
Portland State University Portland State University

PDXScholar PDXScholar

Computer Science Faculty Publications and
Presentations Computer Science

7-21-2003

Adaptive Live Video Streaming by Priority Drop Adaptive Live Video Streaming by Priority Drop

Jie Huang
Oregon Graduate Institute of Science & Technology

Charles Krasic
Oregon Graduate Institute of Science & Technology

Jonathan Walpole
Oregon Graduate Institute of Science & Technology

Follow this and additional works at: https://pdxscholar.library.pdx.edu/compsci_fac

 Part of the Computer and Systems Architecture Commons, and the OS and Networks Commons

Let us know how access to this document benefits you.

Citation Details Citation Details
Huang, J., Krasic, C., Walpole, J., & Feng, W. C. (2003, July). Adaptive Live Video Streaming by Priority
Drop. In AVSS (p. 342).

This Conference Proceeding is brought to you for free and open access. It has been accepted for inclusion in
Computer Science Faculty Publications and Presentations by an authorized administrator of PDXScholar. Please
contact us if we can make this document more accessible: pdxscholar@pdx.edu.

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/compsci_fac
https://pdxscholar.library.pdx.edu/compsci_fac
https://pdxscholar.library.pdx.edu/compsci
https://pdxscholar.library.pdx.edu/compsci_fac?utm_source=pdxscholar.library.pdx.edu%2Fcompsci_fac%2F90&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/259?utm_source=pdxscholar.library.pdx.edu%2Fcompsci_fac%2F90&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/149?utm_source=pdxscholar.library.pdx.edu%2Fcompsci_fac%2F90&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/compsci_fac/90
mailto:pdxscholar@pdx.edu

 1

ADAPTIVE LIVE VIDEO STREAMING BY PRIORITY DROP?

Jie Huang, Charles Krasic, and Jonathan Walpole

Oregon Health and Science University
OGI School of Science and Engineering

? This work was partially supported by DARPA/ITO under the Information Technology Expeditions, Ubiquitous Computing, Quorum, and PCES programs,
NSF Grants CCR-9988440 and #EIA-0130344, and by Intel.

ABSTRACT

In this paper we explore the use of Priority-progress
streaming (PPS) for live video streaming applications
with tight latency constraints. PPS is a technique for the
delivery of continuous media over variable bit-rate
channels. It is based on the simple idea of reordering
media components within a time window into priority
order before transmission. The main concern when using
PPS for live video streaming is the time delay introduced
by reordering. In this paper we describe how PPS can be
extended to support live streaming and show that the
delay inherent in the approach can be reduced to as little
as 400 milliseconds while still supporting relatively fine-
grain adaptation.

1. INTRODUCTION

Streaming video over the Internet requires us to deal with
bandwidth and delay that vary over time. Many video
streaming applications address this problem by adapting
the quality of scalable video [25]. Scalable video encoding
allows us to play a single video stream at full quality
when network conditions allow, and to degrade gracefully
when network resources are insufficient. However,
scalable video encoding is only part of the solution for
adaptive video distribution. Another critical component is
an adaptive streaming mechanism for detecting the
network conditions and choosing the appropriate scalable
video components to send in order to achieve the best
possible video quality given those network conditions.

Priority-progress streaming (PPS) is such an adaptive
streaming mechanism [14] [15]. It uses a time-window-
based approach in which all data packets with timestamps
within a certain period of time are placed in a window
and reordered into priority order before transmission. It
then transmits these packets for the time duration of the
window only. At the end of the window duration, it
discards unsent packets and moves on to the next
window. In this way, the available bandwidth is used to
send the most important elements of the stream and the
least important elements are dropped.

The main advantage of PPS is to support fine-grain
dynamic adaptation over a variety of congestion control
protocols. PPS avoids the problems of trying to estimate
the target rate by monitoring the underlying transport
protocol’s sending rate, as is done in feedback-based
schemes [2] [11] [17]. Our implementation of PPS in the
Quasar video pipeline [23] [13] shows that PPS is good
for streaming stored video because it never
underestimates the available bandwidth, it ensures that
the buffered data is not delayed longer than some
threshold (determined by the window length), and it uses
a buffer for priority reordering which has the benefit of
smoothing video quality changes. Since PPS is a generic
approach based on very simple mechanisms, it is possible
to implement it with high efficiency and deploy it in
network nodes.

The reordering window in PPS introduces latency,
however, and this latency might be problematic for live
video streaming applications. The latency characteristics
of the video pipeline’s streaming mechanisms partially
determine the freshness of the video content. The
freshness of the video content, which is measured by the
end-to-end latency from a frame being captured to its

 2

display, tends to be important for live video streaming
applications.

Most live video streaming applications have
requirements for video freshness; in other words, they
have requirements for end-to-end latency. Some live
video applications, such as remote surgery and remote
control systems, have very stringent latency requirements
and cannot run on the Internet at all. Others can run on
the Internet but are difficult to deploy widely without
quality of service extensions in the core of the Internet.
High quality video-conferencing, which is interactive and
allows a maximum latency of 200 milliseconds, is an
example of an application that stresses the limits of the
current Internet. Yet others such as video surveillance
and live event broadcasting, which have relatively loose
latency requirements, could possibly run on the current
Internet with suitable choice of low-latency adaptation
mechanisms. Examples of surveillance applications and
live event broadcasting applications include remote child-
care monitoring that allows parents to watch their
children from work, automobile routing that allows the
detection of congested roadways through video sensors so
that drivers can reduce their travel time, environmental
observation systems that help scientists monitor physical
phenomena of the earth, unmanned aerial vehicles
equipped with cameras for military surveillance,
multicasting sport games that are unavailable through
local TV channels, and on-line lectures for distance
learning. These applications can tolerate latencies in the
range of half a second to a few minutes.

In this paper, we explore how much of a problem the
latency in PPS is for live video streaming and determine
the range of video surveillance applications it can
support. This paper describes how PPS can be extended to
support live video streaming, and evaluates the latency
implications of the approach. Our experiments show that
even with fairly rudimentary scalable video technology,
the latency due to adaptation in PPS can be reduced to as
little as 400 milliseconds while maintaining fine-grain
adaptation. This means that applications with a latency
tolerance of a half second can be supported using TCP-
friendly protocols on a coast to coast link in the US
(where propagation delay is typically less than 100
milliseconds).

This paper is organized as follows. Section 2
introduces the basic idea of PPS and describes how it
works for stored video streaming. Section 3 discusses the
problems of using PPS for live video streaming. Section 4
outlines a series of experiments for evaluating the latency
and adaptation granularity characteristics of PPS with
different reordering window sizes, and presents results.
Related work is discussed in Section 5. Finally, Section 6
concludes the paper and discusses future work.

2. PRIORITY-PROGRESS STREAMING FOR

STORED VIDEO

PPS is a time-window-based, adaptive streaming
protocol. PPS uses timestamps and priority labels to
perform adaptive streaming. A window in PPS contains
all data packets with timestamps within a certain period
of time. The window is called an adaptation window; and
the size of the adaptation window is the length of the time
period, not the number of packets or number of bytes in
this window. Data packets in an adaptation window are
sorted into priority order before transmission. PPS then
transmits these packets for the time duration of the
window only; at the end of the window duration, a timer
expires, unsent packets in the current window are
discarded and the next window starts streaming.
Dropping happens when the available bandwidth is less
than the data rate.

PPS is well-suited to video streaming, but it can be
used to stream any data flow that can be packetized such
that each data packet can be time-stamped and
prioritized.

2.1. Basic Streaming

Figure 1 shows an ideal example of PPS streaming with
sufficient bandwidth and constant delay. Data packets
with timestamps and priority labels are grouped into
windows in time order. Suppose the timestamps are in
milliseconds, and the window size is 100 milliseconds.
Within each 100-millisecond window, packets are sorted
and sent in priority order, assuming that a small number
represents a high priority. Packets in a window are sent
out as fast as possible. Hence, when PPS runs over TCP,
it can take full advantage of TCP’s burstiness. In this
example, we have 100 milliseconds to send out the data
in each window; and because the bandwidth is higher
than the data rate, there is spare time in the 100-
milisecond period. The spare time can be used for work-
ahead or bandwidth skimming [13]. Streaming with
insufficient bandwidth and with varying network delay is
discussed in Section 2.2.

Conceptually, PPS has three components: a sender, a
receiver, and a regulator, as shown in Figure 2. The
regulator has a clock for the sender and a clock for the
receiver. The sender clock tells the sender to start sending
a new window when the time for the current window is
over. The receiver clock tells the receiver when to stop
receiving the current window and push whatever it has
received for this window to the next stage in the pipeline.
Data from this window that arrives after this point in time
is considered to be too late for processing (i.e., the
window has already been committed to the decoder). To

 3

ensure that all data is not considered to be late at the
receiver, there is an offset between the two clocks.
Specifically, the receiver clock runs behind the sender
clock to account for processing and network propagation
delay. The regulator can adjust the offset to adapt to
variations in the network delay, as discussed in Section
2.2.

Figure 1 PPS Streaming

Figure 2 PPS Modules

The regulator can be part of the sender, part of the
receiver, or a separate component. In our experiments, it
resides on the receiver machine.

2.2. Adaptation

As shown in Figure 3, PPS can adapt to the available
bandwidth. If the bandwidth is lower than the data rate,
some data packets are unsent when the window time is
over. These data packets, which have low priorities, are
dropped. PPS makes efficient use of the limited
bandwidth by transferring the data packets with highest
priority first.

Figure 4 shows how PPS deals with increased delay
by asking the sender to send data earlier so that it has
more time to reach the receiver. When the receiver gets a
packet after its window’s deadline, it asks the regulator to
push forward the sender clock so the offset between the
sender clock and the receiver clock increases. The
increased offset accommodates the larger network delay.
If the delay decreases, PPS could either change back to
the old sending schedule to keep the receiver buffer fill-

level low, or keep the current schedule so as to prime the
receiver-side buffer in anticipation of future delay and
bandwidth variations.

Figure 3 Adaptation to Bandwidth

Figure 4 Adaptation to Delay (stored video)

In practice, bandwidth reduction and delay increase
often happen together. The two adaptation mechanisms
cooperate to match the varying network conditions.

2.3. Preparation for Video Streaming

In this section, we discuss packetization, timestamping,
and prioritization for video streams.

A video stream consists of video frames; the video
frames could be the data packets for PPS. However, how
the video frames are encoded determines the space for
adaptation. Scalable encoding is preferred because the
video stream can work at different data rates and we can

Sender

 1

Increased
delay

Black areas are
data arriving late

 4

Sending deadlines New sending deadlines

 3

 2

This window is
sent earlier so no
data is late

Receiving deadlines

PPS
Sender

PPS
Receiver

 Regulator

Sender Receiver

 1

 2

 3

 4

Sending deadlines Receiving deadlines

Just enough bandwidth
for the second window

Not enough bandwidth
for the third window.
The black area is
dropped low priority
data

Packets grouped
into windows Sender Receive

r

Packets in
priority order

Packets with
timestamps and
priority labels

33, 1

66, 3

100, 2

133,2

166,1

200,1

233,1

266,2

300,3

33, 1

100,2

66 ,3

166,1

200,1

133,2

233,1

266,2

300,3

33, 1

66, 3

100,2

133,2

166,1

200,1

233,1

266,2

300,3

Time-
stamp

Priority
Label

Sending deadlines Receiving deadlines

 4

achieve different quality levels under different network
conditions. The Quasar pipeline uses a scalable
compression format called SPEG (Scalable MPEG),
extending MPEG-1 video with SNR scalability [13]. Each
MPEG video frame is divided into four layers, in which
the base layer contains the most significant bits of the
DCT coefficients and the successive layers contain the
less significant bits. Each layer of an MPEG frame is
encapsulated in an SPEG packet.1

Video frames have inherent timestamps: the play
time. SPEG packets are given the timestamps of the
corresponding MPEG frames.

Prioritization exposes the video scalability to PPS in
a generic way, enabling PPS to do wise adaptation
without understanding the complex semantics of video
encoding. In the Quasar pipeline, prioritization reflects
temporal scalability and SNR scalability by reflecting
dependencies among SPEG packets. For example, the
base layer of an I frame has higher priority than the base
layers of any P frames that depend on it, and a base layer
has higher priority than the enhancement layers in the
same MPEG frame. However, dependencies decide only a
partial order among SPEG packets. For the importance of
the base layer of a P frame over an enhancement layer of
an I frame, Quasar’s prioritization mechanism takes into
account how much a user prefers frame rate over picture
signal to noise ratio (SNR). These user preferences are
provided to the Quasar pipeline in the form of utility
functions [23]. To reflect the importance of an SPEG
packet to the user and its importance in the video stream,
Quasar’s prioritization mechanism does not simply assign
a priority according to the frame type and layer; instead,
it uses a priority mapper [13] to calculate utility loss of
the whole adaptation window to the user, assuming a
particular packet is dropped. Then it decides the priority
for the packet based on the utility loss. This window-
based prioritization scheme results in many more priority
levels for a video stream than a one-frame-based
algorithm and hence supports much finer granularity
adaptation. The larger the window, the more priority
levels can be utilized. We combine some quality levels
that are indistinguishable by human eyes and we define at
most 16 priority levels at any given time in the Quasar
pipeline. Details of the algorithm can be found in our
earlier papers [13] [23].

SPEG is just an example scalable video format. It
illustrates the effects and benefit of PPS. Other scalable

1 At the time we developed SPEG there was no other openly available
scalable video encoding free of problematic licensing restrictions. We
developed SPEG in order to exercise our adaptation mechanisms. Since this
time new scalable video encoding approaches, such as MPEG-4 FGS [16],
have been developed. These new codecs have better compression efficiency
and finer-grain adaptation than SPEG and hence offer an even more
favorable platform for PPS.

compression formats such as MPEG-2 and MPEG-4 can
be streamed in a similar way. We also expect that more
scalability mechanisms will be available in the future,
such as spatial scalability of image size, chrome
scalability of color fidelities, content adaptation through
addition and removal of objects, and region-of-interest.
PPS can work well as long as prioritization can reflect the
scalabilities.

3. LIVE STREAMING

3.1. Adaptation for Live Video

Using PPS for live video introduces much more than
simply replacing the stored video file with a video
camera. A big difference between stored video and live
video is that live video has its own capture clock. Hence,
live video cannot be generated faster or slower than its
capture rate, while stored video can be read whenever it is
needed. This difference implies that the work-ahead
mechanism described in Section 2.1 for dealing with
increased delay cannot be used for live video. The capture
clock also introduces the notion of end-to-end latency,
which is the time from a frame being captured to its being
displayed. Reducing this end-to-end latency is a goal
specific to live video streaming.

Figure 5 Adaptation to Delay (live video)

In the work-ahead mechanism, increases in
propagation delay caused the sender to read-ahead in the
video file source, and hence increase its “work-ahead”—
the time difference between its clock and the receiver’s
clock. For live video, since it is not possible to “read
ahead”, we instead introduce delay at the receiver by
pushing back the receiving deadlines, as shown in Figure
5. When the receiver gets a late frame, the regulator
increases the offset between the sender clock and the
receiver clock by pushing back the receiver clock to allow

Sender

 1

Increased delay

Receiving
deadlines are put
off

Receiver

Sending deadlines Receiving deadlines

 3

 2

New receiving
deadlines

 5

the increased delay. In order to avoid causing burstiness
in the playback, modification of the receiving deadlines is
done gradually using a low-pass filter in the regulator.

Note that this mechanism is suitable for multicast
because each receiver can adjust its receiving deadlines to
compensate for its own network delay.

3.2. Latency for Streaming

The end-to-end latency from a frame being captured to its
display is the main concern for live streaming. For stored
video streaming, applications do require that frames
arrive on time for display, but it does not matter when the
frame is read from a file or how long it stays in buffers as
long as it is on time for display.

There are two main sources of latency: the end
machines and the network. Latency from the end
machines includes the processing time and the buffering
time on the sender and the receiver. On both the sender
and the receiver, the processing time does not vary much.
For example, the time for encoding, decoding, reordering,
and prioritizing is fixed unless we improve the algorithms
or switch to faster computers. Therefore we can assume
that in general that these times are fixed.

Two types of buffers contribute to the total buffering
time. Some buffers enable asynchrony among pipeline
components. For example, the capture buffer keeps raw
video frames from being dropped while the CPU is
occupied by encoding or prioritizing; similarly the display
buffer allows a smooth playback when a complex frame
takes longer than its display duration to decode. These
buffers need only be large enough to prevent the pipeline
from stalling. The other type of buffer permits adaptation.
The time spent in these buffers is determined by the
adaptation window size, which is an adjustable PPS
parameter. The latency of the network segment is
something that we adapt to and cannot control.

Ignoring the latency sources that are independent of
PPS, the end-to-end latency due to adaptation buffers is
the sum of the adaptation window size and the
transmission time, as shown in Figure 6. For PPS
adaptation, the last packet in the window is delayed on
the sender side for the whole window time but not
delayed at all on the receiver side. Similarly, the first
packet in the window is delayed on the receiver side but
not at all on the sender side. All of the frames in between
are delayed both on the sender and the receiver, but the
total delay is always one window time. The transmission
time is related to the window size in two ways. When the
bandwidth is higher than the data rate, the transmission
time is proportional to the amount of data in a window,
which is proportional to the window size. When the
bandwidth is lower than the data rate, the window size is
the transmission time for this window, according to the

PPS streaming algorithm (since transmission continues
for the entire duration of the window before data is
dropped).

Figure 6 End to End Latency

In summary, for the normal case when bandwidth is
limited, the latency inherent in PPS is generally twice the
window size. Thus, tuning the adaptation window size is
the key to tuning the end-to-end latency. For low latency
streaming, a small window size is preferable. However, a
small window size makes fine-grain adaptation difficult
and eventually impacts video quality. This is because
adaptation happens within a window, i.e. a smaller
window provides fewer droppable data units and fewer
priority levels for adaptation.

4. EXPERIMENTS

We have implemented the live Quasar pipeline by
extending PPS for live streaming and substituting the
MPEG source and the SPEG transcoding components of
the pipeline with a camera, a capture card, and a software
SPEG encoder. The capture card we use is a WinTV card
from Hauppauge. The SPEG encoder is based on ffmpeg
[8], an open source encoder that can encode in real time.
We modified ffmpeg to implement SPEG’s SNR layering
strategy and to produce SPEG output directly to the live
Quasar pipeline.

The live Quasar pipeline runs on Linux Mandrake
8.1. The sender and the receiver are two Pentium III
930MHz machines. The transport protocol we use is TCP.
To minimize the influence of non-adjustable latency
sources, we run the pipeline on a private LAN without
any competing traffic. We also maintain minimum buffer
fill levels that allow the pipeline to run smoothly. To feed
a similar video stream for different runs, we point the
camera at a static object. Thus the adaptation window
size is the main control variable in the experiments.

We observe the adaptation effect through the video
quality on the receiver side and through the gscope
software oscilloscope [9], which is a time-sensitive
visualization tool that shows the bandwidth usage, buffer

Window size +
transmission time

Sender Receiver Camera Display

 6

fill level, clock offset adjustment, end-to-end latency, and
other useful signals in real time.

In the following subsections, we concentrate on the
relationships between end-to-end latency, the adaptation
window size, and the adaptation granularity. We use the
adaptation granularity as an indication of the
effectiveness of the adaptation. The adaptation
granularity determines how closely a pipeline can utilize
a given level of resource capacity, which is bandwidth in
our experiments.

4.1. Measurement of the end-to-end Latency

We designed a novel method for measuring the real end-
to-end latency including all aspects of the pipeline and
I/O for capturing and displaying. We point a camera at a
watch, capture a video of the watch on the sender, stream
the video over the LAN, and show the watch video on a
receiver; we use a second camera to take a picture of both
the real watch and the displayed watch. Figure 7 is such a
picture. The time difference in these two watch images is
the latency of the whole pipeline. This is the most
conservative way of measuring latency in the sense that it
includes the latency in the camera and display hardware,
which are not under our control.

Figure 7 Measure the End to End Latency

However, the above method is inconvenient for
quantitative analysis. In the following experiments, we
measure the end-to-end latency by recording the time at
which a frame enters the capture buffer and the time at
which it leaves for the graphic display library. The
timestamp of a frame entering the capture buffer is
transmitted to the receiver with the frame itself; the
receiver gets the current time when sending a frame to
display and compares the current time with the
accompanying timestamp. The clocks on the sender and
the receiver are synchronized through the Network Time
Protocol (NTP).

4.2. Latency vs. Adaptation Window Size

Figure 8 shows the relationship between the latency and
the adaptation window size. As expected, the latency
grows with the window size. From Figure 8 we can see
that when the adaptation window size is less than 167
milliseconds, the latency from adaptation, plus processing
and necessary buffering, is well below 400 milliseconds.
In the real world, the end-to-end latency also includes the
network propagation delay and transmission time.

0

200

400

600

800

1000

1200

0.
0

33
.4

66
.8

10
0.

2
13

3.
6

16
7.

0
20

0.
4

23
3.

8
26

7.
2

30
0.

6
33

4.
0

36
7.

4
40

0.
8

43
4.

2
46

7.
6

50
1.

0
53

4.
4

Window size (ms)

la
te

nc
y

(m
s)

Figure 8 Latency vs. Adaptation Window Size

The latencies shown in Figure 8 are measured for an

intra-encoded video stream. We also measure the
latencies for inter-encoded video streams with GOP sizes
chosen in such a way that frames in one GOP do not cross
the window boundary. We find that the latencies for
inter-encoded streams are very close to those for the intra-
encoded stream and the GOP size has little impact on the
end-to-end latency. The window size is the determinant
factor for latency.

4.3. Latency for Streaming

Each window size can deliver a certain number of
possible quality levels. These quality levels range from
full quality, when all packets of the window are delivered,
to zero quality when none is delivered. Between these two
extremes lie a number of quality levels, one for each
priority, whose bandwidth requirements can be
represented as a percentage of the full quality video
bandwidth. As discussed in Section 2.3, the number of
priority levels and their corresponding bandwidth
percentages depend on the scalability of the video stream,
the window size, and the user preferences.

In Figure 9, Figure 10, and Figure 11, we show
samples of quality levels available for different window
sizes and user preferences. Each symbol + in the plot area
represents a quality level. The x value of the symbol is the

 7

window size in which that quality level is available; the y
value of the symbol is the percentage of the full quality
video bandwidth for that quality level. Figure 9 shows the
available quality levels when a user prefers temporal
quality and SNR quality equally; Figure 10 shows the
available quality levels when a user prefers the maximum
temporal quality; and Figure 11 shows the available
quality levels when a user prefers the maximum SNR
quality.

Ideally, for each window size there should be many
available quality levels and their bandwidth percentages
should be evenly distributed in order to closely match the
varying network bandwidth. However, the scalability of
video encoding and the window size determine how many
prioritizable and independently droppable units are in a
window and the sizes of these units determine the
distribution of bandwidth percentage for quality levels.
For the window size of 33.4 milliseconds, each window
includes only one MPEG frame at NTSC rate. If no
scalability is introduced, there is only one droppable unit
in the window and there is only one quality level
whatever the user preference is. If we double the frame
rate (or double the window length), we introduce some
temporal scalability and there are two MEPG frames in
the window thus two droppable units and two quality
levels. If we introduce SNR scalability into MPEG by
using SPEG encoding and hence there are four SPEG
packets in the window so there are four droppable units
and at most four quality levels.

0

10

20

30

40

50

60

70

80

90

100

0.0 33.4 66.8 100.2 133.6 167.0 200.4 233.8 267.2 300.6 334.0 367.4 400.8 434.2 467.6 501.0 534.4
Window size (ms)

%
 B

an
dw

id
th

Figure 9 Adaptation Granularity vs. Window Size

(Neutral Preference)

0

10

20

30

40

50

60

70

80

90

100

0.0 33.4 66.8 100.2 133.6 167.0 200.4 233.8 267.2 300.6 334.0 367.4 400.8 434.2 467.6 501.0 534.4

Window size (ms)

%
 B

an
dw

id
th

Figure 10 Adaptation Granularity vs. Window Size

(Prefer Temporal Quality)

0

10

20

30

40

50

60

70

80

90

100

0.0 33.4 66.8 100.2 133.6 167.0 200.4 233.8 267.2 300.6 334.0 367.4 400.8 434.2 467.6 501.0 534.4

Window size (ms)

%
 B

an
dw

id
th

Figure 11 Adaptation Granularity vs. Window Size

(Prefer SNR Quality)

In order to minimize latency, we need to minimize
the window size while maintaining a large enough
number of evenly distributed quality levels to enable fine-
grain adaptation. For SPEG, a window size of 133.6
milliseconds seems to be a good choice, since it has more
than 10 quality levels and allows the pipeline to achieve
relatively low, less than 400 milliseconds, total end to end
latency. However, SPEG has only two dimensions of
quality adaptation, the temporal adaptation and the SNR
adaptation; and the SNR adaptation is relatively coarse-
grained. Thus, any results obtained with SPEG could
easily be improved with scalable video encodings that
provide finer granularity scalability. With improved
scalable video encoding, PPS could easily support
interactive streaming with a latency requirement of under
200 milliseconds.

 8

5. RELATED WORK

Streaming video over the Internet involves many research
areas: video compression, adaptive streaming, media
synchronization mechanisms, application level error
control, media streaming transport protocols, and so on.
Wu et al. have written a comprehensive survey of video
streaming approaches and directions in their paper [25].
Vandalore et al. give a detailed survey of application level
adaptation techniques [24]. Our work concentrates on
adaptive streaming mechanisms.

A common approach to adaptive live streaming is to
monitor network conditions using feedback-based
mechanisms such as RTCP receiver reports [2] and adjust
video encoding parameters on the fly [17] so that the rate
of the encoded video stream matches a dynamically
determined target bandwidth. A key advantage of this
approach is compression efficiency – the video encoder is
able to optimize video quality for the given target
bandwidth. Another advantage is its support for fine-
grain adaptation – the target bandwidth can be chosen
from a continuous range. A third advantage is low latency
– adaptation can be performed without reordering data.
The main disadvantages of the approach are its inability
to satisfy conflicting requirements of heterogeneous
receivers in a simulcast or multicast distribution network,
the difficulty of tuning encoding parameters to achieve
optimal video quality for a certain video rate, and the
difficulty of tuning the feedback control to determine the
suitable and accurate target video rate. If the target video
rate is chosen incorrectly it will either result in network
underutilization, congestion, or increased delay.

PPS takes an alternative approach based on scalable
video encoding and priority dropping. Instead of
dynamically manipulating encoding parameters, video is
encoded ahead of time using a scalable encoding
approach. This approach allows a wide range of
scalability of the video rate, but at the expense of some
compression efficiency. Adaptation is supported in PPS
by prioritizing data in the scalable video stream and
dynamically dropping data in priority order in order to
match the target bandwidth. PPS’s sending strategy does
not rely on complex control models and is independent of
receiver feedback. Instead, it allows an underlying
congestion control protocol, such as TCP or any of the
TCP-friendly streaming protocols [19] to determine the
appropriate sending rate. Whatever that rate is, PPS sends
video packets in priority order from a window as fast as
possible. The packets that remain unsent when the time
for the window is up are discarded and PPS moves to the
next window. In this way, a high-bandwidth receiver gets
more data than a low-bandwidth receiver for each
window; but they do not interfere with the sending
strategy. They both get the best possible video quality

under their bandwidth limitations because for either
receiver, the data packets received are more useful than
those discarded, and the maximum possible bandwidth is
used while preserving TCP-friendly behavior. A key
advantage of this approach is the simplicity of the
mechanisms and the ability to support heterogeneous
simulcast distribution efficiently.

Feng et al. describe a video streaming algorithm [7],
which is the closest approach to PPS described in the
literature. As with PPS, it is a window-based algorithm
that does priority dropping. However, in Feng’s approach
the window slides instead of jumping and, more
significantly, the algorithm requires a priori information
from stored video, which is not available for live
streaming.

Miao et al. have designed an algorithm called
Expected Run-time Distortion Based Scheduling
(ERDBS) [18]. It is actually an adaptive streaming
algorithm combined with selective retransmission, based
on a sliding window. Like PPS, it decides the importance
of a packet within the context of the whole window and
sends the most important packets first, and it does not
depend on any a priori information of the video. Unlike
PPS, which considers user preferences when deciding the
importance of packets, ERDBS considers the probability
of packet loss and the probability that a retransmission
allows a packet to arrive on time. It also recalculates the
importance after each frame is sent out.

Kang and Zakhor have also designed a sliding
window based reordering algorithm [12]. The sliding
window size is chosen to make optimum use of the
receiver’s buffer. When deciding the importance of
packets, they discriminate motion fields from texture
fields. They assume fixed round trip time and an error-
free feedback channel.

Rejaie et al. propose layered quality adaptive
streaming, which adapts to varying bandwidth by adding
or dropping layers [21]. They do a detailed analysis of
buffer allocation to minimize latency. Their analysis is
based on a rate-based congestion control mechanism
called RAP rather than TCP [19]. Feamster et al [5]
extend their analysis to Binomial congestion controls.
Their algorithm assumes a layered-encoded stream. PPS
can work with any of the TCP friendly congestion control
protocols, including TCP itself, and with any of the
scalable encoding schemes including layered-encoding.
Unlike PPS, Rejaie et al.’s approach needs
complementary error control mechanisms [6] [20].

The two main commercial video streaming systems,
Windows Media [1] and Real System [3], use multi-
coding for adaptive streaming. Multi-coding combines
into one stream several video streams from the same
content but with different bit-rates. This allows the server
to switch to an appropriate stream as bandwidth changes.

 9

PPS needs only one encoding for the same content, and
hence is more efficient, enabling more scalable servers
and proxy caches.

In addition to the experimental system described
here, the live Quasar video pipeline is also used in project
Timber [22], in which the video server is located on a
robot vehicle.

6. CONCLUSION AND FUTURE WORK

Priority progress streaming offers a generic and efficient
approach to fine-grain adaptive streaming for stored
source applications. However, it implies increased latency
for reordering data into priority order prior to
transmission and reordering back to time order after
transmission. In this paper we explored the real world
impact of this reordering latency for live-source video
pipelines. We showed that even for relatively coarse-
grained scalable video encoding approaches reordering
latency can be reduced to under 400ms, bringing the
approach well within the realm of many live source video
applications, such as video surveillance, and approaching
the realm of interactive applications. As finer granularity
video encoding approaches become available, the same
level of fine-grain adaptivity will be available using even
smaller reordering windows and interactive applications
such as video conferencing will be easily supported using
PPS.

We plan to use PPS to stream media with new types
of scalability along with the temporal scalability and the
SNR scalability we already support. We are also looking
into approaches to reduce non-adaptation-related latency.
We have implemented a real-rate scheduler, that reduces
the buffer space required between pipeline components
[4], and a low latency TCP that integrates congestion
window and socket buffer management in order to reduce
application-perceived network latency [10].

7. REFERENCES

[1] B. Birney. Intelligent Streaming.

http://msdn.microsoft.com. October 2000.
[2] J.-C. Bolot and T. Turletti. Experience with control

mechanisms for packet video in the Internet. ACM
SIGCOMM Computer Communication Review, vol. 28,
pp. 4--15, January 1998.

[3] G. Conklin, G. Greenbaum, K. Lillevold, and A. Lippman.
Video Coding for Streaming Media Delivery on the
Internet. IEEE Transactions on Circuits and Systems for
Video Technology, 11(3), March 2001.

[4] David Steere, Ashvin Goel, Joshua Gruenberg, Dylan
McNamee, Calton Pu, and Jonathan Walpole. A feedback-
driven proportion allocator for real-rate scheduling. In
Proceedings of the Third USENIX Symposium on

Operating Systems Design and Implementation. USENIX,
February 1999.

[5] N. Feamster, D. Bansal, and H. Balakrishnan. On the
Interactions between Layered Quality Adaptation and
Congestion Control for Streaming Video. In 11th
International Packet Video Workshop (PV2001), Kyongiu,
Korea, April 2001.

[6] N. Feamster and H. Balakrishnan. Packet Loss Recovery
for Streaming Video. 12th International Packet Video
Workshop (PV2002), Pittsburgh, PA, April 2002.

[7] W. Feng, M. Liu, B. Krishnaswami, and A. Prabhudev. A
Priority-Based Technique for the Best-Effort Delivery of
Stored Video. In Proceedings of SPIE/IS&T Multimedia
Computing and Networking, San Jose, California, January
1999.

[8] http://ffmpeg.sourceforge.net/
[9] Ashvin Goel and Jonathan Walpole. Gscope: A

Visualization Tool for Time-sensitive Software. In
Proceedings of the Freenix Track of the 2002 UNSENIX
Annual Technical Conference, June 2002.

[10] Ashvin Goel, Charles Krasic, Kang Li, and Jonathan
Walpole. Supporting Low Latency TCP-based Media
Streams. In Proceedings of the Tenth International
Workshop on Quality of Service (IWQoS), May 2002.

[11] S. Jacobs and A. Eleftheriadis. Streaming Video Using
Dynamic Rate Shaping and TCP Congestion Control.
Journal of Visual Communication and Image
Representation, 9(3), 211-222, 1998.

[12] Sang H. Kang and Avideh Zakhor. Packet Scheduling
Algorithm for Wireless Video Streaming. 12th
International Packet Video Workshop (PV2002),
Pittsburgh, PA, April 2002.

[13] Charles Krasic and Jonathan Walpole. QoS Scalability for
Streamed Media Delivery. CSE Technical Report CSE-99-
011, Oregon Graduate Institute, September 1999.

[14] Charles Krasic and Jonathan. Walpole. Priority-Progress
Streaming for Quality-Adaptive Multimedia. In
Proceedings of the ACM Multimedia Doctoral
Symposium, Ottawa, Canada, October 2001.

[15] Charles Krasic and Jonathan Walpole. Quality-Adaptive
Media Streaming by Priority Drop. CSE Technical Report
CSE-02-015, Oregon Graduate Institute, December 2002.

[16] Weiping Li. Overview of Fine Granularity Scalability in
MPEG-4 Video Standard. IEEE Transaction on Circuits
and Systems for Video Technology, VOL. 11, NO. 3,
March 2001.

[17] H. Liu and M.E. Zarki. Adaptive source rate control for
real-time wireless video transmission. Mobile Networks
and Applications, 3:49--60, 1998.

[18] Zhourong Miao and Antonio Ortega. Expected Run-time
Distortion Based Scheduling for Delivery of Scalable
Media. 12th International Packet Video Workshop
(PV2002), Pittsburgh, PA, April 2002.

[19] R. Rejaie, M. Handley, and D. Estrin. RAP: An End-to-
End Rate-based Congestion Control Mechanism for
Realtime Streams in the Internet. In Proceedings of IEEE
INFOCOM, volume 3, page 1337-1345, New York, NY,
March 1999.

 10

[20] R. Rejaie. On Design of Adaptive Internet Streaming
Applications: an Architecture Perspective. IEEE
International Conference on Multimedia and Expo
(ICME), New York, NY, July-August 2000.

[21] R. Rejaie, M. Handley, and D. Estrin. Layered Quality
Adaptation for Internet Video Streaming. IEEE Journal on
Selected Areas of Communications (JSAC), Special issue
on Internet QoS, Winter 2000.

[22] http://www.cse.ogi.edu/PacSoft/projects/Timber/accomplis
hments.htm

[23] Jonathan Walpole, Charles Krasic, Ling Liu, David Maier,
Calton Pu, Dylan McNamee, and David Steere. Quality of
Service Semantics for Multimedia Database Systems.
Appears in Database Semantics: Semantic Issues in
Multimedia Systems. Edited by Robert Meersman, Zahir
Tari and Scott Stevens, Kluwer Academic Publishers,
January 1999.

[24] B. Vandalore, W. Feng, R.Jain, and S. Fahmy. A Survey
of Application Layer Techniques for Adaptive Streaming
of Multimedia. Journal of Real Time Systems (Special
Issue on Adaptive Multimedia). January 2000. B.
Vandalore, W. Feng, R.Jain, and S. Fahmy. A Survey of
Application Layer Techniques for Adaptive Streaming of
Multimedia. Journal of Real Time Systems (Special Issue
on Adaptive Multimedia). January 2000.

[25] Dapeng Wu, Yiwei Thomas Hou, Wenwu Zhu, Ya-Qin
Zhang, and Jon M. Peha. Streaming Video over the
Internet: Approaches and Directions. IEEE Transaction on
Circuits and Systems for Video Technology, VOL. 11,
NO. 3, March 2001.

	Adaptive Live Video Streaming by Priority Drop
	Let us know how access to this document benefits you.
	Citation Details

	Adaptive_Live12.PDF

