size, which is an adjustable PPS 
parameter. The latency of the network segment is 
something that we adapt to and cannot control. 

Ignoring the latency sources that are independent of 
PPS, the end-to-end latency due to adaptation buffers is 
the sum of the adaptation window size and the 
transmission time, as shown in Figure 6. For PPS 
adaptation, the last packet in the window is delayed on 
the sender side for the whole window time but not 
delayed at all on the receiver side. Similarly, the first 
packet in the window is delayed on the receiver side but 
not at all on the sender side. All of the frames in between 
are delayed both on the sender and the receiver, but the 
total delay is always one window time. The transmission 
time is related to the window size in two ways. When the 
bandwidth is higher than the data rate, the transmission 
time is proportional to the amount of data in a window, 
which is proportional to the window size. When the 
bandwidth is lower than the data rate, the window size is 
the transmission time for this window, according to the 

PPS streaming algorithm (since transmission continues 
for the entire duration of the window before data is 
dropped). 

 

Figure 6 End to End Latency 

In summary, for the normal case when bandwidth is 
limited, the latency inherent in PPS is generally twice the 
window size. Thus, tuning the adaptation window size is 
the key to tuning the end-to-end latency. For low latency 
streaming, a small window size is preferable. However, a 
small window size makes fine-grain adaptation difficult 
and eventually impacts video quality. This is because 
adaptation happens within a window, i.e. a smaller 
window provides fewer droppable data units and fewer 
priority levels for adaptation. 

 
4. EXPERIMENTS 

 
We have implemented the live Quasar pipeline by 
extending PPS for live streaming and substituting the 
MPEG source and the SPEG transcoding components of 
the pipeline with a camera, a capture card, and a software 
SPEG encoder. The capture card we use is a WinTV card 
from Hauppauge. The SPEG encoder is based on ffmpeg 
[8], an open source encoder that can encode in real time.  
We modified ffmpeg to implement SPEG’s SNR layering 
strategy and to produce SPEG output directly to the live 
Quasar pipeline. 

The live Quasar pipeline runs on Linux Mandrake 
8.1. The sender and the receiver are two Pentium III 
930MHz machines. The transport protocol we use is TCP. 
To minimize the influence of non-adjustable latency 
sources, we run the pipeline on a private LAN without 
any competing traffic. We also maintain minimum buffer 
fill levels that allow the pipeline to run smoothly. To feed 
a similar video stream for different runs, we point the 
camera at a static object. Thus the adaptation window 
size is the main control variable in the experiments.  

We observe the adaptation effect through the video 
quality on the receiver side and through the gscope 
software oscilloscope [9], which is a time-sensitive 
visualization tool that shows the bandwidth usage, buffer 

Window size + 
transmission time 

Sender Receiver Camera Display 
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fill level, clock offset adjustment, end-to-end latency, and 
other useful signals in real time.   

In the following subsections, we concentrate on the 
relationships between end-to-end latency, the adaptation 
window size, and the adaptation granularity. We use the 
adaptation granularity as an indication of the 
effectiveness of the adaptation. The adaptation 
granularity determines how closely a pipeline can utilize 
a given level of resource capacity, which is bandwidth in 
our experiments. 
 
4.1. Measurement of the end-to-end Latency 
 
We designed a novel method for measuring the real end-
to-end latency including all aspects of the pipeline and 
I/O for capturing and displaying. We point a camera at a 
watch, capture a video of the watch on the sender, stream 
the video over the LAN, and show the watch video on a 
receiver; we use a second camera to take a picture of both 
the real watch and the displayed watch. Figure 7 is such a 
picture. The time difference in these two watch images is 
the latency of the whole pipeline. This is the most 
conservative way of measuring latency in the sense that it 
includes the latency in the camera and display hardware, 
which are not under our control. 

 

Figure 7 Measure the End to End Latency 

However, the above method is inconvenient for 
quantitative analysis. In the following experiments, we 
measure the end-to-end latency by recording the time at 
which a frame enters the capture buffer and the time at 
which it leaves for the graphic display library. The 
timestamp of a frame entering the capture buffer is 
transmitted to the receiver with the frame itself; the 
receiver gets the current time when sending a frame to 
display and compares the current time with the 
accompanying timestamp. The clocks on the sender and 
the receiver are synchronized through the Network Time 
Protocol (NTP). 
 

4.2. Latency vs. Adaptation Window Size 
 
Figure 8 shows the relationship between the latency and 
the adaptation window size. As expected, the latency 
grows with the window size. From Figure 8 we can see 
that when the adaptation window size is less than 167 
milliseconds, the latency from adaptation, plus processing 
and necessary buffering, is well below 400 milliseconds. 
In the real world, the end-to-end latency also includes the 
network propagation delay and transmission time. 
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Figure 8 Latency vs. Adaptation Window Size 

 
The latencies shown in Figure 8 are measured for an 

intra-encoded video stream.  We also measure the 
latencies for inter-encoded video streams with GOP sizes 
chosen in such a way that frames in one GOP do not cross 
the window boundary. We find that the latencies for 
inter-encoded streams are very close to those for the intra-
encoded stream and the GOP size has little impact on the 
end-to-end latency. The window size is the determinant 
factor for latency. 

 
4.3. Latency for Streaming 
 
Each window size can deliver a certain number of 
possible quality levels. These quality levels range from 
full quality, when all packets of the window are delivered, 
to zero quality when none is delivered. Between these two 
extremes lie a number of quality levels, one for each 
priority, whose bandwidth requirements can be 
represented as a percentage of the full quality video 
bandwidth. As discussed in Section 2.3, the number of 
priority levels and their corresponding bandwidth 
percentages depend on the scalability of the video stream, 
the window size, and the user preferences. 

In Figure 9, Figure 10, and Figure 11, we show 
samples of quality levels available for different window 
sizes and user preferences. Each symbol + in the plot area 
represents a quality level. The x value of the symbol is the 
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window size in which that quality level is available; the y 
value of the symbol is the percentage of the full quality 
video bandwidth for that quality level. Figure 9 shows the 
available quality levels when a user prefers temporal 
quality and SNR quality equally; Figure 10 shows the 
available quality levels when a user prefers the maximum 
temporal quality; and Figure 11 shows the available 
quality levels when a user prefers the maximum SNR 
quality.  

Ideally, for each window size there should be many 
available quality levels and their bandwidth percentages 
should be evenly distributed in order to closely match the 
varying network bandwidth. However, the scalability of 
video encoding and the window size determine how many 
prioritizable and independently droppable units are in a 
window and the sizes of these units determine the 
distribution of bandwidth percentage for quality levels. 
For the window size of 33.4 milliseconds, each window 
includes only one MPEG frame at NTSC rate. If no 
scalability is introduced, there is only one droppable unit 
in the window and there is only one quality level 
whatever the user preference is. If we double the frame 
rate (or double the window length), we introduce some 
temporal scalability and there are two MEPG frames in 
the window thus two droppable units and two quality 
levels. If we introduce SNR scalability into MPEG by 
using SPEG encoding and hence there are four SPEG 
packets in the window so there are four droppable units 
and at most four quality levels. 
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Figure 9 Adaptation Granularity vs. Window Size 

(Neutral Preference) 
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Figure 10 Adaptation Granularity vs. Window Size 

(Prefer Temporal Quality) 
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Figure 11 Adaptation Granularity vs. Window Size 

(Prefer SNR Quality) 

In order to minimize latency, we need to minimize 
the window size while maintaining a large enough 
number of evenly distributed quality levels to enable fine-
grain adaptation. For SPEG, a window size of 133.6 
milliseconds seems to be a good choice, since it has more 
than 10 quality levels and allows the pipeline to achieve 
relatively low, less than 400 milliseconds, total end to end 
latency. However, SPEG has only two dimensions of 
quality adaptation, the temporal adaptation and the SNR 
adaptation; and the SNR adaptation is relatively coarse-
grained. Thus, any results obtained with SPEG could 
easily be improved with scalable video encodings that 
provide finer granularity scalability. With improved 
scalable video encoding, PPS could easily support 
interactive streaming with a latency requirement of under 
200 milliseconds. 
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5. RELATED WORK 
 
Streaming video over the Internet involves many research 
areas: video compression, adaptive streaming, media 
synchronization mechanisms, application level error 
control, media streaming transport protocols, and so on. 
Wu et al. have written a comprehensive survey of video 
streaming approaches and directions in their paper [25]. 
Vandalore et al. give a detailed survey of application level 
adaptation techniques [24]. Our work concentrates on 
adaptive streaming mechanisms. 

A common approach to adaptive live streaming is to 
monitor network conditions using feedback-based 
mechanisms such as RTCP receiver reports [2] and adjust 
video encoding parameters on the fly [17] so that the rate 
of the encoded video stream matches a dynamically 
determined target bandwidth. A key advantage of this 
approach is compression efficiency – the video encoder is 
able to optimize video quality for the given target 
bandwidth. Another advantage is its support for fine-
grain adaptation – the target bandwidth can be chosen 
from a continuous range. A third advantage is low latency 
– adaptation can be performed without reordering data. 
The main disadvantages of the approach are its inability 
to satisfy conflicting requirements of heterogeneous 
receivers in a simulcast or multicast distribution network, 
the difficulty of tuning encoding parameters to achieve 
optimal video quality for a certain video rate, and the 
difficulty of tuning the feedback control to determine the 
suitable and accurate target video rate. If the target video 
rate is chosen incorrectly it will either result in network 
underutilization, congestion, or increased delay. 

PPS takes an alternative approach based on scalable 
video encoding and priority dropping. Instead of 
dynamically manipulating encoding parameters, video is 
encoded ahead of time using a scalable encoding 
approach. This approach allows a wide range of 
scalability of the video rate, but at the expense of some 
compression efficiency. Adaptation is supported in PPS 
by prioritizing data in the scalable video stream and 
dynamically dropping data in priority order in order to 
match the target bandwidth. PPS’s sending strategy does 
not rely on complex control models and is independent of 
receiver feedback. Instead, it allows an underlying 
congestion control protocol, such as TCP or any of the 
TCP-friendly streaming protocols [19] to determine the 
appropriate sending rate. Whatever that rate is, PPS sends 
video packets in priority order from a window as fast as 
possible. The packets that remain unsent when the time 
for the window is up are discarded and PPS moves to the 
next window. In this way, a high-bandwidth receiver gets 
more data than a low-bandwidth receiver for each 
window; but they do not interfere with the sending 
strategy. They both get the best possible video quality 

under their bandwidth limitations because for either 
receiver, the data packets received are more useful than 
those discarded, and the maximum possible bandwidth is 
used while preserving TCP-friendly behavior. A key 
advantage of this approach is the simplicity of the 
mechanisms and the ability to support heterogeneous 
simulcast distribution efficiently. 

Feng et al. describe a video streaming algorithm [7], 
which is the closest approach to PPS described in the 
literature. As with PPS, it is a window-based algorithm 
that does priority dropping. However, in Feng’s approach 
the window slides instead of jumping and, more 
significantly, the algorithm requires a priori information 
from stored video, which is not available for live 
streaming.  

Miao et al. have designed an algorithm called 
Expected Run-time Distortion Based Scheduling 
(ERDBS) [18]. It is actually an adaptive streaming 
algorithm combined with selective retransmission, based 
on a sliding window. Like PPS, it decides the importance 
of a packet within the context of the whole window and 
sends the most important packets first, and it does not 
depend on any a priori information of the video. Unlike 
PPS, which considers user preferences when deciding the 
importance of packets, ERDBS considers the probability 
of packet loss and the probability that a retransmission 
allows a packet to arrive on time. It also recalculates the 
importance after each frame is sent out.  

Kang and Zakhor have also designed a sliding 
window based reordering algorithm [12]. The sliding 
window size is chosen to make optimum use of the 
receiver’s buffer. When deciding the importance of 
packets, they discriminate motion fields from texture 
fields. They assume fixed round trip time and an error-
free feedback channel. 

Rejaie et al. propose layered quality adaptive 
streaming, which adapts to varying bandwidth by adding 
or dropping layers [21]. They do a detailed analysis of 
buffer allocation to minimize latency. Their analysis is 
based on a rate-based congestion control mechanism 
called RAP rather than TCP [19]. Feamster et al [5] 
extend their analysis to Binomial congestion controls. 
Their algorithm assumes a layered-encoded stream. PPS 
can work with any of the TCP friendly congestion control 
protocols, including TCP itself, and with any of the 
scalable encoding schemes including layered-encoding. 
Unlike PPS, Rejaie et al.’s approach needs 
complementary error control mechanisms [6] [20]. 

The two main commercial video streaming systems, 
Windows Media [1] and Real System [3], use multi-
coding for adaptive streaming. Multi-coding combines 
into one stream several video streams from the same 
content but with different bit-rates. This allows the server 
to switch to an appropriate stream as bandwidth changes. 
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PPS needs only one encoding for the same content, and 
hence is more efficient, enabling more scalable servers 
and proxy caches. 

In addition to the experimental system described 
here, the live Quasar video pipeline is also used in project 
Timber [22], in which the video server is located on a 
robot vehicle. 
 

6. CONCLUSION AND FUTURE WORK 
 
Priority progress streaming offers a generic and efficient 
approach to fine-grain adaptive streaming for stored 
source applications. However, it implies increased latency 
for reordering data into priority order prior to 
transmission and reordering back to time order after 
transmission. In this paper we explored the real world 
impact of this reordering latency for live-source video 
pipelines. We showed that even for relatively coarse-
grained scalable video encoding approaches reordering 
latency can be reduced to under 400ms, bringing the 
approach well within the realm of many live source video 
applications, such as video surveillance, and approaching 
the realm of interactive applications. As finer granularity 
video encoding approaches become available, the same 
level of fine-grain adaptivity will be available using even 
smaller reordering windows and interactive applications 
such as video conferencing will be easily supported using 
PPS. 

We plan to use PPS to stream media with new types 
of scalability along with the temporal scalability and the 
SNR scalability we already support. We are also looking 
into approaches to reduce non-adaptation-related latency. 
We have implemented a real-rate scheduler, that reduces 
the buffer space required between pipeline components 
[4], and a low latency TCP that integrates congestion 
window and socket buffer management in order to reduce 
application-perceived network latency [10]. 
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