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Abstract 

This study reports the first successful statistical „crossdating‟ among many ring width time 

series from petrified wood, thus providing a replicable continuous annual resolution window into 

tree growth and environmental influences during the middle Miocene. The petrified samples, of 

the genus Quercus, originated at the Stinking Water (SW) locality in Oregon, a Miocene-aged 

exposure associated with the Columbia River Basalts. 
40

AR/
39

AR dating on pillow basalt from 

the locality yielded a weighted Plateau Age of 13.79 ±0.09 Ma placing the death of the trees at 

the end of the Langhian Stage of the Middle Miocene (15.97±0.05 to 13.65±0.05 Ma), during the 

middle Miocene Climate Transition (MMCT). Ring width time series from 26 radii, 17 different 

trees, show significant intercorrelation. A Modified Coexistence Approach was applied to 

determine the likely climate range when the SW trees were growing. The modified approach 

included regression of site-mean ring width time series statistic values on estimated soil moisture 

for the site locations, using site-mean data from 126 modern Quercus sites from across the 

United States. Identification of highly significant linearities indicated strong relationships 
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between ring width intercorrelation and soil moisture and ring width variability and soil 

moisture. Comparison of individual modern site-mean statistical values with values calculated 

for the SW locality suggests a mesic growing environment for the SW Quercus, with moderate 

temperatures. Geographic placement of modern Quercus sites with site-mean statistics similar to 

the SW values indicates a modern analogue in the eastern United States. Modern distributions of 

mesic species in the genera present at the SW locality suggest similarities with the central and 

southern Appalachian Mountains and the Ozark/Ouachita Mountains, indicating a mean annual 

temperature range of  10 ˚C to  15 ˚C and a mean annual precipitation range of  750 mm to 

 1200 mm when the SW Quercus were growing. 

1. Introduction 

Many studies of rings in petrified wood have used growth ring related information as 

indications of environmental conditions present at the time when the trees were growing. The 

presence of regular growth ring formation has been taken to indicate growth seasonality or 

paleolatitude (Creber, 1977; Creber and Francis, 1999). Statistical characteristics of the growth 

rings have been used to determine the average annual radial growth and aspects of the 

paleoenvironment when the tree was growing, especially the mean ring width (e.g. Creber, 1977; 

Creber and Chaloner, 1985; Ammons, 1987; Morgans, 1999; Morgans and Hesselbo, 1999; 

Brison et al., 2001; Falcon-Lang et al, 2004; Taylor and Ryberg, 2007; Brea et al., 2015) and 

mean sensitivity, a measure of the relationship between tree growth and climate (Ammons, 1987; 

Morgans, 1999; Morgans and Hesselbo, 1999; Falcon-Lang, 2003; Falcon-Lang et al., 2004; 

Taylor and Ryberg, 2007; Davies-Vollum et al., 2011; Brea et al., 2015).   

Formation of tree rings requires the slowing or cessation of radial tree growth followed by 

growth increase or resumption. Most tree rings are formed as a response to seasonal changes in 
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climate, usually to changes in temperature. The modern causes of ring formation are assumed to 

have held for the distant past, such that the regular formation of rings in petrified wood is 

interpreted as evidence of an annual cycle of climatic seasonality (e.g. Creber and Chaloner, 

1985). Recognizing the presence of growth rings in petrified wood requires preservation of 

structural details across the tree‟s radius, and the degree of preservation in petrified wood varies 

from almost perfect preservation of the cellular and subcellular features of the xylem to complete 

loss of all features. Preservation of cellular and subcellular details in petrified wood is thought to 

require rapid burial under anaerobic conditions (e.g. below the water table), an environment that 

retards decomposition and allows minerals to precipitate in open spaces in the xylem (Poole et 

al., 2004).  

Accuracy in determining average tree growth characteristics from tree ring widths, and by 

extension environmental information related to the tree growth/climate relationship, requires 

estimation of the site mean ring width values (Fritts, 1976, p23), requiring at least some evidence 

of contemporaneous growth between the wood specimens (Creber and Chaloner, 1985). Further, 

short ring width time series are unlikely to provide an accurate estimate of the mean growth, 

because tree ring-width variability within individual trees varies through time. Similarly, 

interannual variability in the ring width relationships between contemporaneous trees is highly 

variable, ensuring that time series statistics calculated from ring width measurements on any 

individual specimen are likely to depart from the theoretical mean for all trees growing at a tree 

site. An accurate ring width site mean, one that captures a high proportion of the variability in 

common between the trees, requires ring width information from multiple trees and many rings; 

the number being dependent on factors such as the genus and the sensitivity of the tree growth to 

climate change. In addition, some ring width time series statistics (e.g. intercorrelation and 
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expressed population signal) require statistical crossdating (e.g. crossmatching) of the ring width 

time series before they can be calculated. 

Can crossdating of ring width time series from petrified wood provide additional or more 

accurate estimates of growth or climate information? Creber and Chaloner (1987) indicated that 

crossmatching (crossdating) is not necessary in paleo contexts if the petrified wood is in situ, 

evidence of contemporaneity, because the intention is to recover a “general indication of the 

climatic environment". They further state that the paleo wood identity is only being expressed at 

the generic level, and that therefore “no knowledge of its precise response to the climatic 

environment is available.” Since that time the Coexistence Approach, based on the presence of 

multiple genera with “nearest living relatives” preserved at the same time at the same site, has 

been developed to gain more specific information about the growth environments (Mosbrugger 

and Utescher, 1997; Utescher et al., 2014). If petrified specimens are determined to be preserved 

in the growth position, and a Coexistence Approach can be applied, then what is to be further 

gained by crossdating, beyond absolute proof of contemporaneity?   

First, crossdating allows identification of a common interannual growth pattern, thereby, 

providing clear evidence for the climate influence on the tree growth beyond seasonal growth 

cessation. Ring width statistics calculated on non-crossmatched individual time series will 

always include an unknown proportion of the ring width variability that is not attributable to 

climate, thereby overestimating or underestimating the true climate influence on the tree growth. 

Second, the strength of the crossdating is itself sensitive to climate, and provides additional 

evidence of the influence of the climate on the tree growth. Third, if enough specimens can be 

significantly crossdated, then the strength of the common signal can be assessed and compared 

with a hypothetically perfect mean time series based on an infinite number of trees, a statistic 
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called the Expressed Population Signal (EPS; e.g. Cook and Kairiukstis, 1990). The sample 

depth required to capture an acceptable proportion of the hypothetically perfect common signal 

can then be determined (Wigley et al, 1987). Any time series statistics calculated using the 

portion of the crossmatched time series that exceeds the EPS threshold provide the best estimate 

of the mean values for the entire population. Finally, comparison of site-mean time series 

statistical values from paleo specimens with the same statistic from for the same genus from 

many modern sites may indicate modern environments where the tree growth has similar 

characteristics.  

Dendrochronology, the science of “tree time”, holds crossdating (crossmatching) of ring 

width patterns between trees as its most important principle (e.g. Fritts, 1976; Fritts and 

Swetnam, 1989; Cook and Kariukstis, 1990). Crossdating of tree ring widths provides evidence 

of a variable inter-annual growth pattern in common between the trees, a pattern that is 

independent of any longer term trends in growth and establishes the absolute contemporaneity of 

the crossdated tree rings. Crossdating of tree ring-width time series for environmental assessment 

is usually quantified statistically, through simple linear regression of the individual ring width 

time series, with significance being determined using correlation coefficients or t-scores (e.g. 

Cook and Kairiukstis, 1990). Ring-width time series of 50 to over 200 years (e.g. Sequoia 

gigantea) are required to reach a statistically significant result that exceeds all spurious matches, 

with the number of years required being dependent on the amount of interannual variability. 

The earliest known attempt at crossdating of ring widths in permineralized wood was 

reported by Andrew Ellicott Douglass (1936), the astronomer who developed the science of 

dendrochronology, when he analyzed specimens from Yellowstone National Park, USA. While 

the methods used by Douglass were theoretically and statistically sound, his study of 
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permineralized wood from this site was ultimately unsuccessful. Since then the few studies that 

have reported absolute contemporeneity based on tree ring width evidence amoung multiple 

specimens of petrified wood (Ammons et al., 1987; Kumugai and Fukao, 1992) did so without 

adequate statistical support. Ammons et al. (1987) based their conclusions on visual comparisons 

of mean ring widths between specimens (which the authors called “ring correlations”, language 

that incorrectly implies regression statistics.) The authors did recognize the need for true cross-

correlation, but did not apply the technique because of “partly-overlapping, relatively short 

records”. Kumugai and Fukao (1992) applied cross-correlation to time series from 

permineralized wood, but the results were immediately called to question for a lack of 

appropriate statistical pretreatment of the time series; no detrending and prewhitening 

(Yamaguchi and Grissino-Mayer, 1993). Detrending and prewhitening are necessary 

prerequisites to cross-correlation of tree-ring width time series, because low frequency trends of 

biological origin are present in most tree-ring time series (Fritts, 1976), often resulting in 

spurious significance in the correlation coefficients. In an excellent recent study, Brea et al. 

(2015) used what they termed dendrochronological techniques, but their techniques did not 

include statistical crossmatching, the guiding principle of dendrochronology. In this case 

crossmatching would not have been possible, because the average number of measured rings per 

specimen was less than 20. Currently, the only reported crossdating of petrified wood using 

dendrochronological criteria, including detrending and normalization, is between two specimens 

out of nine analyzed from the Florissant Fossil Beds National Monument, Colorado (Gregory, 

1992). Regression of these specimens yielded a correlation coefficient of r = 0.57 for a common 

period of 180 years. 
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The study described herein involves application of classic dendrochronological 

techniques in analyses of Miocene-aged specimens originating at a locality called Stinking Water 

(SW) at the south end of the Stinking Water Mountains in southeastern Oregon, USA. Deposits 

at the SW locality are part of widespread but variable Miocene volcanism in eastern Oregon, 

where lavas associated with the Columbia River Flood Basalt Province are the most voluminous 

(Camp, 2013; Camp et al., 2013). The SW deposits are correlated with basaltic lavas of the Tba 

unit of Green et al. (1972), appearing west of the SW fossil locality and overlying rhyolites of 

the ~15-16 Ma Buchanan dome complex (Large and Streck, manuscript in preparation). The 

fragmentary nature of the SW basalt, including pillow basalt forms, and the remarkable 

preservation of the petrified wood, suggests a relatively quiescent interaction with water before 

encasement of the trees. Entombment of many stems in vertical orientation amoung ash and 

pillow basalts, with very little deformation during preservation, indicates in situ preservation. 

The region around the Stinking Water Mountains is known for high quality paleobotanical 

specimens, including two type locations, Locality P4120 and Locality P4006, where fossil leaves 

and fruit have been described together as the Stinking Water Flora (Chaney and Axelrod, 1959). 

The SW petrified wood locality is within 12 kilometers of the type locations, and was included in 

the same publication as Locality P4007 (Chaney and Axelrod, 1959). Chaney and Axelrod 

(1959) believed that all three localities were contemporaneous, but their assumption has not yet 

been verified.  

Microscopic inspection of the Stinking Water petrified wood reveals remarkable 

preservation of the rings and cellular structure of the wood (Fig. 1), allowing clear identification 

of the tree genera. Dr. Herbert L. Hegert, a chemist and paleobotanist with the forest products 

company Rayonier, was the first to identify the SW genera, recognizing Quercus, Carya, Ulmus, 
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Fraxinus, and Picea (Chaney and Axelrod, 1959). Existence of these genera amoung the SW 

specimens was confirmed. Additional genera present included Populus, Juniperus, Juglans and 

Metasequoia. Specimens recovered over the years at the SW locality were dominantly Quercus, 

with the White Oak group being the most numerous, the Red Oak group only slightly less so.  

 

Fig. 1 190mm (full width) 

 

This study tests three sequential hypotheses. First, can measured ring width time series 

from the extremely well preserved permineralized Quercus specimens originating at the SW 

locality be statistically crossmatched? Second, if statistical crossmatching is possible, then is the 

composite signal strength robust enough to provide reliable information about site-mean 

measures of radial growth? Third, if the site-mean radial growth can be reliably estimated, then 

can characteristics of the Miocene paleo-environment at the SW locality be estimated by 

comparing the SW ring width time series statistics with the same statistics from modern 

Quercus? 

 

2. Materials and Methods 

2.1 Materials 

The SW permineralized wood locality is in east central Oregon at the south end of the 

Stinkingwater Mountains. A 1984 newspaper interview of a resident who visited the site in 1938 

indicates that there were many vertical stems at that time extending 2-5 feet (0.6-1.5 m) above 

the entombing volcanics (Allen, 1984). All easily accessible specimens had been removed by the 

mid-1960s (Gail, 1967), but cut and polished petrified wood specimens from the SW locality are 
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on display at various museums, can be found in many private collections and are often offered 

for sale at gem and mineral shows. Sources of the SW specimens for this study included the Herb 

Zuhl Museum at New Mexico State University in Las Cruces, New Mexico, the Rice Northwest 

Museum of Rocks and Minerals in Hillsboro, Oregon, and private collectors and dealers who 

agreed to bring specimens to the 2013 and 2014 Tucson Gem and Mineral Shows, in Tucson, 

Arizona, USA.  

Most of the samples examined during this study came from sections of stems removed in 

later years from below the current ground surface, and, according to the collectors who recovered 

some of the specimens or witnessed the recovery, this sometimes involved removal of the 

permineralized stems to a depth of up to 3 meters. Interviews and photographic evidence indicate 

that the specimens were removed vertically from the volcanic layer through the original holes 

formed by the tree stems during their entombment, using tripods and block and tackle or similar 

equipment. The current depth from the surface to the original Miocene forest floor ranges from 

zero, in areas where root boles are in evidence, to as much as 4 meters. All the specimens 

measured in this study had been cut along the transverse plane (cross-section) and were highly 

polished. Cut and polished samples from the SW locality are generally recognizable to the 

trained eye, by their characteristic coloration and lack of deformation, and by the remarkable 

preservation of cellular and even subcellular details (Fig. 1).  

 

2.2 Methods 

2.2.1 Sample Identification and Processing 

The genus Quercus was identified from amoung the SW specimens based on 

characteristics visible on the transverse surface, including a ring porous architecture and the 
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presence of both wide and narrow rays (uniseriate and multi-seriate; e.g. Esau, 1960, Hoadley, 

1990). Specimens from both the Red Oak and White Oak groups are in evidence among the 

Stinking Water specimens, a categorization dependent on the number of tyloses in the earlywood 

vessels of the heartwood (few to none in the Red Oak group, abundant in the White Oak group) 

and the size of vessels in the latewood (abrupt transition to small vessels in the White Oak 

Group) (e.g. Esau, 1960, Hoadley, 1990). Members of the Red Oak and White Oak groups are 

commonly found growing together in modern settings and apparently have similar responses to 

climate (e.g. LeBlanc and Therrell, 2011).  

A few specimens identified as live oak (evergreen oak) have also been recovered from 

the SW locality. Unlike most Quercus, live oaks are diffuse porous, with solitary vessels in 

roughly linear arrangement along the cell files. The rays are both uniseriate and multiseriate, 

with a clear separation in the widths of the two groups, and the growth ring banding is indistinct 

(Hoadley, 1990). Distinguishing the tree ring boundaries in the permineralized specimens of live 

oak was not possible because of the indistinct growth rings. 

Ring widths on each specimen, a total of 26 time series from 17 different Quercus stems 

(trees), were measured to a resolution of 0.001 mm on one or sometimes two radii using either 

Henson® or Velmex UniSlide® measuring stages. Ring width measurements were made at the 

Laboratory of Tree-Ring Research, Tucson, Arizona, at the museums, or at the homes of the 

collectors. Most of the SW specimens analyzed for this study are currently in the possession of 

museums, researchers, collectors and dealers.  

 

2.2.2 Statistics and Climate data 
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Common patterns between the SW ring-widths were investigated through visual 

comparisons and then through regression of the ring width time series. Statistical crossdating was 

confirmed using COFECHA (Holmes, 1983). From this point forward the term “crossmatching” 

is used in this manuscript instead of “crossdating” when referring to the SW samples, because a 

calendar year can never be assigned to the match. “Crossmatching” therefore refers to 

statistically significant non-spurious correlation coefficients from regressions amoung detrended 

SW ring width time series.   

Chronology production proceeded by detrending the raw ring width time series using a 

smoothing spline with a 0.50 frequency response at a wavelength of 67% of the series length 

(Cook and Peters, 1981) followed by calculation of Tukey‟s biweight robust mean (Mosteller 

and Tukey, 1977) when combining the time series. Fig. 2 presents a 252-year mean ring width 

master time series (or chronology) produced from twenty six individual time series and an EPS 

assessment of signal strength from seventeen tree-mean time series. 

 

Fig. 2 190mm (full width) 

 

Ring width time series from 126 modern Quercus sites in the United States were obtained 

from data archived at the International Tree Ring DataBank 

(http://www.ncdc.noaa.gov/paleo/treering.html). The species of Quercus used in this analysis are 

those most often sampled for dendrochronological studies in the United States include Q. alba, 

Q. prinus, Q. douglasii, Q. stellata, and Q. rubra. Sites with mean sample ages of less than 100 

years were not included to ensure that the comparison was done using data from mature trees. 

The crossmatching of each modern Quercus site was verified using COFECHA (Holmes, 1983). 
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Site-mean ring width was determined for each location and the time series were then detrended 

as described for the SW time series prior to calculation of additional time series statistics. 

Statistics applied to ring width time series can inform about different aspects of tree 

growth for individual trees and for the tree site; (1) average growth, (2) interannual growth 

variability, (3) the influence of prior growth on current growth, and (4) the strength of the 

common interannual pattern between trees. The statistics used to measure these different aspects 

of tree growth based on ring widths are (1) the mean ring width, (2) the mean interannual ring 

width variability, (3) the mean ring width autocorrelation (the influence of prior growth on 

current growth), and (4) the mean ring width intercorrelation. Calculating the average tree age at 

each site is also useful to ensure that comparisons between sites are made between similar-aged 

stands of trees. In addition, the 2σ values for each statistic provide a valuable tool for comparison 

between site-mean values and the range of values for the individual time series. The following 

time series statistics were calculated for the SW time series and the time series from the 126 

modern Quercus sites. 

Site-mean tree age  yr  was determined based on the number of rings on the longest 

time series for each tree. Modern Quercus sites with mean tree ages less than 100 years were 

excluded from the analysis to ensure that only time series from stands of mature trees were 

analyzed. 

Site-mean ring width ( rw ) is the average of the tree-mean ring width for all the trees at a 

site, prior to any statistical modification. Mean ring width calculated for one time series indicates 

the average radial growth for that radius on an individual tree. With enough trees sampled, rw  

can indicate the average radial growth at the tree site.  
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Site-mean interannual ring width variability was calculated using three statistics, mean 

sensitivity ( ), standard deviation ( ) and Gini coefficient ( G ). Mean sensitivity ( ) is often 

interpreted as indicating the influence of climate on radial growth. The close relationship 

between   and ring width standard deviation (σ) has been discussed for many years (e.g. Fritts, 

1976, p. 395; Fritts et al., 1965, Fig. 6.18), and there have been calls for reconsidering the use of 

 , by substituting the Gini coefficient (Biondi and Qeadan, 2008) or the ring width standard 

deviation (Bunn et al., 2013; Strackee and Jansma, 1992) based on statistical evidence that 

standard deviation (σ) and first order autocorrelation (ϕ) accurately decompose  , with σ being 

proportional to   (Bunn et al., 2013). Consequently, we have chosen to present the ring width 

interannual variability results using  , σ and G.  

Ring width standard deviation ( ) is a measure of dispersion of the tree ring values 

around the mean, and like mean sensitivity is often interpreted as indicating the influence of 

climate on radial growth. Bunn et al. (2013) demonstrated that   is usually proportional to  . 

Like   and σ, the Gini coefficient (G) is a measure of interannual variability in a ring width time 

series, very similar to  , except that all possible lags are integrated into the function (e.g. Biondi 

and Qeadan, 2008). Results for the Gini Coefficient are interpretable in the same way as   and 

σ. 

First order autocorrelation    is a measure of the influence of radial growth in the prior 

year on the radial growth of the current growing season, measured by simple linear regression of 

the time series on themselves at a lag of one year. 
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Intercorrelation ( r ) is the mean Pearson product-moment correlation coefficient 

calculated from simple linear regression of each time series against a master time series produced 

from all of the other time series at the site. 

The expressed population signal (EPS), based on tree-mean time series, measures how 

well a site-mean time series approximates its hypothetically perfect mean time series, based on 

an infinite number of trees (e.g. Cook and Kairiukstis, 1990). An EPS value of 0.85 has been 

suggested as a threshold for acceptable reliability (Wigley et al., 1984). The EPS is only 

presented for the SW chronology (Fig. 2), though all sites included in this study exceeded the 

EPS threshold over a large portion of the common time series length. 

Direct comparisons of the SW site-mean values and the modern Quercus median site-

mean values, and their 2σ ranges, are presented for each statistic. In addition, site-mean 

relationships between modern Quercus ring width time series statistics and water availability 

were assessed through regression of all site-mean values for each statistic on the corresponding 

grid cell values (0.5˚ x 0.5˚) for monthly long-term mean estimated soil moisture, 1948-2012 

(Fan and van den Dool, 2004; Huang et al., 1996; van den Dool et al., 2003) obtained from the 

Physical Sciences Division of NOAA/ESRL; 

http://www.cpc.ncep.noaa.gov/soilmst/leaky_glb.htm). Experimental results suggest “the 

calculated soil moisture (with Wmax = 760 mm) agrees best with the observed soil moisture in 

the top 1.3 meters of soil.” (Huang et al., 1996). The long-term annual mean monthly estimated 

soil moisture was chosen for these analyses to allow comparisons with the typical time frame of 

previous petrified wood and paleoenvironmental analyses.  

Results for each statistic are presented textually, as simple linear regressions of the site-

mean statistics on the long-term annual mean monthly estimated soil moisture values from the 
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grid cell for each site, and as spatial representations of the estimated soil moisture for the 

continental United States overlain with symbols at the location of each tree site. The textual 

comparisons indicate the median site-mean value for each time series statistics from the 126 

modern Quercus sites, and for two species, Q. alba and Q. douglasii. Q. alba is usually found in 

mesic environmnents, while Q. douglasii grows in the dry valleys of central California, a region 

characterized by a strongly Mediterranean climate. Inclusion of statistical mean values for these 

two species indicates species-level differences between Quercus from more mesic and more 

xeric environments. Many of the spatial representations are presented as Supplementary 

Material. No corrections were made for site related differences, such as elevation, aspect, 

substrate, or proximity to flowing water. The correlation coefficients from regressions of the ring 

width time series on the soil moisture data were realized on the spatial representations by color 

coding the site symbols after subdividing the distribution of each statistic into three arbitrary 

divisions. The same divisions and colors were used for the symbols on both the regression and 

spatial plots. A second y-axis on each regression plot presents the mean and 2σ values (where 

appropriate) for the SW time series. The SW values are indicated on the second y axis, because 

direct comparison with modern soil moisture is impossible. 

 

2.2.3 Modified Coexistence Approach 

 The standard Coexistence Approach (Mosbrugger and Utescher, 1997; Utescher et al., 

2014) involves identifying the nearest living relatives (NLR) for the taxa present at a paleo-site. 

Multiple taxa are then used to determine a common climate distribution (range), typically mean 

annual temperature, for the NLRs, with the assumption that the fossil taxa had the same climate 

requirements as the NLR. In our Modified Coexistence Approach, we include tree ring site-mean 
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statistics from the dominant genus at the paleo site as an additional source of information. 

Regression of modern site-mean tree ring time series statistical values on a local climate 

parameter, followed by comparison of the modern values with site-mean values from the 

paleosite for the same time series statistic(s), are interpreted as indicating environmental 

characteristics for the paleo-site. Such an approach is particularly useful when the dominant 

genus has a very wide modern distribution that includes many geographically overlapping 

species (e.g. Quercus- 80+ species in the United States), and when the fossil morphology is 

inadequate for indicating a single species NLR. Choosing species as potential NLRs is simplified 

when the number of species considered is reduced based on the environmental characteristics 

indicated by the tree ring data. The use of tree ring time series from both modern and fossil 

contexts can be considered a physiognomic approach as described by Utescher et al. (2014).  

 In this study, we determined the modern geographic distributions of each genus present at 

the SW locality by combining the geographic distributions for appropriate modern species from 

each genus, data available as shape files from the United Stated Geological Survey (U. S. 

Geological Survey, 1999; http://esp.cr.usgs.gov/data/little/). These maps provide the maximum 

geographic occurrence for each species, but of course do not indicate their presence or 

proportions in any given area within the distribution boundary. But recognizing that (1) all but 

one of the nine genera identified at the SW locality are present in the United States, that (2) the 

genera currently present in the United States do co-occur, and that (3) a dominant genus is 

present at the SW locality (Quercus), another modern forest character, the “forest type groups” 

(Ruefenacht et al., 2008; http://data.fs.usda.gov/geodata/rastergateway/forest_type), can also be 

considered. Twenty eight forest type groups have been recognized by the United States 

Department of Agriculture, Forest Service (USDA Forest Service) for the conterminous United 
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States (i.e. not including Hawaii and Alaska). Of these, three forest type groups are Quercus 

dominant. The Quercus dominant forest type group Oak/Hickory, as defined by the USDA 

Forest Service, is the best match as it includes many of the same genera present at the SW site. 

The Oak/Gum/Cypress and Oak/Pine forest type groups differ in the genera included and/or in 

the generic dominance.  

3. Results 

As part of this project, a sample from one of the pillow basalts was recovered from the 

matrix surrounding the SW specimens and sent to the 40
Ar/

39
Ar Argon Geochronology 

Laboratory of Oregon State University for analysis (Thermo Scientific™ Argus VI™ multi-

collector mass spectrometer). An 18-step incremental heating analysis yielded a weighted 

Plateau Age mean (13.79 ±0.09 Ma) that was indistinguishable from the Total Fusion mean age 

(13.85 ±0.09 Ma; Supplementary material).  

Analyses in this study identified significant crossmatching between twenty six ring width 

time series measured on polished slabs of petrified Quercus originating at the SW locality 

(Appendix 1. Table 1). The total number of trees represented is less than twenty six, because 

some of the time series represent measurements made on different slabs from the same stem, 

including: (1) where two radii were measured on a single slab (e.g. SW 2a and SW 2b; JC1a and 

JC1b), (2) where multiple slabs from the same specimen were available from the person who cut 

the stem (e.g. ER 1Ha, ER 1Hb; ER 2h, ER 2L), and (3) where measurements were made on 

multiple slabs purchased by a collector directly from the person who had cut the stem (e.g. WW 

01a and WW 01b; WW 04a and WW 04b; WW Wa and WW Wb; SW 1 and SW 2.) Two 

specimens, ZM 1057 and RM 1272a, also originated from a single stem, but this fact was not 

recognized until time series statistics and visual inspection were done. The correlation coefficient 
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and T-score between ZM 1057 (138 measured rings) and RM 1272a (166 measured rings) was 

the highest of all the correlation coefficients and all the T-scores from all possible combinations 

of two time series from amoung the 26 time series (r = 0.73, T = 12.5, N = 138, p < 0.0001), a 

strong indication that the two specimens came from the same stem. Absolute proof of the single 

stem origin may be impossible, but comparison of RM 1272a and a photograph of specimen ZM 

1057 revealed strong similarities in specimen circumference, positions of cracks, color and 

morphological characteristics preserved from the original xylem. Given that assumption, we may 

conclude that samples from seventeen different stems were measured for this project. Fig. 2 

presents a 252-year mean ring width master time series (or chronology) produced from the 

twenty six individual time series and an EPS assessment of signal strength from the 17 tree-mean 

time series. 

 

3.1 Statistical Comparisons of modern and SW Quercus 

The yr  for the SW Quercus is 141 years. The median site-mean value for the 126 

modern Quercus sites is 187 years. Values for two modern species, Q. alba and Q, douglasii are 

201 years and 177 years, respectively (Appendix 1. Table 2) 

The rw  for the SW Quercus is 1.41 mm. The median site-mean value for the 126 modern 

Quercus sites is 1.01 mm. Values for two modern species, Q. alba and Q, douglasii are 1.26 mm 

and 0.77 mm, respectively. A regression of all the rw  values for the modern Quercus on annual 

mean monthly soil moisture is presented in Fig. 3a, along with 2σ values for each site. The SW 

site-mean and 2σ values for the SW trees are included on a second y axis. A second plot places 

each site on a map of the United States with annual mean monthly estimated soil moisture as the 
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background. Three symbols and colors indicate partitioning of the rw  distribution into three 

arbitrary divisions (Fig. 3b). 

 

 

Fig. 3a 90mm (1 column) 

 

 

 

 

Fig. 3b 90mm (1 column) 

 

The   for the SW Quercus is 0.20. The median site-mean value for the 126 modern 

Quercus sites is 0.26. Values for two modern species, Q. alba and Q, douglasii, are 0.22 and 

0.37, respectively. A regression of all the   values for the modern Quercus on annual mean 

monthly soil moisture is presented in Fig. 4a, along with 2σ values for each site. The SW site-

mean and 2σ values for the SW trees are included on a second y axis. A second plot places each 

site on a map of the United States with annual mean monthly estimated soil moisture as the 

background. Three symbols and colors indicate partitioning of the   distribution into three 

divisions (Fig. 4b). 

 

Fig. 4a 90mm (1 column) 
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Fig. 4b 90mm (1 column) 

 

The   for the SW Quercus is 0.21. The median site-mean value for the 126 modern 

Quercus sites is 0.33. Values for two modern species, Q. alba and Q, douglasii are 0.30 and 

0.41, respectively. Regression of all the    values for the modern Quercus on annual mean 

monthly soil moisture is very similar to the results for   (Supplementary Fig 1a), another 

measure of ring width varibility, as is a map of their geographic distributions (Supplementary 

Fig. 1b).  

The G  for the SW Quercus is 0.12. The median site-mean value for the 126 modern 

Quercus sites is 0.18. Values for two specific modern species, Q. alba and Q, douglasii are 0.16 

and 0.23, respectively. Regression of all the G   values for the modern Quercus on annual mean 

monthly soil moisture is very similar to the other measures of ring width variability,   and   

(Supplementary Fig 2a), as is a map of their geographic distributions (Supplementary Fig. 2b). 

The   for the SW Quercus is 0.16. The median site-mean value for the 126 modern 

Quercus sites is 0.36. Values for two modern species, Q. alba and Q, douglasii are 0.39 and 

0.29, respectively. A regression of all the   values for the modern Quercus on annual mean 

monthly soil moisture is presented in Fig. 5, along with 2σ values for each site. The SW site-

mean and 2σ values for the SW trees are included on a second y axis. A second plot places each 

site on a map of the United States with annual mean monthly estimated soil moisture as the 

background, with symbols and colors identical to Fig. 5 (Supplementary Fig. 3). 

 

Fig. 5 90mm (1 column) 
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The r  for the SW Quercus is 0.57. The median site-mean value for the 126 modern 

Quercus sites is 0.64. Values for two specific modern species, Q. alba and Q, douglasii are 0.60 

and 0.70, respectively. A regression of all the  r values for the modern Quercus on annual mean 

monthly soil moisture is presented in Fig. 6a. The SW site-mean value for the SW trees is 

included on a second y axis. A second plot places each site on a map of the United States with 

annual mean monthly estimated soil moisture as the background (Fig. 6b). Three symbols and 

colors indicate partitioning of the r  distribution into three divisions. 

 

Fig 6a 90mm (1 column) 

 

 

Fig. 6b 90mm (1 column) 

 

3.2 Modified Coexistence Approach 

Figure 7 presents the modern geographic distributions for genera present at the SW 

locality and occurring in modern mesic environments, and high resolution locational information 

for the Oak-Hickory forest type group.  The species included in the generic composites were 

chosen based on locational evidence from the comparison of highly significant regressions of 

modern Quercus statistics on estimated soil moisture and the same site mean statistics from the 

SW locality Quercus (Figs. 3a, 3b, 6a, 6b, Supp. Figs. 1a, 1b, 2a, 2b). Characteristics of the SW 

locality paleomineralized wood morphology allow sub-genus identification of the Red Oak and 

White Oaks groups, so the distributions of common Eastern United States members of the Red 

Oak group (Q. coccinea, Q. falcata, Q. marilandica, Q. rubra, Q. velutina) and White Oak group 
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(Q. alba, Q. bicolor, Q. macrocarpa, Q. prinus, Q. muehlenbergii) are presented separately. 

Multiple species occurring in the Eastern United States from each of the other genera were 

merged into generic-level distributions, and then differenced to produce a distribution indicating 

regions where they can co-occur.  This merged genera distribution includes Carya (C. glabra, C. 

ovata, C. tomentosa), Fraxinus (F. americana), Juglans (J. cinerea, J.nigra), Juniperus (J. 

virginiana), Populus (P. deltoides), and Ulmus (U. americana). The distribution of Picea rubra 

is presented separately, because it is the only genus present with very limited distribution in the 

United States.  

 

4. Discussion 

Statistically significant crossmatching has now been identified among ring width time 

series from many different petrified trees originating at the same location, specifically among 

twenty six ring-width time series from seventeen Miocene-aged permineralized Quercus stems 

(Appendix 1. Table 1). Common changes noted in ring width patterns between multiple trees 

over many decades in continuous series of ring widths, without long-term trends, releases or 

suppressions are certainly related to changes in annual climate. Fig. 2 presents a 252-year mean 

ring width time series (chronology) produced from 17 tree-mean SW ring width time series. 

Petrified wood at the Stinking Water site, described as locality P4007 in Chaney and 

Axelrod (1959), present as stems within a matrix of ash and pillow basalts up to four meters 

thick. The stems of the Stinking Water specimens are almost all in vertical position, without 

significant deformation in the transverse plane, indicating burial in situ. The presence of pillow 

basalts in the entombing matrix provides evidence for flooding of the forest prior to the 

encasement, likely requiring a riparian environment with significant topography. A 
40

Ar/
39

Ar 
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weighted Plateau Age mean of 13.79 ±0.09 Ma for the feldspar component of a Stinking Water 

pillow basalt, determined as part of this study, places the age of the Stinking Water petrified 

wood within about 1 Ma of the end of the middle Miocene Climate Optimum (~15-17 Ma).  

Potential problems with environmental interpretations of tree rings in petrified wood have 

previously been recognized, including concerns raised by natural variation (Poole, 2000a), and 

taxonomy, ontogeny and paleoclimate (Falcon-Lang, 2005a). These potential problems were 

overcome in this study through (1) the availability of a site with in situ preservation of stems, (2) 

remarkable preservation of the specimens such that subcellular features can be recognized, (3) 

clear identification of the tree genus, Quercus, (4) recovery of specimens containing a minimum 

of 100-200 rings, indicating a mature forest, (5) standardization of the ring width time series, 

ensuring that biological growth trends do not affect the time series statistics, (6) determination of 

significant crossmatching between the individual time series, indicating growth that is sensititive 

to climate changes, and (7) statistical evidence, an Expressed Population Signal (EPS; e.g. Cook 

and Kairiukstis, 1990), based on comparison with a hypothetically perfect mean time series 

drawn from an infinite number of samples, that the mean time series between the SW trees 

reliably approximates the average Quercus growth at the site. The evidence for significant 

crossmatching between the SW petrified wood specimens (Appendix 1. Table 1) and for strong 

site-mean signal reliability (Fig. 2), allow heretofore unmatched evidence that the tree ring 

statistics produced from petrified wood specimens can provide a reliable measure of the common 

stand-level radial growth patterns.  

The genus Quercus is still very common in the United States, and has been sampled 

extensively for dendrochronological analysis. Comparisons of site-mean ring width time series 

statistics and climate relationships amoung modern Quercus may indicate environment/tree 
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growth relationships that can be extrapolated to the time when the SW specimens were alive. 

Regressions of site-mean statistics from the 126 modern Quercus sites on estimated soil moisture 

for the 126 grid cells containing the sites are provided as indications of the strength of the 

statistical relationships between ring width time series statistics from modern Quercus and their 

growing environment. No corrections were made for site elevation, aspect, substrate, proximity 

to water, etc. Also calculated were species specific statistics for two Quercus species, Q. alba 

and Q. douglasii, that tend to be found in more mesic sites and more xeric sites, respectively 

(Appendix 1. Table 2). Q. alba is found in a fairly continuous distribution starting in the central 

United States, states bordering the west side of the Mississippi River, east to the Atlantic Ocean, 

especially between about 33˚N and 43˚N. Q. douglasii grows in California, on the coastal ranges, 

the inner valleys and in the foothills of the Sierra Nevada; a region characterized by wet winters 

and very dry summers. 

 

4.1. Statistical Comparisons of modern and SW Quercus 

Site-mean statistical measures of Quercus ring width time series presented in this study 

reveal different aspects of Quercus tree growth for each site, including average radial growth, 

interannual growth variability, the importance of prior radial growth to current radial growth, and 

the strength of the common growth variability. All regressions of the site-means of the 126 

modern Quercus ring width time series statistics on mean annual soil moisture show statistically 

significant relationships amoung all the sites (Figs. 3a, 4a, 5, and 6a; Supplementary Figures 1a, 

2a), though the relationship between soil moisture and mean ring width (Fig. 3a) is only 

minimally significant and isn‟t a linear relationship. The 2σ ranges for each statistic (except  r , 

where crossdating is required) are presented for each site to indicate the importance for each 
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statistic of adequate sample depth when making environmental inferences from individual ring 

width time series statistics.  

A median site-mean tree age estimate for the modern time series based on the time series 

with the most rings from each tree at each site (modern Quercus median  yr = 187 years), 

exceeds the mean tree age based on the SW specimens (SW yr  = 141; Table 2), but the potential 

sources of ring loss for the SW specimens suggest the actual mean age at death for the SW 

specimens was much older. Many factors can reduce the number of rings available for 

observation and measurement on the SW specimens, including (1) the loss of wood on the 

outside of each specimen during preservation, likely 10-40 years of sapwood (the portion of the 

wood where sap/water is still flowing during the growing season), (2) rings not available because 

of the height of the specimen above “breast height”, the accepted sampling height for ring widths 

in living trees (Fritts, 1976), (3) occasional unmeasureable rings caused by post-deposition 

deformation near the center (pith) and (4) radial cuts made by the owner to produce a saleable 

product (e.g. bookends). Yet even with these caveats, the minimum estimated tree ages for the 

SW specimens indicate a mature forest. 

Site-mean ring width ( rw ) for the SW trees (SW  rw = 1.41 mm) exceeds the median 

value for the 126 modern Quercus ring width site means (modern Quercus median  = 1.01 mm; 

Appendix 1. Table 2). The median site-mean ring width value for modern Quercus alba sites (N 

= 48), a species that tends to grow in mesic environments, is much closer to the SW mean than 

the collective value (modern Q. alba median rw   = 1.27mm; Appendix 1. Table 2.) Regression 

of the site-mean ring widths on the annual mean estimated soil moisture yields a correlation 

coefficient that is significant, but which explains only 9% of the variance in a simple linear 

regression (r = 0.30, N = 126, p < 0.0001; Fig. 3a). So the relationship between mean ring width 
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and soil moisture cannot be used as a reliable indicator of the moisture status at the modern sites. 

A map of annual monthly mean mean soil moisture overlain with symbols that divide the 126 

site mean values into three parts confirms that sites with mean ring widths over 1.0 mm only 

occur in mesic regions (Fig. 3b). The SW rw  exceeds the rw  for Q. alba, a Quercus species that 

tends to grow in sub-mesic to mesic environments, indicating a mesic environment when the SW 

trees were growing. Yet large mean ring widths are not consistent with some estimates of pCO2 

below the modern pre-industrial value of ~270ppm for the middle Miocene, as suggested by 

some research based on alkenones (Pagani et al., 1999) and Boron isotopes (Pearson and Palmer, 

2000). This issue is discussed in more detail below. 

The ζ  value at the SW locality (  ζ 0.20SW  ) is lower than the median ζ   value for the 

126 modern Quercus sites (modern Quercus median   = 0.26; Fig. 4a and Appendix 1. Table 2) 

and slightly lower than the median    value for modern Quercus alba  = 0.22; N = 48; 

Appendix 1 Table 2), a species that tends to grow in sub-mesic to mesic environments. The 

median ζ   value for Q. douglasii sites, a species native to the Mediterranean climate of 

California, is much higher (median    = 0.37; N = 29; Appendix 1. Table 2), indicating greater 

sensitivity to climate than Q. alba.  Regression of 126 modern Quercus    on annual mean 

monthly estimated soil moisture reveals a highly significant linear relationship (Fig. 4a). Note 

that there are no values below ~   = 0.22 when the annual estimated mean soil moisture is 

below 400 mm (Fig. 4a), a   value exceeding the SW   value of 0.20. A map of annual 

monthly mean soil moisture overlain with color coded symbols for the site locations shows a 

clear spatial division beween the site-mean   extremes, a division that coincides with more 
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mesic and less mesic environments (Fig. 4b). The SW   value is consistent with growth in a 

mesic environment. 

The variability of ring width values at the SW locality as measured by the ring width 

standard deviation ( ) is less than the median for the 126 modern site means (   0.22SW  ; 

median    = 0.30; Appendix 1. Table 2), consistent with the result using   and interpretable in 

the same way. The SW   value is also lower than the median   value for modern Quercus alba 

sites median   = 0.30; N = 48; Appendix 1. Table 2) and much lower that the median    value 

for Q. douglasii median   = 0.41; N = 29; Appendix 1. Table 2). As noted for  , the lowest   

values occur only when the annual estimated mean soil moisture is above 400 mm 

(Supplementary Fig. 1a). The placement of   values on a map of annual monthly mean soil 

moisture, as in Figs. 3b and 4b, shows very similar spatial distribution to the   results 

(Supplementary Fig. 2b). The SW   value is consistent with modern Quercus growing in a 

mesic environment. 

The Gini coefficient (G), like   and  , is a measure of the variability in the ring width 

time series, except that all possible temporal lags are integrated into the function (e.g. Biondi and 

Qeadan, 2008). The Gini coefficient for the SW specimens ( G  = 0.12) is lower than the median 

value of the 126 modern site-mean G  ( median G  = 0.18). The pattern of correlations from 

regression of the annual mean estimated soil moisture on the modern Quercus site-mean G  

(Supplemental Fig. 2a) is almost identical to the patterns in Fig. 3a and in Supplemental Fig. 1a. 

As with  , a plot of G  values on a map of monthly mean soil moisture shows clear spatial 

separation of the G   extremes (Supplementary Fig. 2b). The SW G  value is consistent with 

modern Quercus growing in a mesic environment. 
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Correlation coefficients from regressions on the three measures of site-mean ring width 

variability, mean sensitivity ( ), standard deviation ( ) and the Gini cofficient (G ), are all 

highly significant (Fig. 3a, and Supplementary Figs. 1a and 2a), with almost identical results that 

explain more than 55% of the annual mean monthly estimated soil moisture variance ( , r = 

0.79;  , r = 0.74; and  G , r = 0.75). So, while there seem to be legitimate theoretical grounds for 

replacing mean sensitivity with different statistics (Bunn et al., 2013; Biondi and Qaeadan, 2008; 

Strackee and Jansma, 1992), the similarity between the regression results using mean sensitivity 

and the recommended substitute statistics, standard deviation  (Bunn et al., 2013; Strackee and 

Jansma, 1992) and the Gini cofficient (Biondi and Qeadan, 2008), suggest that mean sensitivity 

is adequate for basic assessments of Quercus ring width climate sensitivity. In fact, the    2σ 

range for Quercus is narrower than for   and G  (Fig. 3a, and Supplementary Figs. 1a and 2a), 

suggesting fewer specimens may be required to obtain an accurate estimate of   in Quercus, 

assuming there is adequate time series length. The importance of time series length cannot be 

overemphasized. To that end, the individual SW Quercus ring width time series were used to 

calculate a 10-year running   (Supplementary Fig. 4). The 10-year running   values for the 

time series often fall far outside the 2σ values for the overall time series average (Supplementary 

Fig. 4), indicating the unreliability of interpreting environmental characteristics from mean 

sensitivity and similar time series statistics when segment lengths are short or when only a few 

long time series are available. 

The   of the SW time series (SW   = 0.32) is less than the median   value for the 

modern Quercus sites median (   = 0.46; Fig. 5 and Appendix 1. Table 2), though the SW   

value exceeds the   at 21 of 126 modern sites. In the modern Quercus datasets analyzed, the 
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higher   values (   ≥ 0.50), never occur when annual mean estimated soil moisture is less than 

~400 mm and geographically only occur in the Eastern United States (Supplementary Fig. 3).  

This relationship indicates that modern Quercus sites with   exceeding 0.50 are likely to occur 

in mesic environments. The   for the SW specimens does not exceed this threshold, but values 

between   = 0.30-0.50, bracketing the SW   value, occur across all values for estimated soil 

moisture, so the SW site-mean   value is not inconsistent with a mesic growing environment 

and may indicate microsite influences, or perhaps differences in the annual growth trajectory 

between the modern and mid-Miocene Quercus. Autocorrelation ( ) of ring widths is usually 

related to environmental conditions in previous years that affect bud formation, storage of 

photoassimilates, root and fruit formation, and in leaf retention if the trees are non-deciduous 

trees (Fritts, 1976). In Quercus, the dominant cause of autocorrelation in the ring width time 

series is the early growing season requirement for the use of stored photoassimilates. All 

Quercus, in fact all “ring porous” angiosperms, require stored photoassimilates early in the 

growing season to produce the large vessels required to transport water and sap at a time when 

no leaves are present to photosynthesize (e.g. Barbaroux and Breda, 2002; Barbaroux et al., 

2003), a process that has also been identified using time series of stable carbon isotopes (Hill et 

al., 1995; Kagawa et al., 2006; Monserud and Marshall, 2001). The evidence for strong 

autocorrelation in ring width time series requires dependence on stored photoassimilates for a 

large proportion of the growth in each annual increment. The low value   value for the SW 

specimens may indicate that a lower proportion of the annual growth was based on stored 

photoassimilates than in most modern mesic-site Quercus. A reduction in this proportion could 
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be caused by a more rapid shift from growth based on stored photoassimilates to growth based 

primarily on current photosynthesis. 

Regression of the modern Quercus site-mean r  values on annual mean monthly 

estimated soil moisture is highly significant, indicating the importance of water availability, and 

therefore of climate, to Quercus radial growth. Values of r  < 0.6 occur only where the annual 

mean monthly estimated soil moisture exceeds 300 mm (Fig. 6a). Values for r  exceeding 0.6 

can occur at some mesic sites (Fig. 6a), likely indicating the microsite conditions of locations 

typically chosen to emphasize climate relationships during dendrochronological sampling (e.g. 

ridgelines, rocky substrates). Yet the extremes of the r  distribution are almost perfectly discrete, 

geographically (Fig. 6b), indicating that sites where higher r  values coincide with higher annual 

mean monthly estimated soil moisture occur mostly along the margins between the extremes. 

The SW site-mean time series average intercorrelation value ( 0.57r  ) is lower than the  

median of the modern site-mean intercorrelations (median     0.64r  ; Appendix 1. Table 2), is 

slightly lower than the median r  value for modern Quercus alba sites (median r   = 0.61; N = 

48; Appendix 1. Table 2), and falls within the range of modern Quercus values that only occur in 

mesic environments.    

Regressions of site-mean time series statistics from 126 modern Quercus sites on annual 

0.5˚ x 0.5˚ gridded soil moisture (CPC) reveal highly significant relationships for many time 

series statistics, including site-mean ring widths ( rw ), three site-mean measures of ring width 

variability: mean sensitivity ( ), standard deviation ( )  and the Gini coefficient  G , and site-

mean intercorrelation ( )r  (Figs. 3a, 4a, and 6a; Supplementary Figs. 1a and 2a). With the 

exception of site-mean first order autocorrelation ( ), where the interpretation is equivocal, 
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placement of the SW site-mean values on the modern regression plots indicates a mesic growing 

environment for the SW Quercus.  

 

4.2 Modified Coexistence Approach 

The genera represented in the permineralized wood at the SW locality are identifiable 

based on xylem morphology, and most are known to coexist in modern settings, presenting an 

ideal scenario for a modified Coexistence Approach (Mosbrugger and Utescher, 1997; Utescher 

et al., 2014). In a classic Coexistence Approach, a nearest living relative is identified for each of 

the coexisting taxa from the paleolocation based on morphological comparisons with modern 

taxa. Mean annual temperature ranges for each of the modern taxa are then compared to 

determine a temperature range common to all the taxa. This temperature range is interpreted as 

an indication of the environmental conditions present when the plants at the paleosite were 

growing. In our modified Coexistence Approach, the first requirement is dendrochronologically 

crossmatched petrified wood from many trees with a modern taxon equivalent. Then modern 

site-mean ring width time series statistics, data from many sites using the same taxon, are 

regressed on a local climate parameter (e.g. estimated soil moisture). Then the site mean ring 

width statistical values from the paleo-specimens are compared to the modern values, noting the 

value of the climate parameter and the geographic positioning of sites with similar values. Next, 

a common region of occurrence for all the pertinent taxa is identified based on the geographic 

distributions of the taxa. If many species are present in some of the genera, then the geographic 

positioning indicated by the ring width time series statistics can be used to reduce the number of 

species included. The overlap regions of the generic geographic distributions are then used to 

indicate the modern region with the most similarity to the paleo-site. 
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In the specific example presented in this study, the NLR for each taxon can clearly be 

identified to the genus level. The additional information required to attempt identification to the 

species level would have required loan and modification of museum/collector specimens, so 

analyses were done to the level of genus. Quercus is the dominant genus at the SW site, and was 

used for the dendrochronological crossmatching presented in Figure 2. Comparison of the site 

mean ring width statistical values from the paleo-specimens with the estimated available 

moisture (Fig. 3a and 6a; Supplementary Figs. 1a and 2a) and the locations of modern Quercus 

sites with similar statistical values (Fig. 3b and 6b; Supplementary Figs. 1b and 2b) indicates a 

mesic growing environment such as is found in the central Eastern United States. Other 

angiosperm genera present at the SW locality were Carya, Ulmus, Fraxinus, Juglans and 

Populus, with the conifers Juniperus, Picea and Metasequoia also in evidence. This combination 

of genera, with the exceptions of the Picea and Metasequoia, suggests an oak-dominated 

temperate broadleaf forest similar to the modern Oak-Hickory forest type group found in the 

highlands of the East Central United States (Fig. 7). Most modern Oak-Hickory forests are 

considered climatically humid, though they grade to sub-humid along the fringes of the central 

plains (Burns, 1983). Ulmus, Fraxinus and Populus, often co-occur in riparian environments 

across the modern highlands of the East-Central United States where they are sometimes found 

in proportions high enough to form the Elm-Ash-Cottonwood forest type. Metasequoia is no 

longer present in North America, but Juniperus is broadly distributed across the same modern 

highlands of the East Central United States. Picea is not typically found south of about 43˚N in 

modern times, except for the higher elevations of the Appalachian Mountains of the Southeastern 

United States, where Picea rubens (i.e. Picea rubra) occurs as far equatorward  as about 35˚N in 

eastern Tennessee and western North Carolina at elevations above about 1,350 meters. Picea 
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rubens requires a cool, moist oceanic climate, with annual precipitation between 875 mm and 

2,000 mm. 

Given the SW generic and modern forest type group associations presented in Figure 7, 

the closest modern environmental equivalent seems to be in the Eastern Temperate Forests, 

especially the central and southern Appalachian Mountains and the Ozark/Ouachita Mountain 

Highlands, indicated by the ovals on Figure 7. Site-mean time series statistical values for modern 

Quercus sites from those regions are very similar to those calculated for the Stinking Water 

Quercus (Figs. 3a, 6a, Supp. Fig. 1a, 2a), supporting this interpretation. Values for  ,  , G  

and r  similar to those calculated for the SW Quercus, are often located along the spine of the 

central and southern Appalachian Mountains and in the Ozark/Ouachita Mountain Highlands 

(Fig. 3b and 6b; Supplementary Figs. 1b and 2b). Absence of Picea in the Ozark/Ouchita 

Mountain Highlands is likely caused by lower maximum elevations and geographic isolation of 

those areas, so we do not exclude that region from consideration as the closest modern analog. 

Thus, the geographic ranges for modern co-occurrence of most of the genera recovered from the 

SW locality and the environments indicated by the position of the SW site-means relative to the 

modern Quercus distributions are consistent with a warm temperate evergreen broadleaf and 

mixed forest transitioning to a temperate deciduous broadleaf forest at about 13.8 Ma (Pound, 

2008). 

 

Fig. 7 190mm (full width) 

 

Comparisons of modern and SW Quercus ring-width related statistics, and their relation 

to annual monthly mean estimated soil moisture, indicate a warm mesic climate when the SW 
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locality trees were growing. Modern co-occurrence of genera present at the SW locality, 

similarity to the Oak-Hickory forest type group and  Quercus locations in the United States 

where modern and SW time series statistics are the most similar, indicate an environment similar 

to the modern central and southern Appalachian Mountains of the Eastern United States or the 

Ozark/Ouachita Mountains further inland (Fig. 7). The Mean Annual Temperature (MAT) ranges 

over the central and southern Appalachian Mountains are  7 ˚C to  12 ˚C and  10 ˚C to  15 

˚C, respectively. The Mean Total Annual Precipitation (MAP) ranges over the same regions are 

 750 mm to  1260 mm and  1000 mm to  1800 mm, respectively. These values for MAT 

and MAP do not account for changes in elevation, an important factor in a mountainous region, 

and the presence of Ulmus, Fraxinus and Populus indicates a riparian environment, therefore 

lower elevations, so the best estimates are the middle to upper ends of the stated ranges for the 

MAT,  10 ˚C to  15 ˚C, and the middle to lower ends of the ranges for the MAP,  750 mm to 

 1200 mm. 

The hydrometeorology of modern eastern Oregon is semi-arid, a product of the strong 

rain shadow east of the Cascade Range of western Oregon. Yet the environment of eastern 

Oregon was very different during the middle Miocene. Paleobotanical data indicate the southern 

Cascade Range of the middle Miocene was 700-900 m lower than today (Kohn et al., 2002; 

Kohn and Fremd, 2007), with orogenesis resuming during the late Miocene (Reiners, 2002; 

Kohn et al., 2002; Kohn and Fremd, 2007; Mustoe and Leopold, 2014). The lower elevations of 

the Cascade Range during the middle Miocene allowed air parcels to proceed eastward almost 

unhindered from the Pacific Ocean. 

 

5.0 Conclusions 
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The interpretation of environmental and growth conditions for the SW locality at ~13.8 

Ma is consistent with recent paleoenvironmental information for the middle Miocene Climate 

Transition (MMCT). The 
40

Ar/
39

Ar date of 13.79 ±0.09 Ma for the SW exposure places the SW 

Quercus entombment immediately after the Middle Miocene Climate Optimum (MMCO) and 

immediately prior to the largest reduction in oceanic δ
18

O during the MMCT (Holbourn et al., 

2013). A recent review of paleobotanical studies suggests that the dominant forest type during 

the Langhian Stage (15.97±0.05 to 13.65±0.005 Ma) in what is now the northwestern United 

States was warm temperate evergreen broadleaf and mixed forest transitioning to a temperate 

deciduous broadleaf forest in the Seravallian Stage (13.65±0.05 to 11.61±0.05 Ma; Pound, 

2012). Early assessments of atmospheric pCO2 during the MMCO ( 15-17 Ma) and the MMCT 

( 12-15 Ma) indicated pCO2 values at or below 200 ppm (e.g. Pagani et al., 1999; Pearson and 

Palmer, 2000), levels seemingly inconsistent with the thriving plantlife present during the mid-

Cenozoic (Cowling, 1999), but recent assessments indicate pCO2  260-310 ppm at about 13.8 

Ma (e.g. Badger et al., 2013; Foster et al., 2012; Kuerschner et al., 2008; Zhang et al., 2013), in 

the range of the modern pre-industrial value of pCO2   270 ppm. Estimates for pCO2 at or above 

260 ppm during the middle Miocene are more consistent with the results from this study; 

vigorous growth indicated by the comparison of the SW Quercus rw  relative to modern Quercus 

rw  (Table 2), and by the environmental conditions present at geographic locations indicated by 

modern coexistence of the paleo-taxa present at the SW site, locations consistent with the 

comparison of the modern and SW rw  (Figs. 3a and 3b),   (Figs. 4a and 4b),   

(Supplementary Figs. 1a and 1b), G  (Supplementary Figs. 2a and 2b), and r  (Figs. 6a and 6b). 

Results from the Modified Coexistence Approach, combining interpretations of paleo-site-mean 

tree ring statistics based on modern site-mean tree ring/climate statistical comparisons with 
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evidence from a standard Coexistence Approach, further focuses the modern geographic 

analogue to the temperate mesic environment of the modern central and southern Appalachian 

Mountains of the Eastern United States.   
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Fig. 1 (Foreground) Photomicrograph of SW Quercus tree rings. The large vessels mark the 

beginning of each growing season, the direction of growth being left to right in this image.  Note 

the scale with markings of 0.1 mm. (Background) A polished cross-section of SW Quercus, 

commonly called “Golden Oak” because of the appearance. 
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Fig. 2 Plot of statistically crossmatched ring width time series from SW Quercus. Individual ring 

width time series are represented by the grey lines. The mean of the individual time series is 

presented as a black line. Sample depth through time is indicated by the green stepped line.  

Signal reliability as compared with a hypothetically perfect mean time series, the Expressed 

Population Signal (e.g. Cook and Kairiukstis, 1990), is presented as a 50-year running value (red 

dotted line). Strong reliability is indicated when the red dotted line is higher than the black 

horizontal line. 
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Fig. 3a Regression of modern Quercus site-mean time series ring widths on the estimated annual 

soil moisture. The distribution of modern Quercus site-mean timeseries ring widths are divided 

into three groups as indicated by the legend. The 2σ ranges for the mean ring width values from 

the individual time series at each site are indicated by the vertical bars. The site-mean and 2σ 

range for the individual SW time series ring widths are indicated on the righthand y-axis with a 

horizontal bar marking the position of the SW site-mean relative to the modern ring width 

distributions. The modeled soil moisture best matches observed values for a 1.3 meter column of 

soil (Huang et al., 1996). 
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Fig. 3b Geographic distribution of Quercus sites and their site-mean ring width values plotted on 

estimates of the 12-month (January-December) monthly mean soil moisture. The modeled soil 

moisture best matches observed values for a 1.3 meter column of soil (Huang et al., 1996). The 

partitions  and ranges for the ring widths are the same as in Figure 3a. 

 

 

Fig. 4a Regression of site-mean values for mean sensitivity based on the mean sensitivity of the 

individual ring width time series. The overall distribution is partitioned into three parts 

represented by the symbols and ranges indicated in the legend.The horizontal line indicates the 
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placement of the SW site-mean amoung the modern site-mean values. The modeled soil moisture 

best matches observed values for a 1.3 meter column of soil (Huang et al., 1996). 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4b Geographic distribution of Quercus sites and their site-mean mean sensitivity values 

plotted on estimates of the 12-month (January-December) monthly mean soil moisture.  

The partitions and ranges for the mean sensitivity are the same as in Figure 4a. The modeled soil 

moisture best matches observed values for a 1.3 meter column of soil (Huang et al., 1996). 
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Fig. 5 Regression of site-mean values for AR1 on annual monthly mean soil moisture. The 

overall distribution is divided into three parts represented by the symbols and ranges indicated in 

the legend.The mean (σ) and 2σ range for the Stinking Water AR1 are presented on the right 

hand y axis, with a horizontal bar marking the position of the SW site-mean relative to the 
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modern distributions. The modeled soil moisture best matches observed values for a 1.3 meter 

column of soil (Huang et al., 1996). 

 

 

 

 

 

 

 

 

Fig 6a Regression of site-mean values for intercorrelation on the annual monthly mean soil 

moisture. The overall distribution is divided into three parts represented by the symbols and 

ranges indicated in the legend. The mean (σ) for the Stinking Water autocorrelation is presented 
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on the right hand y axis, with a horizontal bar marking the position of the SW site-mean relative 

to the modern distributions. The modeled soil moisture best matches observed values for a 1.3 

meter column of soil (Huang et al., 1996). 

 

 

 

 

 

Fig. 6b Geographic distribution of Quercus sites and their site-mean intercorrelation values 

plotted on estimates of the 12-month (January-December) monthly mean soil moisture. The 

partitions  and ranges for the ring widths are the same as in Figure 6a. The modeled soil moisture 

best matches observed values for a 1.3 meter column of soil (Huang et al., 1996). 
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Fig. 7 Modern distributions of the tree genera present at the Stinking Water site and consistent 

with the mesic growing conditions indicated by the statistical comparison, and the locations of 

the modern Oak-Hickory Forest Type group. Quercus species in the Red Oak group and White 

Oak group are presented separately. The distributions of 5 other genera present at the Stinking 

Water site were merged based on co-occurrence. Note that the “Merged Genera” distribution 

covers a very large region. Picea is presented separately, because the distribution shows little 

overlap with the other genera. The blue ovals indicates the regions where (1) the Oak-Hickory 

forest type is the most common (where Quercus is the dominant genus), (2) where the Oak-

Hickory forest type overlaps with the distribution of most of the other genera present at the SW 

site. 
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Appendix 1. 

 

Table 1. SW tree-ring width time series lengths and cross-correlation values from COFECHA 

output, using the default settings for detrending. Identical superscript numbers indicate samples 

from the same original log. „r‟ = correlation coefficient. 

Series ID Rings r Series ID Rings r Series ID Rings r 

DM 1 158 0.58 WW 1a
2 

127 0.60 ER 1Ha
4 

99 0.51 

ZM 1057
1 

138 0.49 WW 1b
2 

141 0.61 ER 1Hb
4 

98 0.47 

ZM 1272 114 0.55 WW 2a 131 0.54 ER 2La
4 

181 0.58 

TM 517a 107 0.50 WW 3a 101 0.58 ER 2Ha
4 

113 0.57 

TM 546a 162 0.51 WW 4a
3 

191 0.62 SW 1b
5 

204 0.63 

DM 2 106 0.66 WW 4b
3 

188 0.60 BE 1 115 0.66 

RM 1272a
1 

166 0.53 SW 2b
5 

180 0.58 SW 2c
5 

129 0.54 

WW 68 97 0.54 GC 1a
6 

121 0.59 GC 1b
6 

155 0.50 

WW Wa
7 

141 0.62 WW Wb
7 

149 0.61 Tree Mean 141 0.57 
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Table 2. Comparison of SW locality mean and modern Quercus median site-mean ring width 

time series statistics. Q. alba grows in dry-mesic to mesic environments in the eastern Unites 

States. Q. Douglasii is a drought adapted California oak that grows in a Mediterranean climate 

with very dry summers. Definitions: yr  = site-mean ring number; rw  = site-mean average ring 

width;   = site-mean ring width mean sensitivity;   = site-mean ring width standard deviation; 

G  = site-mean Gini coefficient;   = site-mean first order autocorrelation; r  = site-mean 

intercorrelation.   All the site-mean statistics are the averages of the statistical values calculated 

for each time series at each site. 

  yr   rw     σ G     r  

SW individual  139 1.40mm 0.20 0.22 0.12 0.32 0.57 

Modern median of site 

means (N = 126) 

187 1.01mm 0.26 0.33 0.18 0.36 0.64 

Q. alba median of  

site means (N = 48) 

201 1.26mm 0.22 0.30 0.16 0.39 0.60 

Q. douglasii median 

of site means (N = 29) 

177 0.77mm 0.37 0.41 0.23 0.29 0.70 

 

 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

57 
 

 

Highlights 

 the first statistically significant matching of many ring width time series from petrified 

wood 

 Indication of a reliable annual climate signal and stand-level statistics for the Mid-

Miocene 

 Modern/Miocene tree ring statistic comparison indicates a mesic Mid-Miocene 

environment 

 Modern analogue environments indicated using a Modified Coexistence Approach 

 Mid-Miocene MAT and MAP indicated based on identification of modern analogue 

environments 
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