3-3-2014

Bicycle Facilities and the Uptake of Air Pollution by Active Travelers

Alexander Y. Bigazzi
Portland State University, abigazzi@gmail.com

Miguel A. Figliozzi
Portland State University, figliozzi@pdx.edu

James F. Pankow
Portland State University

Wentai Luo
Portland State University

Lorne M. Isabelle
Portland State University

Let us know how access to this document benefits you.

Follow this and additional works at: https://pdxscholar.library.pdx.edu/cengin_fac

Part of the Civil and Environmental Engineering Commons, Environmental Monitoring Commons, and the Nature and Society Relations Commons

Citation Details
Bigazzi, Alexander Y.; Figliozzi, Miguel A.; Pankow, James F.; Luo, Wentai; and Isabelle, Lorne M., "Bicycle Facilities and the Uptake of Air Pollution by Active Travelers" (2014). Civil and Environmental Engineering Faculty Publications and Presentations. 91. https://pdxscholar.library.pdx.edu/cengin_fac/91

This Presentation is brought to you for free and open access. It has been accepted for inclusion in Civil and Environmental Engineering Faculty Publications and Presentations by an authorized administrator of PDXScholar. For more information, please contact pdxscholar@pdx.edu.
Bicycle Facilities and the Uptake of Air Pollution by Active Travelers

Presenter
Miguel Figliozzi
Assoc. Prof.
Civil and Env. Engineering
Portland State University

2014 TPLUAQ
March 3, 2014
Bicycle Facilities and the Uptake of Air Pollution by Active Travelers

RESEARCH TEAM

Alex Bigazzi, Ph.D. Candidate
Miguel Figliozzi, Assoc. Prof.
Jim Pankow, Prof.
Wentai Luo, Senior Res. Assoc.
Lorne Isabelle, Senior Res. Assoc.
Outline

1. Goals
2. Data Collection
3. Intake/Uptake
4. Modeling Results
5. Conclusions
6. Next Steps
Urban Bicyclists’ Pollution Uptake

Framework

Adapted from Ott, Stieneman & Wallace, 2007

Vehicle Emissions → Air Quality

Inhalation

Traveler Exposure

Uptake

Health Effects

Urban Bicyclists’ Pollution Uptake
Urban Bicyclists’ Pollution Uptake
Data Collection

- 75 breath VOC samples
- 13 days
- 3 subjects
- 123 compounds
On-Road Sampling Example

Paired subjects; ambient & breath VOC (20-30 minutes, 3-5 miles)
Sampling Equipment

- TVOC
- Smart phone
- Cameras
- Cycle computer
- Sampler Pump
- Sample Cartridge
- PM
- CO₂
- ACE Device
- Breath Bags
- CO
- Urban Bicyclists’ Pollution Uptake
Breath Sampling

• Developed as medical screening
• End-tidal breath good proxy for blood concentrations
 – Low water-solubility VOC
 – Hydrocarbons like benzene, toluene,...
• Requires *very precise* instrumentation
• New standard for analysis with GC/MS
On-Road Sampling
Exposure Data coverage

~40 hours of data over 13 days
- GPS and sensor data 1 second resolution
- Breath & ambient samples 30 minutes
Inhalation

Exposure Concentration $\frac{mg}{m^3}$

Breath Rate $\frac{m^3}{sec}$

Duration sec

Intake Dose mg

$$V_T \times f_B$$

$$\left(\frac{m^3}{breath} \right) \times \left(\frac{breaths}{sec} \right)$$

Urban Bicyclists' Pollution Uptake
Bicyclists’ Exertion

• External work
 – Speed & acceleration
 – Weight & slope
 – Wind & drag
 – Rolling resistance (tires, road)

• Personal factors (minor effects)
 – Basal metabolic rate
 – Fitness (exercise response)
Bicyclist Uptake Studies

- Blood/urine samples (x1)
 - Metabolites of BTEX compounds (VOC)
 - Urban bikers > rural bikers
- Induced sputum samples (x1)
 - Lung-deposited black carbon
 - Bicyclists > transit riders
- Modeled uptake (x3)
 - Doses increases with exertion
PSU Uptake Research

• New approach
• High-resolution intake/uptake measurement
• Breath sampling in bags
Some Exposure Results

Urban Bicyclists' Pollution Uptake

m,p-Xylene
Ethylbenzene
Toluene
Benzene

Avg. Ambient Conc. Normalized to Tabor

0 1 2 3 4 5
Results Ambient & Breath

Urban Bicyclists’ Pollution Uptake

Benzene

% concentration increase (vs. Tabor)

Ambient

Breath

Major Arterial
Local
I-205
Regression - SURE Models

- Each of the select compounds is its own equation (same specification)
- Error correlations across equations for each observation are allowed
- Advantage: better use of the available information
Regression - SURE Models

Dep. Variables: breath/ambient concentrations

1. Benzene
2. Toluene
3. Ethylbenzene
4. m,p-Xylene
5. o-Xylene
6. 1,3,5-Trimethylbenzene
7. 2-Ethyltoluene
8. 1,2,4-Trimethylbenzene
9. 1,2,3-Trimethylbenzene
Breath concentrations

\[C_{breath} = \beta_0 + \beta_1 C_{ambient} + \beta_2 C_{preAmbient} + \beta_3 \frac{C_{preBreath}}{C_{preAmbient}} \]

- “History” impacts are significant
- Ambient coefficient 1.5 to 2.5 times bigger than preAmbient

\[\beta_1 > \beta_2 \]
Change of Breath concentrations

\[
\Delta C_{\text{breath}} = \beta_0 + \beta_1 \Delta C_{\text{ambient}} + \beta_2 \frac{C_{\text{preBreath}}}{C_{\text{preAmbient}}} + \beta_3 TVOC_{CV}
\]

(+) (-) (-)

- “History” impacts are still significant
- Rate of change negatively affected by high relative breath concentrations
- High variability in \(TVOC_{CV} \) reduces breath concentrations

Clearance impacts?
Policy/design implications?
Breath/Ambient concentration as a function of **Road Type**

\[C_{breath} = \beta_0 + \beta_1 \text{RoadType} \]

\[C_{ambient} = \beta_0 + \beta_1 \text{RoadType} \]

- Road type is a dummy variable (5 different types of roads, Tabor the reference)
- Road type is a much better predictor of ambient than breath concentrations
- Arterials have 1.5 to 2.5 higher ambient concentrations than local/bike paths
- Major arterials 25% more than minor

- Non-linear AADT impacts?
Wrapping up

• The method works: exposure predicts breath concentrations
 – Breath elasticity to exposure: 0.3-0.5
• Significant history effects
• Significant road-type effects
• Minimal subject-specific effects
Future Work

We have a novel data set of direct uptake measurements

– Much more analysis work to do!

1. AADT impacts
2. Policy and Design Implications
3. Bicycle network/facility design guidance for pollution dose impacts
4. Extend to pedestrians
Thank you!

abigazzi@pdx.edu figliozzi@pdx.edu
http://web.cecs.pdx.edu/~maf/

Acknowledgements:
 OTREC/NITC
 City of Portland
 Metro
 NSF