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Abstract

This thesis presents a statistical method to identify the test escapes. Test often

acquires parametric measurements as a function of logical state of a chip. The usual

method of classifying chips as pass or fail is to compare each state measurement to a

test limit. Subtle manufacturing defects are escaping the test limits due to process

variations in deep sub-micron technologies which results in mixing of healthy and

faulty parametric test measurements. This thesis identifies the chips with subtle

defects by using rank order of the parametric measurements. A hypothesis is

developed that a defect is likely to disturb the defect-free ranking, whereas a shift

caused by process variations will not affect the rank. The hypothesis does not

depend on a-priori knowledge of a defect-free ranking of parametric measurements.

This thesis introduces a modified Estimation Maximization (EM) algorithm to sep-

arate the healthy and faulty tau components calculated from parametric responses

of die pairs on a wafer. The modified EM uses generalized beta distributions to

model the two components of tau mixture distribution. The modified EM estimates

the faulty probability of each die on a wafer.

The sensitivity of the modified EM is evaluated using Monte Carlo simulations.

The modified EM is applied on production product A. An average 30% reduction

in DPPM (defective parts per million) is observed in Product A across all lots.
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Chapter 1

Introduction, Motivation and Contribution

1.1 Introduction

Figure 1.1: Typical I.C test flow.

Figure 1.1 shows a typical I.C test flow involved in the testing of an integrated

circuit. The manufacturing steps of an I.C are shown by round boxes. The test

modules (e.g wafer-sort and post burn in test) are shown in square boxes. Each

test module contains a series of tests applied on parts to ensure elimination of

parts having defects. Parts passing each test are sent to downstream tests. Parts

are rejected when they fail a test. The I.C test flow is described as follows:

1



1. Wafer fabrication: A wafer is fabricated in a manufacturing plant. Fabri-

cation is the source of silicon defects.

2. Wafer-sort: The dies are tested on the wafer. The testing module is called a

wafer-sort [2]. Wafer-sort tests are sometimes conducted at both high and low

temperatures to ensure the elimination of temperature sensitive defects [3].

3. Assembly: The dies are sliced from the wafers and passing dies are assem-

bled in packages. This step is also a source of package assembly defects such

as opens and shorts.

4. Burn In: The dies are stressed under accelerated temperature and voltage

conditions for long periods of time [4]. The burn in ensures the elimination

of packaged dies which have a high probability to fail during their early life

of operation.

5. Post-Burn In test: The packaged dies are subjected to a final screen to test

for data-sheet specifications. Parts are tested to ensure correct operation.

Two types of tests are run in each testing module: parametric tests and functional

tests. The functional tests are run to verify the operation of the integrated cir-

cuit. The functional tests involve giving input binary values to integrated circuit

and checking for corresponding logical responses. This thesis discusses about the

usage of parametric test data as a screen. The functional tests will not be further

discussed in the thesis.

2



1.2 Parametric Tests

In order to make a parametric test measurement, the chip must be put in a partic-

ular logical state [5]. The state of a circuit is the binary values of the logical nodes

in the design. The parametric tests are run to check whether the integrated circuit

meets specifications, for example, rise and fall times, noise margin, IDDQ, path de-

lay and minVdd specifications [2]. Examples of three state dependent parametric

measurements are described in following sections.

1.2.1 IDDQ test

The IDDQ test is a state dependent parametric test which measures the leakage

current flowing from Vdd to ground in a CMOS circuit. When the circuit is

in a steady state, a small amount of leakage current flows in the circuit due to

background leakage mechanisms. A defect will draw a high IDDQ current from

the power supply compared to the normal leakage current due to some kind of

short occurring in the circuit. The types of potential problems detected by IDDQ

include process flaws such as bridging defects, mask problems, improper etching

and stuck-at faults [6].

Figure 1.2 shows a resistive bridging short between two neighbouring lines driven

by two inverters. When the input logic to both the inverters is same, the current

flowing from Vdd to ground is equal to background leakage current in CMOS

circuits. When the inverters are driven to opposite logic values, an elevated current

flows from Vdd to ground due to the bridging short between the two lines. The

inputs 00 and 11 do not activate the defect. The inputs 00 and 11 put the circuit

in non elevated states. The inputs 10 and 01 activate the defect and put the circuit

3



in elevated states.

Figure 1.2: Example of IDDQ test on a bridging defect.

1.2.2 Path delay test

The path delay test is a state dependent parametric test which checks for defects

causing logic circuits to malfunction at the desired clock period [7]. The path delay

test requires an input state pair to cause a transition at the output from one state

to another state. For a circuit to function correctly, the maximum delay of one or

more paths should not exceed the clock period.

Figure 1.3 shows an example circuit with five inputs and one output. Each gate is

labelled with the input to output delay value associated with it. The two inputs

00000 and 11000 are shown in Figure 1.3 which cause a transition at output Y

from 0 to 1. Considering all possible input state pairs, the critical path P having

4



Figure 1.3: An example circuit showing the critical path P.

the highest delay is selected and the delay is checked to be within a desired clock

period. The critical path P is shown using a dotted line. The path delay of path

P should be less than the desired clock period.

1.2.3 MinVdd test

For a given operating frequency, minVdd is the minimum supply voltage at which

the circuit operates correctly [8]. The state of the circuit under test is defined

by input binary values which excite the slowest speed paths. A set of values of

minVdd voltages is obtained for different input frequencies. Parts having abnormal

minVdd values are tagged as fails.

1.3 Figures of Merit

A part is manufactured, tested and used. Figure 1.4 shows the key figures of merit

of an I.C test flow. The key figures of merit are yield loss, overkill and test escapes.

Test escapes are the parts bad in use but pass the test. On the other hand, some

parts good in use get rejected at a test and are called overkills. The yield loss is

5



Figure 1.4: Figures of merit.

calculated as:

Yield loss =
Total Parts Failing Test

Parts Good in Use + Parts Good in Use
(1.1)

The overkills and test escapes are calculated as follows:

Overkill =
Parts Good in Use Failing Test

Parts Good in Use
(1.2)

Test Escape =
Parts Bad in Use Passing Test

Total Parts Passing Test
(1.3)

An alternative to represent the overkill is the kill ratio [9]. The kill ratio calculates

the yield impact rather than calculating the overkilled parts. Kill ratio calculates

6



the healthy parts killed for each faulty part killed by test.

Kill Ratio, KR =
Parts Bad in Use Failing Test

Parts Good in Use Failing Test
(1.4)

The test escapes expressed per million parts is DPPM (defective parts per million):

DPPM =
Parts Bad in Use Passing Test

Total Parts Passing Test
× 1, 000, 000 (1.5)

1.4 Thesis Motivation

Figure 1.5 shows the variation of values of an example state dependent parametric

test for dies within a wafer and within a lot. The x-axis shows the range of

parametric test values for each of the four input states of the parametric test. The

y-axis represents the test value variation on six wafers and variation on a lot. Each

horizontal bar represents the process variation in test values of an input state across

all dies on the wafer or lot. A dot on the each of the horizontal bars shows the test

value of a die picked from a wafer. The vertical dotted line represents the /fail test

limits. The pass/fail test limit is set for each state. Dies having test values greater

than the limit are rejected. Figure 1.5 shows two examples of non defective dies.

The non defective die having state test values less than limits is tagged as pass.

The non defective die, however, having test values greater than limits is rejected.

For both non defective dies, there is little overlap between consecutive state test

values. So, non-defective dies have a ”natural” ordering of states by parametric

test values. For example, a non defective die shown in figure will have an order:

State 1 < State 2 < State 3 < State 4 (1.6)

7



Figure 1.5: Illustration showing the parametric variation taking place within a
wafer and a lot for four input states. Bars represent process variation of state
dependent parametric test values. Dot represents the test value of a die for each
of the four states.
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Process variation will cause some non-defective dies to violate test limits, and be

rejected. A non-defective die has a ”natural” ordering of states by the parametric

measurements. A defect in a die disrupts the natural ordering of states more

severely than process variation. A high degree of order disruption indicates a

defective die that should be killed. For example, any order disruption indicates a

defective die. Even order disruption within process variation indicates a defective

die. Process variation may disrupt the natural ordering of states, but the effect is

small. For example, process variation causes no order disruption.

If a die is in lower end of process variation, the disruption in the test value will be

less than test limits. The test would not be able to detect the defective die. This

is shown by three examples of defective dies in Figure 1.5 which have defective test

values less than limits.

This thesis motivates the need of intelligent selection of a single threshold using

state orders instead of multiple test limits on each state which will reduce the test

escapes while minimizing the overkills.

1.5 Thesis Contributions

This thesis demonstrates for the first time the use of the inter-die rank statistics

to screen the test escapes. The statistical screen utilizes the inter-die ranks of a

state dependent parametric test to differentiate between healthy and faulty dies.

The statistical screen hypothesizes that healthy die test data have consistent state

ranking. The screen, however, does not depend upon a prior knowledge of healthy

die test data ranking. The benefit of the statistical screen is that it can be applied

to any state-dependent test such as minVdd, delay, IDDQ and Fmax. A correlation

9



mixture model is developed to model the tau distribution obtained from die pairs.

The modified Estimation Maximization (EM) algorithm is used to differentiate the

healthy and faulty components from the tau mixture. The probability of each die

to be healthy or faulty is estimated. A single probability threshold is decided to

separate the faulty dies from healthy dies.

1.6 Thesis Organization

The thesis is organized in four chapters. The background concepts are explained

in the Chapter 2. Chapter 2 also explains the previous work done by authors in

the field of statistical post processing of parametric data. The correlation model

proposed in this thesis is explained in Chapter 3. Chapter 4 contains the simulation

results on synthetic data and production data. The conclusion and future work is

explained in Chapter 5.

10



Chapter 2

Background Concepts and Previous work

2.1 Rank Order

Rank order refers to the data transformation in which numerical values are re-

placed by their rank when the data is sorted from minimum to maximum [10]. For

example, if X is a set of five measurements.

1. X = {21, 45, 32, 65, 36} (2.1)

Rank-order (X) = {1, 3, 5, 2, 4} (2.2)

The rank-order is insensitive to any monotonic transformation in the data. For

example, increasing the value of each measurement in X by 2, does not have any

effect on rank-order.

X′ = X + 2 (2.3)

2. X′ = {23, 47, 35, 67, 38} (2.4)

Rank-order (X′) = {1, 3, 5, 2, 4} (2.5)

Rank statistics is also called ordinal invariant statistics because the rank-order is

independent of any type of monotonic variation in raw data.

11



2.2 Correlation

The concept of statistical correlation is central to this thesis. Suppose a pair of

random variables X and Y is sampled multiple times. If larger values of Y tend

to be associated with larger values than X, then X and Y are said to positively

correlated. If larger values of Y tend to be associated with smaller values of X,

then X and Y are said to be negatively correlated. If there is no tendency for Y

values to be associated with the X values, X and Y are said to be uncorrelated.

2.3 Kendall’s Tau Correlation

The Kendall’s rank correlation coefficient is a well known measure of correlation

between two variables using the ranks of samples in the variable [11]. The Kendall’s

rank correlation coefficient is commonly referred to as tau and denoted by τ . Let

X = X1, X2, ..., Xs and Y = Y1, Y2, ..., Ys be two set of s measurements. A pair of

measurements (Xi, Yi) and (Xj, Yj) is concordant, if

(Xi −Xj)(Yi − Yj) > 0 (2.6)

A pair of measurements (Xi, Yi) and (Xj, Yj) is discordant, if

(Xi −Xj)(Yi − Yj) < 0 (2.7)

The number of unique pairs between s measurements is s(s − 1)/2. If sc and sd

represents the number of concordant and discordant pairs respectively, tau between

12



two data sets X and Y of each sample size s is calculated as:

τ =
2(sc − sd)
s(s− 1)

(2.8)

The range of tau is from -1 to 1.

A measurement pair is tied if Xi = Xj or Yi = Yj. In the case of tied measurements,

total number of unique pairs get reduced due to the ties. The tau calculated with

ties is:

τ =
sc − sd√

( s(s−1)
2
−

∑
(sx(sx−1))

2
)( s(s−1)

2
−

∑
(sy(sy−1))

2
)

(2.9)

where sx and sy are number of tied samples in data sets X and Y respectively.

2.3.1 Graphical Representation of Tau

Figure 2.1 shows the discordance plot comparing the ranked parametric test states

measured on two example dies 1 and 2. For each die, the test values are measured

using eight different input states. The states are rank ordered according to the test

values sorted from minimum to maximum. The ranked state order is plotted for

die 1 and die 2. The same states of both the dies are connected using the dotted

lines. The dotted lines shows the unchanged rank of the input states 4 and 8 for

die 1 and die 2. The dotted lines also show the forward and backward shifting of

the ranks of the input states 1, 2, 3, 5, 6 and 7 for die 1 and die 2. The numbers

of crossings c in the Figure 2.1 represent the number of discordant pairs sd of two

measurements. If s is the number of states, there will be s(s − 1)/2 unique state
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Ranked State Order of Die 1

3 4 2 1 7 8 6 5
Ranked State Order of Die 2

Figure 2.1: Discordance plot showing correlation between two measurements. The
labels are the state numbers.

pairs. The tau is calculated using the discordance plot as [12]:

τ = 1− 4sd
s(s− 1)

(2.10)

Equation 2.10 is same as Equation 2.8.

In Figure 2.1, the number of crossings in the discordance plot is equal to 8.

The tau is equal to:

τ = 1− 4× 8

8(8− 1)
(2.11)

= 1− 32

56
(2.12)

= 0.43 (2.13)
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2.4 IDDQ Current Signature

Figure 2.2 shows the difference between IDDQ measurements of a defect free circuit

and a defective circuit. The first column labelled as ”Circuit” shows three types

of 3-input AOI (and-or-invert) gate circuits: a defect free AOI circuit, an AOI

circuit with a resistive short between Vdd and output node and an AOI circuit

with a resistive short between Vdd and ground. The second column labelled as

”IDDQ signature” shows IDDQ values of the three circuits for each of the eight

possible input states. In Figure 2.2a, no input combination is able to activate a

static path between Vdd and ground. The IDDQ flowing from Vdd to ground is

the background leakage current of transistors.

Figure 2.2b shows the AOI circuit with a resistive short Rd between output node

and Vdd. The input states ABC=000, 001, 010 do not activate any static path

between Vdd and ground. The circuit conducts three levels of defect-indicating

IDDQ for three sets of input states: first when ABC=011, second higher level of

IDDQ when ABC=100, 101, 110 and a third higher level of IDDQ when ABC=111.

In Figure 2.3c, the short Rd is directly between Vdd and ground. A constant high

IDDQ flows from Vdd to ground irrespective of any input combination.

Figure 2.2 shows that a defect can cause an IDDQ signature for all possible input

states. Figure 2.2b shows a multilevel IDDQ signature while 2.2c shows an elevated

IDDQ signature. A resistive short occurring between a switching node and any

other node is called an active defect. Only some of the input states activate the

static IDDQ flow from Vdd to ground through active defect. A short between Vdd
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Figure 2.2: Difference between IDDQ for input states of a defect-free circuit and
a defective circuit.

16



and ground will always cause an elevated static IDDQ flow despite any change in

input state combination. The defect is called a passive defect.

Figure 2.3 and 2.4 show IDDQ plots of dies from real 90nm production wafer-sort

data which will be analyzed in this thesis. For each die, IDDQ is measured on

64 input states. In 2.3a and 2.4a, the x-axis represents the 64 input states in

application order while in 2.3b and 2.4b, the x-axis represents the 64 input states

in sorted IDDQ values. The y-axis represents the range of IDDQ values for all 64

states from minimum IDDQ to maximum IDDQ measured on that particular die.

Figure 2.3 shows the example of a defect-free die. The IDDQ values in a defect

free die across all input states are consistent. Figure 2.4 shows a IDDQ plot of a

defective die. The elevated states cause the defective IDDQ to activate showing a

two level current signature.

2.5 Previous Work

Deep sub-micron technologies have large intrinsic leakage current which gets mixed

with elevated defect current. It becomes difficult to detect current due to defects

which give a weak signal [13]. Research efforts have focused on the statistical

post-processing (SPP) of test data to screen defective devices [14]. Statistical

post-processing is becoming a significant tool for identifying potential failures.

Statistical post-processing on IDDQ test data is a widely discussed topic in the

published literature largely due to high defect coverage of IDDQ.

One of the earliest papers describing IDDQ current signatures has been published

by Gattiker and Maly [6]. The authors characterize the defects as active and pas-

sive defects. The active defect results in a multilevel current signature. Outlier

17



●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

0 10 20 30 40 50 60
Input States by Application Order

ID
D

Q

●
●

●●
●●●●

●
●

●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●

●●●●
●

●●

●●

0 10 20 30 40 50 60
Input States by Sorted Order

ID
D

Q

Figure 2.3: IDDQ plots of a defect free die.
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Figure 2.4: IDDQ plots of a defective die.
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dies are selected using steps in the IDDQ signature. The input states are identified

which activate the step in current signature on the leakage paths. Die to die IDDQ

variation is removed from measurements by identifying the circuit personality cur-

rent signature. Dies having step signatures even after removal of variations are

declared as fails.

Thibeault proposed the ∆IDDQ method which attempted to remove the process

variations taking place from die to die [15]. For an input state pair(i,i-1), the

∆IDDQ can be represented as:

∆IDDQ = IDDQ(i) - IDDQ(i-1) (2.14)

Since the IDDQ contains die to die process variations, the author proposed that

the ∆IDDQ removes the variation by subtracting out the process variance in both

the input states. Assuming IDDQ state-to-state variance and IDDQ die-to-die

variance as independent, the variance of the IDDQ distribution, σ2
iddq is proposed

as sum of the state to state variance, σ2
state and die-to-die variance, σ2

icw. The

variance of ∆IDDQ distribution, σ2
delta is expected to be twice the state to state

variance, σ2
state.

σ2
iddq = σ2

state + σ2
icw (2.15)

σ2
delta = 2× σ2

state (2.16)

Equations 2.15 and 2.16 are experimentally verified on Sematech data. A proba-

bilistic framework is developed which reduces the probability of false fails decisions

as compared to the standard IDDQ method. A minimum number of test states
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required to obtain a high test quality is also calculated using the probability frame-

work.

Statistical post-processing using IDDQ Intra-die correlation values has been pro-

posed by Gudavalli and Daasch in [16]. The Intra-die correlation is calculated

using two measurements of IDDQ at two different temperatures on a die. When

Intra-die correlation is found to be low then the die is tagged as defective. The con-

fidence bounds of the correlation distribution of IDDQ are obtained using Monte

Carlo simulations. Dies which are outside the confidence intervals are tagged as

outliers. The Intra-die screen is verified on the production wafers.

This thesis is an extension of work done by Gudavalli and Daasch [16]. The corre-

lation between test responses of die pairs is utilized to identify the defective dies

based on the concepts of current signatures. This thesis attempts to reduce the

effects of process variation by calculating rank-order correlation of input states of

parametric test data of die pairs.
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Chapter 3

Defect Detection Model

3.1 Kendall’s Tau Calculation

Each die has a set of state-dependent parametric measurements. The measure-

ments can be ranked and each measurement is labelled with it’s rank. Tau can be

computed for each pair of dies on a wafer using the list of ranks for each die.

Figure 3.1 shows the tau matrix for inter-die pairs on an example wafer. The

example wafer has n dies. Each cell in the matrix has tau for a die pair. The

subscript associated with each tau value in the box represents the die pair, i.e, τij

is calculated from die i and die j pair. The diagonal values show the correlation

between same die pairs which will be always 1.

τij = 1 for(i = j) (3.1)

In Figure 3.1, for each tau value in lower triangle of tau matrix, there is equal

and corresponding value in upper triangle of tau matrix shown in same color in

the matrix. The lower triangle has all the possible combinations of inter-die tau

values.

τij = τij for(i 6= j) (3.2)

22



Figure 3.1: Tau matrix of die pairs.

3.2 Correlation Model

This thesis presents a correlation model for inter-die tau distribution on a wafer.

Figure 3.2 shows the graphical representation of the correlation model. The cor-

relation model hypothesizes that tau distribution calculated from all the die pairs

on a wafer is a mixture of two distributions. One distribution is called healthy

component and the other distribution is called faulty component. The healthy

component comes from the pairing of the healthy-healthy dies. The faulty compo-

nent comes from pairing of healthy-faulty, faulty-healthy and faulty-faulty dies on

a wafer.

A healthy die is hypothesized to have a single particular rank order of parametric

test responses which is not known a priori. A faulty die will have different rank

orders of test responses. The tau calculated between healthy-healthy die pairs
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will be high as compared to tau calculated between healthy-faulty die pairs. The

distribution for healthy-faulty die pairs is exactly identical to faulty-healthy die

pairs because of the symmetry of the tau matrix as shown in Figure 3.1. Due to

process variations, a defect can affect the faulty die test responses in random ways.

So, the tau calculated between faulty-faulty die pairs can have a broad range of

tau.

Figure 3.2: Correlation model showing inter-die tau distributions calculated using
die pairs.
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The proportion of healthy-healthy, healthy-faulty, faulty-healthy and healthy-healthy

pairs depend upon the yield of the wafer. For high yielding wafers, the number of

tau samples for healthy-healthy die pairs will be larger while smaller for all other

die pairs. The faulty-faulty component will be ignored because the sample size of

tau from faulty-faulty die pairs for high yielding wafers is low.

Let y represent the yield of the wafer having n number of dies. The number of

healthy dies will be y×n. The number of faulty dies is (1−y)×n. For n dies, total

number of possible pairs is n2. If all the same die pairs tau (τ = 1) are ignored,

the number of tau samples for different die pairs are as follows:

healthy-healthy tau samples = yn(yn− 1) (3.3)

healthy-faulty tau samples = y(1− y)n2 (3.4)

faulty-faulty tau samples = (1− y)n[(1− y)n− 1] (3.5)

The number of tau samples in healthy component is equal to number of tau samples

in healthy-healthy tau distribution.

Healthy component tau samples = yn(yn− 1) (3.6)

The number of tau samples in faulty component is equal to sum of tau samples

in healthy-faulty tau distribution, faulty-healthy tau distribution and faulty-faulty

distribution.

Faulty component tau samples = 2y(1− y)n2 + (1− y)n[(1− y)n− 1] (3.7)
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Figure 3.3 shows the mixture of synthesized healthy-healthy, healthy-faulty, faulty-

healthy and faulty-faulty distributions of the proposed correlation model. The

rightmost density curve (blue curve) on the mixture model shows the healthy

component density while the leftmost density curve (red curve) shows the faulty

component density.

Kendall's Tau
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Figure 3.3: Correlation model mixture of synthesized healthy-healthy, healthy-
faulty and faulty-healthy distributions. The healthy-healthy distribution is shown
by rightmost red curve while the healthy-faulty and faulty-healthy distributions is
shown by leftmost blue curve.

Figure 3.4 shows a tau distribution calculated from a wafer in a 90nm production

dataset which will be analyzed in this thesis. The tau is calculated for each die
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pair on the wafer by comparing the rank-order of 64 IDDQ test values of each die.
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Figure 3.4: Tau mixture histogram calculated from a wafer of the production 90nm
dataset.

3.3 Correlation Mixture Model Building

The tau distribution is a finite distribution between -1 and 1. The proposed cor-

relation mixture can be modelled by superimposing two generalized beta distri-

butions. The standard beta distribution covers the interval [0, 1]. A generalized

beta distribution scales the standard beta distribution to cover any finite interval

[l, h] [17].

A generalized beta distribution is a probability distribution defined between finite

intervals l and h and defined by two positive shape parameters α and β. The
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generalized beta distribution gives the probability density of a value x on the

interval [l, h]:

Beta(x |α, β) =
(x− l)α−1(h− x)β−1

B(α, β)(h− l)α+β−1
(3.8)

where B is the beta function

B(α, β) =

∫ 1

0

tα−1(1− t)β−1dt (3.9)

The two component generalized beta mixture will model the proposed correlation

mixture using two probability distributions. One probability distribution repre-

sents the healthy component obtained from healthy die pair responses. The second

probability distribution represents the faulty component obtained from die pairs

involving faulty responses. The tau mixture distribution can be represented as:

f(τ |p, αF , βF , αH , βH) = pBeta(αF , βF ) + (1− p)Beta(αH , βH) (3.10)

where αH and βH are the shape parameters of the healthy component, αF and

βF are the shape parameters of the faulty component and p is the mixing propor-

tion probability of faulty component in the tau mixture. The mixing proportion

probability of healthy component is 1− p in the tau mixture. The healthy mixing

proportion is the squared yield of the wafer.

Let τij, denote the tau calculated from a die pair, where n is the total number of

dies on a wafer. The subscripts i and j represent the die number from which the

tau is calculated. The maximum number of die pairs is equal to n(n− 1), if i 6= j.
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An indicator variable zij is introduced for each tau τij where

zij =

 1 if τij comes from faulty component

0 if τij comes from healthy component
(3.11)

The set of values of zij and τij represent the complete data. The mixing proportion

probability of faulty component, p can be calculated as:

p =

n∑
i=1
i 6=j

n∑
j=1

zij

n(n− 1)
(3.12)

3.3.1 Estimation Maximization (EM) algorithm

EM algorithm can be used to estimate the two component correlation mixture

model parameters. EM algorithm is a well known statistical tool developed for

problems involving mixture estimation. The EM is an iterative method which

finds the maximum likelihood estimates (mle’s) of the unknown parameters in a

statistical model [18]. The EM iteration alternates between performing an expecta-

tion (E) step, which computes the expectation of the log-likelihood evaluated using

the current estimate for the unknown parameters, and a maximization (M) step,

which computes the unknown parameters maximizing the expected log-likelihood

found on the E step.

Figure 3.5 illustrates the flow of the modified EM algorithm. The round boxes in

flowchart represent the start and end of the modified EM algorithm. The triangle

is the decision box. The correlation step shown in dashed line box modifies the
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original EM algorithm. The original EM treats each vector of {τij, zij} as indepen-

dent and identically distributed for the two components. The iid property of EM

is modified as the tau values are associated with die pairs and cannot be treated

as independent. The modified EM algorithm flow is described as follows:

Figure 3.5: Flow chart of modified EM algorithm. The box in dashed lines shows
the modified step in the EM algorithm.

1. Initialization step: The indicator variable zij is initialized for each die pair.

For the half of the τ population, zij is initialized as 1 while the other half
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of zij is initialized as 0. Shape parameters αF , βF , αH , βH are also initialized

having values equal to 1.

2. Estimation step: The mixing proportion probability is calculated using

Equation 3.12. Using the probability density function of a four parameter

beta distribution, each zij is updated.

zij = pBeta(τij|αF , βF ) + (1− p)Beta(τij|αH , βH) (3.13)

3. Maximization step: Using non linear maximization of log-likelihood func-

tion, the likelihood-maximizing shape parameters αF , βF , αH , βH are calcu-

lated. The log-likelihood function is given by:

log-likelihood(α, β, z) =
n∑
i=1
i 6=j

n∑
j=1

[zijlog{Beta(τij|αF , βF )}

+(1− zij)log{Beta(τij|αH , βH)}] (3.14)

Non linear maximization returns a log-likelihood value which is stored as a

last-likelihood.

4. Correlation step:

4.1 Compute step: For each die, zij values are normalized which gives a

probability for each die di being faulty.

di =

n∑
j=1
i 6=j

zij

n− 1
(3.15)

The midpoint of die probabilities is chosen as threshold. If a die is
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above the threshold, the die is given a faulty probability equal to 1 and

if below the threshold, the die is given a faulty probability equal to 0.

4.2 Assignment step: Using the die faulty probability, zij is updated

according to correlation model. Considering die pairs, if both the dies

are healthy, zij is assigned the value 0. If one or both of the dies in the

pair are faulty, zij is assigned the value 1.

If{(di == 0)&&(dj == 0)}

then zij = 0

else zij = 1

5. Check Convergence step: With a new set of zij and shape parameters

αF , βF , αH , βH estimation and maximization step is repeated. The maxi-

mization step gives a current likelihood value which is compared with last-

likelihood value. If the difference between the successive log-likelihoods is

greater than 0.1, the estimation and maximization step is repeated. If the

difference is less than 0.1 or iteration count of EM is greater than 1000, the

modified EM has converged.

The modified EM converges to the shape parameter estimates αF , βF , αH , βH of the

tau mixture and to the probability of each tau belonging to the faulty component.

The total number of die pairs is n(n− 1), if i 6= j . Since, the healthy component

mixing proportion is (1− p), there are (1− p)n(n− 1) healthy component values.

On the other hand, if y is the yield of the wafer, then number of healthy component

values = yn(yn− 1).
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Since mixing proportion probability of healthy component (1 − p) is known after

modified EM converges, the approximate yield of the wafer can be solved as:

yn(yn− 1) = (1− p)n(n− 1) (3.16)

Since n ≥ 1, the Equation 3.16 can be approximated as:

y2n2 = (1− p)n2 (3.17)

The yield of the wafer is solved as:

Yield of wafer, y ' 2
√

(1− p) (3.18)

Using the probability of each tau zij, the probability of each die di belonging to

the faulty component is also computed using the Equation 3.15.

3.4 Monte Carlo Simulations

Monte Carlo is a statistical technique in which random samples are used to simulate

data. Since the user knows the underlying model from which the simulated data

is generated, statistical analysis such as modified EM method used in this thesis

may be tested with a range of input data.

The modified EM algorithm is tested for results of shape parameters and the yield

using Monte Carlo simulations before application of production data. For testing,

two component beta mixture distributions are synthesized. By simulating different

input conditions, sensitivity of modified EM to different mixture distributions is
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assessed.

The Monte Carlo testing of modified EM works in following steps:

1. The total number of dies on a wafer, yield of the wafer, shape parameters

(αH , βH) and (αF , βF ) of healthy and faulty component distributions respec-

tively are given as inputs to the Monte Carlo simulator.

2. The simulator synthesizes a healthy beta component distribution using ran-

dom beta samples from shape parameters (αH , αH) in the interval (-1,1).

The simulator also synthesizes a faulty beta component distribution using

random beta samples from shape parameters (αF , αF ) in the interval (-1,1).

3. The two component beta mixture is given to the modified EM method. The

modified EM method estimates the healthy and faulty component distribu-

tion shape parameters and the probability of each tau belonging to either

healthy or faulty component distribution.

4. The die faulty probability is calculated using the tau faulty probability. A

probability threshold is chosen above which all the dies are declared as faulty

and below which all the dies are declared as healthy.

5. The estimated yield and shape parameters are compared with user given

yield and the shape parameters.

Figure 3.6 shows the two component beta mixture generator synthesizing a mixture

of two beta distributions. The whole box represents a wafer having n number of

dies. The four sub blocks in Figure 3.2 are filled by the two synthesized beta

distributions using the proportion of tau samples mentioned in Equations 3.3,
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3.4 and 3.5. In Figure 3.6, the bold tau values represent the healthy component

distribution in the mixture indicating tau values coming from healthy-healthy die

pairs. The underlined tau values represent the faulty component distribution in

the mixture indicating tau values coming from healthy-faulty, faulty-healthy and

faulty-faulty pairs.

Figure 3.6: Two component synthetic beta mixture generator. Bold tau values are
healthy component tau values while underlines tau values are faulty component
tau values.

To check the sensitivity of modified EM to uncertainty in inputs, the following

testing scenarios are used:

35



1. Separation between two input component distributions: By changing

the shape parameters αF , βF , αH , βH , the two input component distributions

in the mixture model can either be seen as widely separated as shown in

Figure 3.7a or mixed which looks like a single distribution as in Figure 3.7b.

Figure 3.7a and b is simulated using 100 dies and a yield of 75%. The

rightmost curve represents the density of healthy component distribution

while leftmost curve represents the density of faulty component distribution.

The separation tells the resolving power of modified EM method.

2. Yield: The yield in Monte Carlo simulator can be changed to simulate high

and low yield wafers. For low yield wafers, the faulty component distribution

will have more tau samples than the healthy component distribution. Figure

3.8 shows the simulated effect of yield on tau distributions. 100 dies are

taken as input to simulator with a yield of 40% and 90%.

3. Reduced number of input states: The rounding of tau sample to 4, 3, 2

and 1 decimal places is done to simulate the effect of reduced number of test

input states. If s is the number of input test states per die, the tau calculated

for die is inversely proportional to s(s−1). If number of states, s is reduced,

the resolution of tau value will decrease to lower number of decimal places

which means the data will have more ties. More number of ties mean less

resolution for modified EM method to work.

The Monte Carlo simulator synthesizes two random beta distributions to be given

as input to modified EM method. However, the production data contains noise

such as process variation and tester noise. The tau distribution calculated from

wafers in a production dataset will not resemble mixture of two beta distributions.

36



Synthesized Kendall's Tau

D
en

si
ty

0.
0

0.
5

1.
0

1.
5

−1.0 −0.5 0.0 0.5 1.0

(a) Widely separated healthy and faulty components. Simulated parameters are αH = 14,
βH = 8, αF = 3, αH = 7, p = 0.51.
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(b) Mixed healthy and faulty components. Simulated parameters are αH = 3, βH = 4,
αF = 5, αH = 3, p = 0.51.

Figure 3.7: Two component mixtures showing examples of varying mixing propor-
tion of healthy and faulty components.
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(a) Yield of wafer = 90%. Simulated parameters are αH = 14, βH = 8, αF = 3, αH = 7,
p = 0.19.
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(b) Yield of wafer = 40%. Simulated parameters are αH = 14, βH = 8, αF = 3, αH = 7,
p = 0.84.

Figure 3.8: Beta mixture model showing examples of effect of yield on proportion
of healthy and faulty component distributions.
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There is need of a noise model in the Monte Carlo simulator. So, a third beta

distribution (αC , βC) is introduced as a noise (contaminant distribution) to both

the healthy and faulty components. Figure 3.9 shows the example of a noisy beta

distribution (in dotted lines) introduced in the two component beta mixture. The

mixture with the noise model is represented as:

f(τ |p1, p2, αF , βF , αH , βH , αC , βC) = p1Beta(αF , βF )

+p2Beta(αH , βH)

+(1− p1 − p2)Beta(αC , βC) (3.19)

where p1 is the mixing proportion of the faulty component, p2 is the mixing pro-

portion of the healthy component and αC , βC are the shape parameters of the

contaminant distribution. The contamination factor, C determines the amount of

contaminant distribution in the original mixture distribution. For example, if C =

0.3, 30% of the tau values of healthy component distribution will be replaced by

values from contaminant distribution and 30% of values of faulty component distri-

bution will be replaced by values from contaminant distribution. The contaminant

factor C is a constant value. To introduce more variability in the distribution, C

can be chosen to be a value coming from a normal distribution having a mean C

and some standard deviation. The results of Monte Carlo simulations are described

without noise and with noise model in Chapter 4.
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Figure 3.9: An example mixture of healthy and faulty component distributions
showing where a contaminant distribution is placed (dotted lines). Simulated
parameters are αH = 18, βH = 9, αF = 3, αH = 9, p = 0.64, αC = 3, βC = 3.
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Chapter 4

Results

4.1 Monte Carlo Simulation Results

The Monte Carlo simulation is run on synthesized tau mixtures. The tau mixtures

are synthesized using different types of beta distributions including wide, narrow,

separated and mixed distributions. The number of dies for synthesized tau mix-

tures range from 100 to 600. Synthesized tau mixtures are generated for low yield

(20% yield) wafers to high yield (95% yield) wafers. By changing all the input

parameters, 256 different tau mixtures are synthesized and given to modified EM.

The modified EM gives the shape parameters estimate and the squared yield of

the mixture. The following subsections describe the overall Monte Carlo results

without the noise and with noise model.

4.1.1 Without Noise

Figure 4.1 and 4.2 show the correlation between 256 input shape parameters α

and β and the estimated shape parameters α and β. For all the different types of

input mixtures, correlation between estimated and input parameters is high. The

modified EM estimates correctly estimates the input parameters of the underlying

beta distributions in the tau mixture distribution.

Figure 4.3 shows the correlation between input yield of the mixture and the es-

timated yield. The input yield is changed from 20% to 90%. For high yielding

wafers, the method correctly identifies the healthy and faulty dies. As the yield
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(a) Correlation between input αH and estimated αH .
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(b) Correlation between input βH and estimated βH .

Figure 4.1: Comparison between input α’s and β’s and estimated α’s and β’s.
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(b) Correlation between input βF and estimated βF .

Figure 4.2: Comparison between input α’s and β’s and estimated α’s and β’s.
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Figure 4.3: Comparison between input yield and estimated yield.

starts decreasing, the faulty distribution has more samples than healthy distri-

bution and the mixture distribution looks like a single healthy distribution. As

the yield starts decreasing below 35%, modified EM starts misclassifying dies as

healthy dies.

The modified EM method correctly identifies the faulty dies when the tau are

rounded to 4, 3 and 2 places of decimal. However, when the rounding is done to

1 place of decimal, the modified EM method does not work. The modified EM

miss-classifies all the dies as healthy due to large number of ties in tau distribution.

4.1.2 With Noise Model

Figure 4.4a, 4.4b and 4.5 show three examples of effects of the contamination

factor, C on the two component tau distribution of Figure 3.9 with C = 0, C = 0.3
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and C = 0.5 respectively. With values of C greater than 0, the healthy and faulty

components start mixing with each other.

Figure 4.6 shows the estimated yield of the 256 input tau mixtures in presence

of noisy distributions with C = 0.31. Comparing Figure 4.6 with Figure 4.3, the

estimated parameters are not degraded with respect to input parameters. From

the value of C = 0 to C = 0.31, the estimated parameters are almost equal to

input parameters except for lower yields. After C is increased from C = 0.31, the

estimated parameters gradually degrade with respect to input parameters.

Figure 4.7 shows the correlation between input yield of the mixture and the esti-

mated yield when noise is maximum, C = 0.5. The 256 tau mixtures are given as

input to the modified EM. The correlation between input and estimated yields is

degraded due to variation in estimated yields as compared to input yields. For any

given yield from 20% to 90%, the input and estimated yields are degraded. This

degradation is gradual from examples shown in Figure 4.3 and Figure 4.6. When

estimated yields are degraded, the estimated shape parameters are also degraded

with respect to the input shape parameters.

Figures 4.8 and 4.9 show the degraded correlation between 256 input shape param-

eters α and β and estimated shape parameters α and β in presence of noise with C

= 0.5. Figures 4.8 and 4.9 show the case of maximum contamination factor where

C = 0.5. Above C = 0.5, the contaminant distribution becomes the originating

distribution.

As the noise level is increased, the healthy and faulty distribution start mixing with

each other and modified EM starts misclassifying healthy dies as faulty and faulty
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(a) Tau Distribution with C = 0.
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(b) Tau Distribution with C = 0.31.

Figure 4.4: Tau histograms with and without noise. Simulated parameters are
αH = 18, βH = 9, αF = 3, αH = 9, p = 0.64, αC = 3, βC = 3.
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Figure 4.5: Tau histogram with maximum noise factor, C = 0.5. Simulated pa-
rameters are αH = 18, βH = 9, αF = 3, αH = 9, p = 0.64, αC = 3, βC = 3.
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Figure 4.6: Comparison between input yield and estimated yield in presence of
noise with C = 0.31. The Figure 4.6 can be compared to Figure 4.3.
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Figure 4.7: Comparison between input yield and estimated yield in presence of
noise with C = 0.5.
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(b) Correlation between input βH and estimated βH .

Figure 4.8: Comparison between input α’s and β’s and estimated α’s and β’s with
C = 0.5.
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(b) Correlation between input βF and estimated βF .

Figure 4.9: Comparison between input α’s and β’s and estimated α’s and β’s with
C = 0.5.
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dies as healthy. The correlation between the input and estimated shape parameters

is low for both healthy and faulty distributions. The reason is mixture distribution

is a mixture of three distributions instead of two beta distributions. The Monte

Carlo simulation examples show that the modified EM method estimates correct

input shape and yield parameters. However, increasing noise results in combining

of healthy and faulty distributions which mean misclassifying of healthy and faulty

dies. Monte Carlo simulations also show low correlation for yields lower than 40%

between estimated and input parameters. Yields lower than 40% are usually rare

in production wafers.

4.2 Application on Production Data

4.2.1 Data Description

Product A is a 90nm memory ASIC with 4 lots and total number of 4546 dies. Lot

1-4 has 25, 17, 24 and 25 wafers respectively. Each wafer has average number of

60 dies. The dies are tested at two temperatures - (high temperature) 85◦C and

(low temperature) 10◦C. Dies are first tested at 85◦C and then the dies passing

wafer-sort at 85◦C are passed to 10◦C. Failing dies at 85◦C are rejected and are

not tested further downstream. Each die has pre-stress 64 IDDQ measurements

and 64 post-stress IDDQ measurements for both temperatures. Each die consists

of 4.2M transistors and has 460 signal IOs, 58K bits of register arrays, 29774 LSSD

latches and 25 scan chains. Each die has an embedded DRAM with capacity of

344MBits. The low Vt transistors are 4% of total number of transistors.

Product B is a 130nm ASIC with 2 wafers having a total of 1068 dies. Each die has

256 IDDQ measurements. The Product B is tested only at a single temperature.
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The IDDQ test is used as the state dependent parametric test for calculation of

tau for each wafer of Product A and B. The wafer-sort test data at 85◦C (high

temperature) of Product A is taken for calculations. For each wafer of Product

A, tau is calculated using the 64 IDDQ pre stress measurements of die pairs. For

Product B, 256 measurements of IDDQ are used to calculate tau between die

pairs. Figure 4.10 shows the tau histograms for two example wafers from Product

A. Figure 4.10a and 4.10b show the tau histogram calculated from two example

wafers of Lot 1 from Product A. Figure 4.11 shows the tau histogram calculated

from a wafer of Product B.

The tau distributions calculated for each wafer of Product A and B are given

input to modified EM method. The modified EM gives the probability of each

tau sample belonging to healthy or faulty distribution. Using the tau probability,

defective probability of a die is calculated.

4.2.2 Defective Probability Plots

Figure 4.12 shows the defective probability plots of two example wafers from Prod-

uct A. The x-axis represents the die index of a wafer. The y-axis represents the

defective probability of each die. The triangles in the probability plot represent dies

which are 85◦C wafer-sort passing dies. The squares represent the 85◦C wafer-sort

failing dies. Dies will be tagged as modified EM fails above a probability threshold

of 0.8 represented by a dotted blue line.

In Figure 4.12a, the white space between low probability and high probability dies

is quite evident. Most of the 85◦C wafer-sort passing dies (triangles) lie in the

low probability region with probability ranging from 0.2 to 0.5. In the probability
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(a) Product A - example wafer 1.
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(b) Product A - example wafer 2.

Figure 4.10: Tau histograms of two example wafers from Product A.
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Figure 4.11: Tau histogram of an example wafer from Product B.

range from 0.5 to 0.8, both 85◦C wafer-sort passing and failing dies are scattered.

Above probability = 0.8, there is a group of wafer-sort failing dies and four wafer-

sort failing dies. The four dies are tagged as fails by modified EM method. Out

of four dies tagged as fails, one die failed in downstream pattern test at 10◦C.

The pass/fail probability threshold for a die is difficult to decide as a constant

for all wafers. The defective probability of each die depends upon the tau sample

probability of belonging to healthy/faulty distribution. A healthy/faulty distri-

bution can vary for different wafers depending upon the correlation between test

values of die pairs. Four probability thresholds of 0.95, 0.90, 0.85 and 0.80 will be

used in this thesis for tagging a die being modified EM faulty.
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(b) Product A - example wafer 2.

Figure 4.12: Defective probability plots of two example wafers of Product A. Tri-
angles are 85◦C wafer-sort passes while squares are 85◦C wafer-sort fails.
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In Figure 4.12b, most of the 85◦C wafer-sort passing dies (triangles) lie in the

low probability region from 0.3 to 0.5. There are ten dies scattered in the region

between 0.5 and 0.8. There are six 85◦C wafer-sort passing dies above 0.8 which

will be tagged as fails by modified EM method. Out of six dies tagged as fails, one

failed downstream 10◦C delay test and one failed downstream 10◦C IDDQ test.

Dies which have defective probability greater than 0.8 and tagged as fails by mod-

ified EM, but pass the downstream 10◦C wafer-sort test are called as overkills. In

Figure 4.12a, three dies are overkills while in Figure 4.12b, four dies are overkills.

Dies having defective probability less than 0.8 and tagged as passes by modified

EM, but fail the downstream 10◦C are called as test escapes. The two wafers in

Figure 4.12 have zero test-escapes.

There is a trade-off between overkill and test escape based on the value of proba-

bility threshold. If the probability threshold is increased, less number of dies will

be tagged as fails and overkills will be less but more defective dies will escape the

test. In the case of lower probability threshold, more dies will be tagged as fails.

However, more dies will be overkills but there will be less test escapes.

Figure 4.13 shows the defective probability plots of the two wafers of Product

B. Figure 4.13a and 4.13b show that there is a bunch of wafer-sort passing dies

(triangles) in probability region from 0.5 to 0.6. Most of the wafer-sort failing dies

(squares) have probability greater than 0.85. There is a remarkable gap in both

wafer 1 and wafer 2 defective die probability plots separating the high and low

probability dies.
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(b) Product B - wafer 2.

Figure 4.13: Defective probability plots of two wafers of Product B. Triangles are
wafer-sort passes while squares are wafer-sort fails.
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4.2.3 Key Figures of Merit

Figure 4.14a shows the original wafer-sort test and Figure 4.14b shows the place-

ment of modified EM method which acts as an improved screen in the test flow.

The key figures of merit of modified EM method will be calculated by the dies

tagged as passes and fails by modified EM method and comparing their results at

10◦C wafer-sort test. Let’s assume:

1. Killed dies mean the dies rejected by modified EM method.

2. Healthy dies mean 10◦C wafer-sort passing dies.

3. Faulty dies mean 10◦C wafer-sort passing dies

The overkills and test escapes of modified EM method are measured in terms of kill

ratio and DPPM. Yield loss will be calculated to observe the impact of improved

screen on yield. As shown in Figure 4.14, let’s denote:

a = Total number of dies (4.1)

b = Total number of 85◦C wafer-sort failing dies (4.2)

c = Total number of 85◦C wafer-sort passing dies (4.3)

d = Total number of 10◦C wafer-sort failing (Faulty) dies (4.4)

e = Total number of 10◦C wafer-sort passing (Healthy) dies (4.5)

p = Total number of dies killed by modified EM (4.6)

q = Total number of dies not killed by modified EM (4.7)

For original test flow, c can be expressed as:

c = d+ e (4.8)
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(b) Improved screen after placement of modified EM method in test flow.

Figure 4.14: Figure illustrating the original and modified test flow.
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For improved screen flow, c can be expressed as:

c = p+ q (4.9)

Figure 4.15 shows a 2 × 2 contingency table. Dies which fail both 10◦C test and

modified EM method are called as common fails. Dies which are killed by modified

EM method but pass 10◦C test are overkills. Dies which are passes by modified

EM method but fail in 10◦C test are test escapes. Dies which are passes to both

10◦C test and modified EM method are common passes.

Fail
(Killed)

Pass
(Not Killed)

Fail(Faulty) Pass(Healthy)

10°C wafer-sort test

Modified 
E.M 
test

Common fails

Test escapes

Overkills

Common passes q

p

ed c

Figure 4.15: Calculating the figures of merit of modified EM method using 2 by 2
contingency table.

The 10◦C wafer-sort failing dies represent dies which are failing stuck-at pattern

tests, delay fails and IDDQ fails. There are other failing mechanisms of dies in

Product A such as e-dram and ring oscillator fails which will not be considered in
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the kill ratio and DPPM calculations. The reason is that modified EM algorithm

is applied to IDDQ data and hence other fail mechanisms cannot be compared

with fails detected using IDDQ.

Kill ratio (KR) denotes the ratio of healthy dies killed for each defective die killed

by the modified EM test. Higher kill ratio is a problem for test because more dies

are thrown away at the cost of eliminating a defective die. It is calculated as:

KR =
Common Fails

Overkills
(4.10)

The improved screen reduces the number of defective dies passed to the downstream

test. Using the contingency table, the DPPM is calculated for both original test

flow and the improved screen flow. The difference between the DPPM of original

test flow and modified test flow is DPPM reduction. Higher the DPPM reduction,

more efficiently the method is screening the defective dies. It is calculated as:

∆DPPM = Original Test Flow DPPM - Improved Screen DPPM

=
d

c
− d− Common Fails

c

=
Common Fails

c
(4.11)

Yield loss should be as minimum as possible. The change in yield loss due to

improved screen is calculated as:

∆YL = Improved Screen YL - Original Test Flow YL

=
p

c
(4.12)
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The tables 4.1, 4.2, 4.3 and 4.4 summarize the kill ratio of Product A for probability

threshold value of 0.95 for Lots 1-4. The bold numbers on the x-axis of the tables

represent the number of healthy dies killed by modified EM method. The bold

numbers on the y-axis of the tables represent the number of faulty dies killed. If

a bold number is picked from y-axis of table and another bold number is picked

from x-axis, the ratio of two bold numbers (y-axis/x-axis) denotes a kill ratio. The

numbers in the table correspond to the number of wafers having a kill ratio of

y-axis/x-axis in a lot. For example, in Table 4.1, ten wafers in lot 1 have a kill

ratio of 0/0. A kill ratio of 0/0 means that zero dies (healthy/faulty) are killed.

For lot 1, ten wafers fall in the 0/1 kill ratio category. The kill ratio equal to 0/1

means zero faulty dies are killed with one healthy die being killed. Kill ratio equal

to 0/n is the worst kill ratio for a test which does not kill any faulty die but kills

n healthy dies. In Table 4.1, two wafers have a kill ratio of 1/0. Kill ratio equal

to 1/0 means that one faulty die is killed with zero healthy dies killed. Kill ratio

equal to n/0 is the ideal kill ratio of a test which kills n faulty dies without killing

any healthy die. There are other ranges of kill ratio in the tables.

2 0 0 0 0 0 0 0 0 0
1 2 0 0 0 0 0 0 0 0
0 10 10 2 1 0 0 0 0 0

0 1 2 3 4 5 6 7 8

Table 4.1: Kill ratio of Lot 1 for probability threshold = 0.95. Total KR = 1/9.

2 0 0 0 1 1 0 0 0 0
1 0 0 1 1 3 0 0 0 0
0 2 2 3 2 0 1 0 0 0

0 1 2 3 4 5 6 7 8

Table 4.2: Kill ratio of Lot 2 for probability threshold = 0.95. Total KR = 1/5.
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2 0 0 0 0 0 0 0 0 0
1 1 1 2 0 0 0 0 0 0
0 10 8 1 1 0 0 0 0 0

0 1 2 3 4 5 6 7 8

Table 4.3: Kill ratio of Lot 3 for probability threshold = 0.95. Total KR = 1/5.

2 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0
0 22 0 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7 8

Table 4.4: Kill ratio of Lot 4 for probability threshold = 0.95. Total KR = 1/0.

The kill ratio is aggregated for all wafers of a lot and shown as Total KR in the

title of the corresponding table. For a probability threshold of 0.95, kill ratio of lot

1 equal to 1/9 is highest. Lot 4 has the lowest kill ratio of 1/0. Lot 3 and 4 have a

equal kill ratio of 1/5. Lot 4 is having a low kill ratio because the tau distribution

mixture calculated from each of 22 wafers falling in 0/0 kill ratio category do not

have enough separation between healthy and defective components for modified

EM to resolve. The tau distribution looks like a single healthy distribution which

results in all dies being tagged as healthy by modified EM and consequently having

a low faulty probability.

2 0 0 0 0 0 0 0 0 0
1 1 0 1 1 0 0 0 0 0
0 3 4 7 6 0 1 1 0 0

0 1 2 3 4 5 6 7 8

Table 4.5: Kill ratio of Lot 1 for probability threshold = 0.80. Total KR = 1/17.

Table 4.5, 4.6, 4.7 and 4.8 shows the kill ratio of modified EM on Product A using a

probability threshold of 0.8. For lot 1, the total kill ratio is 1/9 as compared to kill

ratio of 1/17 when probability threshold of 0.8 is used. For lot 2, the total kill ratio
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2 0 0 0 0 0 1 0 1 0
1 0 0 2 1 0 1 2 0 1
0 1 2 0 3 1 0 0 1 0

0 1 2 3 4 5 6 7 8

Table 4.6: Kill ratio of Lot 2 for probability threshold = 0.80. Total KR = 1/6.

2 0 0 0 0 1 0 0 0 0
1 2 1 1 0 1 1 0 0 0
0 5 6 5 0 1 0 0 0 0

0 1 2 3 4 5 6 7 8

Table 4.7: Kill ratio of Lot 3 for probability threshold = 0.80. Total KR = 1/5.

decreased from 1/6 to 1/5 when using a higher probability threshold of 0.95. As

the probability threshold is increased, less number of dies get killed by modified

EM. Consequently, kill ratio decreases for increasing probability threshold. For

lot 4, the kill ratio almost remained constant for both threshold of 0.8 and 0.95

because no dies were above the probability threshold of 0.95.

Figure 4.16 summarizes the DPPM reduction (∆DPPM) and increase in yield

loss (∆YL) and overkill in percentage for the probability threshold (PT) values of

0.95, 0.90, 0.85 and 0.80 for all lots in Product A. For lot 1, the DPPM reduction

increases from 20% using probability threshold of 0.95 to 30% using probability

threshold of 0.90. As the probability threshold is decreased, more dies will be killed

by modified EM method and more faulty dies will come in the lower probability

range. There is no change in DPPM from 0.90 to 0.80 because there are no dies

2 0 0 0 0 0 0 0 0 0
1 2 1 0 0 0 0 0 0 0
0 18 2 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7 8

Table 4.8: Kill ratio of Lot 4 for probability threshold = 0.80. Total KR = 1/1.
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within the probability range of 0.90 to 0.80 which are faulty dies. For lot 1, there is

an average 27.5% reduction in DPPM level for all probability threshold values.For

lot 2, average DPPM reduction is 42.7% which is significant amount of DPPM

reduction. For lot 3, there is jump of 11.6% in DPPM reduction as threshold is

decreased from 0.95 to 0.90 which means a lot of faulty dies are in range of 0.95

to 0.90. Lot 4 has an average DPPM reduction of 9.3%.

Figure 4.16 also shows the corresponding increase in yield loss and overkill for all

lots. The yield loss and overkill show a increasing trend as probability threshold

is increased due to increased killing of dies by modified EM method. The average

yield loss is lowest in lot 4 while highest for lot 2. There is a trade-off between

yield loss and DPPM reduction. Increasing yield loss is costly but the product

quality depends upon DPPM reduction.

4.2.4 Effect of Reduced IDDQ Input States

IDDQ has a high observability which means a small number of input states will

be enough to achieve adequate defect coverage. In the overall set of input states,

only some input states can activate a defect in the circuit. There can be a small

subset of input states which can have a good mix of both elevated and non elevated

states. Using smaller number of input states can separate the healthy and faulty

components in the tau mixture distributions.

Figure 4.17 shows the two tau distribution from an example wafer in lot 4. The

healthy component density is shown in leftmost curve while the faulty component

density is shown in rightmost curve. Figure 4.17a shows the tau distribution cal-

culated using 64 IDDQ input states while Figure 4.17b shows the tau distribution
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calculated for the same wafer using 16 IDDQ input states. In Figure 4.17b, the

overlap between healthy and faulty components is much less as compared to over-

lap in Figure 4.17a. The group of 16 IDDQ states have a distributed mix of healthy

and faulty IDDQ values which results in separation of the healthy and faulty tau

components. The group of 64 IDDQ states for tau calculation has more healthy

IDDQ values which results in mixing of faulty and healthy tau components.

For Product A, the 64 IDDQ input states can be divided into 2 groups of 32 states

or 4 groups of 16 states or 8 group of 8 states. For each of the group, tau mixture

distribution is calculated and given to the modified EM method. The modified EM

calculates defective probability of each die. DPPM reduction using the modified

EM method is calculated for each of the IDDQ states subset.

Figure 4.18 and 4.19 shows four discordance plots between test ranks of two dies

from lot 1 in Product A. The discordance is calculated using 1st, 2nd, 3rd and

4th groups of eight IDDQ states. The number of crossings in the discordance plot

is equal to the discordant pairs. More the number of discordant pairs, less will

be the tau value between two test states. Figure 4.19a shows that the number

of crossings are maximum in comparison of 3rd group of 8 IDDQ states for the

two dies. Only the comparison of 3rd group of IDDQ vectors for two dies is able

to catch the defect. The 1st, 2nd and 4th group of IDDQ vectors shows high

correlation between test states for die 1 and die 2. The die 1 failed in 10◦C IDDQ

test.

Figure 4.20 summarizes the DPPM results for the two probability thresholds of

0.8 and 0.95. Figure 4.20a shows the DPPM reduction in % for all the groups of
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(a) Tau distribution calculated from 64 IDDQ states.
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(b) Tau distribution calculated from 16 IDDQ states.

Figure 4.17: Tau distributions showing comparing the overlap of healthy and faulty
components using 64 IDDQ states and 16 IDDQ states.
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Ranked State Order of Die 1

Ranked State Order of Die 2

(a) 1st group of 8 states.

Ranked State Order of Die 1

Ranked State Order of Die 2

(b) 2nd group of 8 states.

Figure 4.18: Discordance plots of test ranks using 1st and 2nd group of eight IDDQ
states of two dies from lot 1 in Product A.
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Ranked State Order of Die 1

Ranked State Order of Die 2

(a) 3rd group of 8 states.

Ranked State Order of Die 1

Ranked State Order of Die 2

(b) 4th group of 8 states.

Figure 4.19: Discordance plots of test ranks using 3rd and 4th group of eight IDDQ
states of two dies from lot 1 in Product A.
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IDDQ states using probability threshold of 0.8. The 1st subset of 32 states gives

the highest average DPPM reduction which is more than the DPPM reduction

obtained using 64 IDDQ states. Lot 2 has the highest DPPM reduction with 50%.

The DPPM reduction numbers get lower for subset of 16 IDDQ states. Among

the group of 8 vectors, 4th group has the highest DPPM reduction. Similarly

using probability threshold of 0.95, DPPM reduction is plotted for all the groups

of IDDQ states in Figure 4.20b. As the probability threshold is increased, it is

expected to have less DPPM reduction because less dies will be killed by modified

EM. For 0.95, the whole graph gets lowered when compared to graph of 0.80. The

DPPM reduction is again highest using 1st subset of 32 IDDQ states. In the group

of 8 IDDQ states, 4th group has the highest DPPM reduction.

For maximum screening of defective dies, 1st 32 group of IDDQ states performs

the best among the other groups.
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(a) Probability threshold of 0.80.

(b) Probability threshold of 0.95.

Figure 4.20: DPPM reduction plots using defective die probabilities obtained from
a reduced subset of IDDQ states. The dies above the probability threshold 0.80
and 0.95 are tagged as defective.
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Chapter 5

Conclusion and Recommendations

5.1 Conclusion

This thesis for the first time presents an inter-die rank screen which effectively

screens out the defective die. The inter-die rank screen utilizes the change in

rank-order of defective dies as compared to the consistent rank-order of healthy

dies. The inter-die rank screen does not require the prior knowledge of rank of

test states. There is no assumption for a wafer having a fixed order of a healthy

parametric test rank-order which will be used to compare against the rank-order

of defective dies.

The probability plots show there is a clear separation of healthy dies from faulty

at wafer-sort as diagnosed by modified EM method. Thus, instead of putting

individual limits on each of the parametric test states, the inter-die rank screen

gives one number to differentiate between healthy and faulty dies. The inter-die

rank screen solves the parametric limit setting problem by reducing the effects of

process variation. The screen detects downstream defective die at wafer-sort.

There is a trade-off between kill rate and DPPM improvement. As the probability

threshold of tagging a defective die is lowered, DPPM reduction takes place but

the kill rate also increases. The inter-die rank screen works also on a reduced

subset of input states if the states contain both elevated and non elevated vectors.

If the reduced subset contains only elevated or only non elevated vectors, then the

correlation among all the dies will be high and defective probability of all the dies
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will be low. There is a reduction in kill rate but then the DPPM improvement also

decreases.

The inter-die rank screen is insensitive to defective dies in case of passive defects,

systematic defects and process shifts. A passive defect will activate all the vectors

and hence the rank order of a defective die will be same as the healthy rank order.

A systematic defect can result in higher tau values becoming a part of healthy

distribution. The inter-die rank screen also won’t work if the parametric test

variations in a wafer are random and not in monotonic fashion. The test data in

that case is not rank-able.

In the Monte Carlo simulations, there is a scenario where rounding of tau values

will not cover the reduced number of input states problem. If tau is calculated from

a subset of reduced input states which contain a proportion of both elevated and

non elevated vectors, then the separation between healthy and faulty distribution

will be good and hence there will not be a resolution problem. However if the

subset contains only elevated or non elevated vectors, then the resolution problem

will kick in for the modified EM method because there won’t be enough resolution

to separate between healthy and faulty distributions.

5.2 Recommendations

The modified EM method can be applied on any parametric test data such as

minVdd or path delay. MinVDD of each die can be ranked at different frequencies

and correlation can be utilized to screen defective dies. Path delay depends upon

the input states. Critical path delay is measurable at wafer-sort test. For a die,

maximum path delay from different critical paths can be measured for a specific
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state transition. A die will have path delay values for different state transitions.

Tau can be calculated for inter-die pairs using different state transition path delay

values. Correlation model can thus be build for the path delay using the same

concept as IDDQ. Figure 5.1 shows the variation of path delays of 7 different

critical paths on a die across the wafer. For a die, correlation can be calculated

between inter-die pairs using maximum of seven path delays for a state transition

and a correlation model similar to IDDQ correlation model can be built.

2000 3000 4000 5000

Path Delay (in ns)

P
D

F

Figure 5.1: Variation of path delays of 7 different critical paths on a die across
wafer [1].

Monte Carlo simulations show the miss-correlation between estimated parameters

of mixture distribution in presence of a noisy beta distribution. The tau distri-

bution calculated from production data has noise such as process noise and tester

noise. If the noise in the tau calculated from production data can be modelled as a
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third beta distribution and subtracted from the tau mixture, more clear separation

can be introduced between healthy and faulty dies. This can help in reducing the

kill rate of the modified EM method.

My contribution to this thesis was to modify the existing code of EM algorithm

and modify it to introduce the correlation model. The Monte Carlo simulator was

also built to simulate the synthesized data. This thesis was presented as a poster

in IEEE International Test Conference 2011 [19].
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