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Analytic modeling of gain-switched lasers. II. Laser 
amplifiers 

Lee W. Casperson 

School of Engineering and Applied Science, University of California, Los Angeles, California 90024 
(Received 6 October 1975) 

The pulse transfer characteristics of gain-switched laser amplifiers are investigated analytically. New closed
form solutions have been obtained including arbitrary space- and time-dependent pump distributions. The 
general results are specialized to the important cases of uniform and traveling-wave excitation. Input-pulse 
shapes considered mclude step functions, practical oscillator output pulses, and also the inherent 
spontaneous-emission noise. The results lead to improved models for pulse amplifiers and mirrorless 
traveling-wave lasers. By proper choice of the pump characteristics arbitrary output-pulse waveforms can 
be synthesized. 

PACS numbers: 42.60.N, 42.60.L, 42.60.C 

I. INTRODUCTION 

One of the principal uses of lasers is in light-pulse 
amplification. The obvious function of such an amplifier 
is to increase the energy density in a short optical sig
nal; and there are numerous well-known applications of 
such pulses in the industrial, military, and fusion re
search areas. Other consequences of pulse amplification 
which mayor may not be deSirable, include alteration 
of the frequency spectrum, temporal shape, and timing 
of the propagating pulse. Because of the wide applica
tions of pulse amplifiers, it is important that their 
transfer characteristics be thoroughly understood. The 
purpose of the present work is to develop new analytical 
models which explicitly account for space- and time
dependent pumping distributions in the laser amplifier. 
A time dependence of the pumping is inevitable, and in 
traveling-wave amplifiers a spatial dependence is pur
posely introduced. Previous analytical models have al
ways assumed that no pumping occurs during the transit 
of the optical pulse. 1-3 

In a recent work the properties of gain-switched laser 
oscillators have been considered in detail, and output
pulse characteristics have been derived for several 
practical laser configurations. 4 The present study of 
laser amplifiers is developed from the same basic 
saturation equations. In Sec, II the equations are solved 
for the problem of pulse propagation in a saturating 
amplifier with arbitrary pumping during the pulse 
transit. The implications of these results are explored 
in Sec. III where stationary- and traveling-wave pump 
models are considered together with a step-function in
put intensity. An important model in practice is an 
amplifier in which the gain rises uniformly along the 
amplifier length due to a decaying transfer of excitation 
from some other state of the system. Initially the gain 
is small so the leading edge of the pulse grows more 
slowly than the later portions. Farther along the ampli
fier the gain has achieved its maximum value by the 
time the pulse arrives, Thus the leading edge of the 
pulse ultimately grows and saturates the amplifier at the 
expense of the pulse tail. The transfer characteristics 
with traveling-wave excitation are also analyzed and 
this limit applies to recent Blumlein and electron-beam
pumped devices suc~ as the 3371-A nitrogen laserS and 
the 1600- and nOO-A hydrogen lasers, 6,7 
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The step-function input is the simplest function to 
trea~ anal~ticallY, but it is not a natural pulse shape for 
a gam-swltched oscillator output. In Sec, IV the trans
fer characteristics of prepumped laser oscillators are 
derived using realistic oscillator pulse shapes which 
have been obtained previously. 4 With exponentially 
rising input pulses stationary solutions are obtained 
having effective velocities greater than the group 
velocity. The pulse propagaion formalism is also useful 
for pulse shaping. By proper choice of the pump distri
bution an arbitrary output-pUlse shape can be achieved 
and the details of this procedure are examined in Sec. ' 
V, In Sec. VI the propagation equations are applied to 
unsaturated laser amplifiers and the effects of spon
taneous relaxation are included. 

II. DERIVATION OF PROPAGATION EQUATIONS 

The first objective of this analYSis is to obtain an 
explicit expression relating the output intenSity to the 
input intensity in a saturating laser amplifier. Various 
applications of these results are considered in Secs. III 
and IV, The basic saturation equations for a narrow in
tenSity spectrum ICe, t) in a homogeneously broadened 
laser amplifier are4 

aI{z t) 1 aI(z t) 
~ +;-~ = hvzs[I(z, t) + IoJNCe ,t) - yICe ,0, 

g 

(1) 

aNCe,O = SCe t) _ sICe t)NCe t) _ N(z, t) 
at ' , , T2 ' 

where NCe, t) is the population inversion, v is the group 
velocity, y is the distributed loss coefficie~t, SCe, t) is 
the pump function, and T2 is the inversion lifetime. The 
spontaneous-emission input is approximately 10 
=7fhvz~v/2A, where A is the cross-sectional area, and 
the detector is assumed to intercept a solid angle cor
responding to a blackbody mode. Equations (1) and (2) 
are two coupled equations for the unknown functions 
ICe, t) and NCe, t). With highly dispersive laser media it 
is also possible that the group velocity would be a 
space- and time-dependent function. 8 For practical 
high-power lasers, however, the disperSion effects are 
small compared to the basic saturation phenomena of 
interest here and Vg is regarded as a constant. 

In propagation studies it is generally useful to intro-
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duce the new time and space parameters 

T=f-z/v g , I;=z. (3) 

In terms of these variables the intensity and inversion 
functions are governed by the simpler equations 

01(1; 1') ---at- = hv, s[I(I;, 1') + lo]N(I;, 1') - yl(l;, 1'), 

aN(l;, 1') = S(I; 1') _ sN(1; 1')1(1; 1') _ N(I;, 1') . 
aT ' " 1'2 

(5) 

Equation (5) is a linear first-order equation in l' which 
may be integrated yielding9 

N(I;, 1') = exp[ - s [' 1(1;, T') dT' - T/T2J 
• _00 

where the reasonable initial condition N(I;, - 00) = 0 has 
been applied. When Eq. (6) is substituted into Eq. (4) 
one obtains the final governing equation 

al~t 1') = hv,s[I(I; , 1') + 10 ] exp (- s i~ 1(1;,1") dT' - ~) 

x f~ S(I;, 1") exp(s l~'I(I;, 1") dT" + ~ )dT' - yl(l;, 1'). 

(7) 
As our first example we consider the evolution of a 

saturating pulse in a laser amplifier in which there is 
no spontaneous emission or relaxation (1'2=00,10 =0) 
and distributed losses are negligible (y=O). Thus Eq. 

.(7) can be written 

aI(~~ 1') = hv,sI(I;, 1') exp ( - s i~ 1(1;,7') dT) 

x 1.~ S(I;, 1") exp(s i: 1(1;, T") dT") dT' . (8) 

In the following paragraphs the exact general solution 
of this equation is derived. Applications and other solu
tions are considered in Secs. ITI-VI. 

In terms of the new intensity function C(I;, 1') 
==sf:ool(I;,T')dT' Eq. (8) reduces to 

a2 C(I;,T) a [ ( ] 
anT =-hv,sa:iexp -C 1;,1') 

xf~ S (!; , T') exp[ C (I; , T')] dT' . (9) 

The order of differentiation can be interchanged on the 
left-hand side of this equation. Then an integration by 
parts with respect to l' yields 

ac~() = _ hv,s exp[ - C(I;, 1')] i~ S(I;, 7') exp[C(I;, T')] dT' 

+ hv,s f~ S(t, T') dT' (10) 

If both sides of Eq. (10) are multiplied by the new 
function D(t, 1') = exp[ C(t ,1')], one obtains 

aD~() =-hvis 1~ S(t,T')D(t,T')dT' +hv,sD(t,T) 

x f~ S(t,T')d7'. 
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(11) 

Differentiation with respect to l' gives 

(12) 

If the order of differentiation on the left-hand side is 
interchanged and the new function E(I;, 1') = aD(i;, 1')/01' is 
introduced, then Eq. (12) can be integrated with respect 
to i; and the result is 

E(I;, T)=E(O, 1') exp t hv,s( S(I;', 7') dT' dl;', (13) 
o _00 

where it is assumed that amplification begins at the co
ordinate i; = O. From the previous definitions it follows 
that E(O, 1') is given by 

Equation (13) may be integrated directly with respect 
to 1', and one finds that D(I;, 1') is given by 

D(I;, 1') = s f.: 1(0, T') exp[sf.: 1(0,1''') dT" 

C T' 
+ J hv,sJ S(I;' ,T")dT" dl;'JdT' +1, (15) 

o _00 

where the condition D(I;, - 00) = 1 has been employed. 
Now the intensity is 

1(1; 1') = _1_ aD (I; ,1') 
, sD(I;,T) aT 

=1(O'T)exp~ 1~ I(O,T')dT' 

+ Ie hv, 1~ S(I;', 7') dT' dt') 

x [s 1~ 1(0 7') exp(s 1:1(0,1''') dT" 

+ [e hv,s 1: S(I;', T") dT" dl;') dT' + IJ -1. (16) 

This is our principal result. It is an explicit expression 
for the output intensity in a laser amplifier having an 
arbitrary input intensity 1(0,1') and an arbitrary space
and time-dependent pump S(I;, 1'). The following exam
ples include both stationary- and traveling-wave pump 
distributions. 

III. EXPONENTIALLY PUMPED LASERS 

To investigate the implications of Eq. (16), it is 
necessary to assume a model for the pumping function 
S(I;,T). A function which is often useful in the analysis 
of practical pulsed lasers is one which after initiation 
decays exponentially in time. This exponential shape 
can arise when the actual pump source (discharge, 
electron beam, optical pump, etc.) decays exponentially 
or when the transfer of excitation from some other level 
of the system decays exponentially. A general traveling
wave exponential pump source can be written in the 
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= 0, (17) 

where ve is the velocity of the excitation pulse, In the 
transformed coordinates Eq. (17) is 

S(I;,T)=~ exp (_2- __ I; +_1;_), T+i.- _i.- >0 
hV, ST3 T3 VgT3 Ve T3 l'g ve 

(18) 

Using Eq, (18), the inner integrals in Eq. (16) can be 
readily performed. The results are tedious to express, 
however, since the form of the solution depends on 
whether T is greater or less than I;(V;l - V;l) and also on 
whether ve is greater or less than vlf' In the limit ve 
» Vg the result is 

1(1;, T)=I(O, T) exp{sl' 1(0, T') dT' + gol'gT3 [exp 1_ 2- -_1;_) 
o \ T3 T2Vg 

- exp (- ~) J}(s [T 1(0, T) exp{s 1T

' 1(0, i') dT" 

+ goVgT3feXP (_ T' __ I; ) _ exp(- T' )J}dT' L' T3 T2Vg T3 

+ exp(- gol;~ -1, (19) 

provided that the intensity is zero prior to T = 0. This 
limit corresponds to the case of uniform pumping over 
the entire length of the amplifier. 

Plots of Eq, (19) are given in Fig. 1 where the pulse 
shape is shown as a function of the time coordinate T 

for various amplifier lengths 1;. The input-pulse shape 
used in these plots is 

1(0,T)=11 , T>O 
=0, T< 0. 

(20) 

N 
E 

~ 
~ 

10 

0.4 O.B 1.2 
T (ps) 

FIG. 1. Output intensity as a function of time for various 
amplifier lengths in a laser with a uniform exponentially de
caying pump rate and a step-function input. 
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1.6 

10 75 

o 0.4 O.B 1.2 
T (ps) 

FIG. 2. Output intensity as a function of time for various 
amplifier lengths in a laser with a traveling-wave exponen
tially decaying pump rate and a step-function input. 

1.6 

This step function is the simplest shape to study analy
t ically, and it is sufficient to illustrate most of the 
essential features of the amplifier transfer characteris
tics. With Eq. (20), Eq. (19) reduces to 

1(1;, T) =11 exp{sI1T+ goVgT3[exp (- T: - T
2
: g ) - exp (- T: )J} 

x (S/1 (T exp{Sl1 T' + gov g T3 fexp (_ I... __ 1;_) 
.10 L T3 T2Vg 

- exp (- ~: ) }dT' + exp(- gOl;f • (21) 

The numerical constants used in constructing Fig. 1 
are approximately appropriate for TEA CO2 lasers 
(within the limitations of the two-level model of the 
laser transition). In particular we have used the values 
s=10-3 m2/J, 11=109 W/m2

, go=l mol, vg=3xI0Bm/s, 
T3 = 1 jJ.s, and the length I; is measured in m. Several 
features of the plots are significant. For short distances 
the leading edge of the pulse (T = 0) experiences no 
gain, while the decay of the later portion of the pulse 
shows that the inversion eventually becomes depleted. 
With greater amplification lengths the leading edge does 
experience gain, and the pulse maximum moves for
ward. This change of behavior results because the re
mote portions of the amplifier receive substantial 
pumping before the arrival of the light pulse. For dis
tances greater than about 50 m a "shock front" develops 
with the energy maximum at T = 0. 

A second limit of practical interest occurs when the 
pump pulse propagates along the laser amplifier at the 
same velocity as the optical signal. With short-lived 
laser states or self-termination (fast filling of the lower 
level), this is the only way to obtain efficient pulse 
amplification. In the limit ve = V g the exponential pump 
pulse of Eq. (18) reduces to 

S(I;,T)= ~h exp (-2-), T>O 
V,STa T3 

=0, T<O (22) 
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Therefore, the intensity of Eq. (16) can be written 

I(!;, T) =1(0, T) exp{slT 1(0, T') dT' + go I: [ - exp (- :3) J} 
x ("iT 1(0, T') exp{s iT' 1(0, TN) dT" 

+ gol:[l - exp (- ~~ )J}dTI + 1)"1 , (23) 

where again it is assumed that the intensity is zero 
prior to T = 0. With the step-function input pulse of Eq 0 

(20) this is 

1(1:, T) =11 exp {SII T + go I: [1 - exp (- :3 )J} 
x (SI1!aT exp {SII T' + go I: [1 - exp (- ~JJ}dTI + 9 ~l 

(24) 
Plots of Eq. (24) are given in Fig. 2 using the same 

numerical values as in the previous example. The 
initial behavior of the transmitted pulse is the same as 
in the case described previously. With increasing val
ues of the amplifier length 1:, the intensity maximum 
advances toward T = 0. No shock front develops now, 
however, because the leading edge of the pulse always 
experiences zero gain. It is shown in Sec. VI that Eq, 
(24) (or other traveling-wave solutions) also represent 
the behavior of mirrorless traveling-wave lasers in 
which the input is spontaneous-emiss ion noise. It is on
ly necessary to replace the input II by the noise param
eter 10= rrhlJ1t.lJ/2A. These results provide the most 
complete analytic solutions for several recent lasers 
including the ultraviolet (uv) Blumlein pumped N2 and 
H2 lasers5

,6 as well as longitudinal electron-beam
pumped devices. 7 

IV. PREPUMPED LASERS 

With long-lived laser levels 11 becomes possible to 
complete the pumping of the laser transition prior to 
introduction of the optical pulse. This technique pro
vides the greatest pulse effiCiency and the maximum 

. amount of pulse sharpening. To explore this limit in 
detail it is assumed that the laser is excited by the ex
ponential pulse 

s(z,t)=--&kL exp C..l +.!E..), 
hlJ1S T 3 \ T3 T3 

=0, (25) 

where tp is the initiation time for the pump pulse. In the 
transformed coordhates Eq. (25) is 

=0, 

With Eq. (26), Eq. (16) becomes 

1(1:, T) =1(0, T) exp{s iT 1(0, T') dT' 

+lc 
go(I:') [1- exp '- 2.. -~ +lP..) Jdl:} 

o \ T3 V/T3 73 
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(26) 

x(; [T 1(0, T') exp{sla T'I(O, Til) dT" 

+ gO(I:') l-exp _-_-,-'-+-R. dt' dr' +1 I ' [ (T' /:' f)]} )_1 
o T3 I"T3 T3 

where it has been assumed that the intensity is zero (27) 

prior to T = ° and that the pump initiation time Ip is 
negative. If the pump pulse occurs very early Up - _ ue) 

this is 

I(l;. T) =1(0, T) exp [s (1(0, T') dT') 
. 0 

x{s.r 1(0, T') exp[s r T' 1(0. T") dT" 1 
o . 0 

where the numerator and denominator have been multi
plied by the factor exp[ - f~ go (1:') dl:' J. The denominator 
can be integrated by parts yielding 

x{expls JOT 1(0, T')r]T' ] + exp[ - (ga(l;') d1:' J-1}-' 
(29) 

and this special case of our propagation formulas is 
equivalent to equations which have been given 
previously. 1_3 

Equation (29) is illustrated first for the special case 
of a step-function input pulse. More realistic laser
oscillator pulses are then considered. With the step 
pulse of Eq, (20), and a t-independent gain Ko, Eq. 
(29) reduces to 

I, exp(sII T) 
1(1:, T) = exp(s~Tf +exp(- g~ff-=l . (30) 

Equation (30) is plotted in Fig. 3 using the same values 
as employed previously. Even for short amplifiers the 
leading edge of the pulse experiences the greatest gain 
and depletes the population inversion seen by the re
mainder of the pulse. 

10 

0.4 0.8 1.2 

T (/ls) 

FIG. 3. Output intensity as a function of time for various 
amplifier lengths in a prepumped laser with a step-function 
input. 

1.6 
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For a more realistic example we consider now the 
case that the input pulse is generated by a low-loss 
laser oscillator with instantaneous gain switching. Thus 
the input intensity is governed by4 

1(0 T) = - O. 2l1 (ge + 2s/o) T> 0 
, ge exp( -(ge + 2slo)T 1 + 2slo ' 

=0, T<O, (31) 

where 20% coupling has been assumed. Equation (29) is 
plotted in Fig. 4 using Eqo (31) and the previous numer
ical values s = 10-3 mZ/J, 10 = 10-6 W 1m2

, go = 1 m- l
, and 

ge = 1.5 X lOB sol. It is apparent from the figure that the 
primary effect of the amplifier is to enhance the leading 
edge of the pulse without affecting the trailing edge. 
Thus the pulse appears to advance ahead of the position 
it would have if propagating at the velocity v g' One 
readily finds that the peak value of the pulses shown in 
the figure is Ipeak = g/ s = 1. 5 X lOll W 1m2

• Since we 
have assumed that the pulse begins abruptly at T=O, a 
shock front ultimately forms at this time indicating that 
spontaneous emission in the amplifier itself has also 
ceased to be negligibleo 

T-1e similar shape of the curves in Fig. 4 suggests 
that a steady-state-pulse solution should be possible 
propagating at a velocity Vs greater than the velocity t'g' 

and this solution can be readily obtained. If the inten
sity, population inversion and pump are functions of 
only the new variable T =l-zlvs ' Eqs. (1) and (2) can 
be written 

(1 1) dl(T) 
Vg -~ -;rr = hv/SI(T)N(T) , (32) 

d~f) = S (T) - sl(T)N(T) , (33) 

20~-------r--------~------~------~ 

16 

N 
E 12 

~ 
~ 40 

30 

0.1 0.2 0.3 

T (~s) 

FIG. 4. Output intensity as a function of time for various 
amplifier lengths in a prepumped laser with an input pulse 
from an instantaneously gain-switched laser oscillator. 
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where loss and spontaneous relaxation terms have been 
set equal to zero. These equations can be solved di
rectly by techniques similar to those employed in Sec. 
II. However, in a prepumped laser we have S(T) =0, 
and Eqs. (32) and (33) may be combined to obtain 

d~~) = gel(T) exp (- s 1: I(T') dT) , (34) 

where the gain coefficient 

hVISNo 
Ife = V_I _ V-I 

g s 

has been introduced. 

The integral of Eq, (35) is 

s/(T) = - Ife exp[ - s r: I(T') dT'] + Ife 

(35) 

(36) 

and the boundary condition 1(-00) =0 has been imposed. 
In terms of the definition C(T) = s f.:' I(T') dT' this can 
be written 

dC _ dT 
1- exp(- C) -ge (37) 

and the integral of this equation is 

C(T) = In[1 + Q' exp(gJ)]' (38) 

where Ci is an integration constant. Therefore the inten
sity distribution of the stationary-pulse solution is 

sl(T) = Ci Ife expWc T) . 
1 + Ci exp (ge T) 

With an initial condition at T = 0, Eq 0 (39) is 

I(T) = I(O)gc exp(gc T) -
gc - sl(O) + sl(O) exp(geT) . 

(39) 

(40) 

This is a rounded step function of the type implied by 
Fig. 4, and as expected the maximum value is gels. 

It follows from Eq. (35) that the apparent velocity of 
the stationary-pulse solution is directly related to the 
exponential growth constant of the leading edge g ac-
cording to C 

(41) 

This result differs Significantly from a previously given 
expression for the effective pulse velocity in a saturat
ing amplifierlO 

(42) 

In particular Eq. (41) shows that the velocity of an ex
ponential pulse may be infinite or negative, while the 
velocity in Eq. (42) is always positive. A negative 
velocity Simply implies that with suffiCiently high gain 
a particular intensity level on the exponential leading 
front emerges from the amplifier before the same inten
sity level enters the amplifier. This situation is illu
strated in Fig. 5 using numbers appropriate to our CO2 
model (vg=3xl08 mis, go=l mol, and gc=1.5XlOB sol). 
It follows from Eqs. (40) and (41) that the spatial depen-
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-
o 0.5 1.0 1.5 2.0 

z 1m) 

FIG. 5. Instantaneous intensity of an exponentially growing 
pulse in an unsaturated laser amplifier. The fact that a parti
cular intensity level emerges from the amplifier before that 
same intensity enters the amplifier implies that the effective 
"velocity" within the amplifier is negative. 

dence of the intenSity inside of the amplifier prior to 
saturation is governed by exp(go - g/ v,,)z = exp(O, 5z), 
while the intensity outside varies like exp(- gcz/v .. .) 
= exp(- 0, 5z). A negative propagation velocity is similar 
to the behavior of laser amplifiers in spectral regions 
of anomalous dispersion where the group velocity itself 
may be negative. 11 In fact the familiar group velocity 
formula 

.!:!..L = (1 +!: dn)_1 
v ph n dv 

(43) 

is in the same form as Eq. (41), and ordinarily the dis
persion correction dn/ dv is also proportional to the 
gain go' 

The input-pulse shape assumed in Fig. 4 has an ex
ponential leading edge, and this case corresponds to the 
output pulse from a laser oscillator with instantaneous 
switching of the gain or loss. In some lasers the gain 
does not normally switch on instantaneously, and this 
situation is illustrated in Fig. 6. Here we have used 
the input-pulse shape4 

1(0,7)= O. 2l0 exp{gc 7- gc 73 ~ - exp (- ;3 )]+ 2S107} 

X (2S10 11 exp{gc 7' - gc 73 [1 - exp (- ~J] 
+ 2s10 7' } d7' + 1) _1 , 7> 0, 
=0, 7<0, (44) 

in Eq. (29) together with the numerical values gc 
=L5xI08 s-I, 73=10-6 S, s=10-3 m2/J, and 10 =10-6 W/ 
m2

• The constant 73 is the exponential growth constant 
of the unsaturated gain, and the factor 0.2 represents 
the output coupling of the laser oscillator. There are 
some similarities between Figs. 4 and 6, but there are 
also some obvious differences. As the leading front 
advances in the laser amplifier the peak amplitude 
diminishes because the slope of the leading edge is 
reduced. If the slope were greater earlier in the pulse, 
the opposite limit of pulse sharpening would occur. 
Since abrupt switching has been assumed at 7=0, a 
shock eventually forms at this time. 

V. PULSE SHAPING 

For some applications of high-powered laser pulses, 
precise pulse tailoring is required. A currently fashion
able example involves the high-energy pulses of pro-
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posed laser-fusion reactors. For the pellet-compres
sion devices, numerical simulations suggest that the 
optimum pulse shape has a time dependence of the 
form 12 

=0, 7<0, (45) 

where 70 is the pellet collapse time. This type of pulse 
produces the most efficient shock compression and 
heating of a spherical DT pellet. There are various 
ways that such a pulse shape can be achieved. With 
continuously variable optical shutters it is obvious that 
any arbitrary pulse shape should be possible, However, 
a shutter technique is optically inefficient and does not 
guarantee that additional distortion will not occur in the 
succeeding laser amplifier stages. In a more practical 
approach the desired output-pulse shape is synthesized 
as a superposition of smaller rectangular pulses, 12 

The purpose of the present discussion is to show that 
an arbitrary pulse shape can also be obtained by a prop
er choice of the space- and time-dependent pumping in 
the final stages of laser amplification. 

Equation (16) is a general relationship expressing the 
output intenSity in terms of the input intenSity and the 
pump distribution S(t, 7), This formula can be readily 
inverted to yield the pump distribution needed to obtain 
a particular output intensity. To be specific we make 
the reasonable assumption that the total pump energy 
density deposited in the amplifier is independent of po
sition. Then if the pump is in the form of a traveling 
wave S(7) and the length of the amplifier is to, Eq. (16) 
reduces to 

6 r------r------r------,------r------,------, 

5 

4 

= 
2 

oL-____ ~_A~~ __ &_ __ ~~ __ ~ ____ ~ ____ ~ 

o 0.2 0.4 0.6 0.8 1.0 1.2 

T (I's) 

FIG. 6. Output intensity as a function of time for various 
prepumped amplifer lengths. The input pulse is from a laser 
oscillator with a gain switching time of T 3 = 1 jls. 
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FIG. 7. Pump pulse needed to obtain an "ideal" output-pulse 
shape for laser fusion. 

1(~0, 7') =/(0,7') exp[s f~ 1(0,7") d7" + hlJ1S~0 f~ 5(7") d7'J 

X {s 1~ 1(0, r) exp [s f: 1(0, 7''') dr' 

+ hlJ1S~0 f~' 5(7''') dr'J dr + 1}-1 

=!. ~ In{s IT 1(0, 7") exp [s rT' 1(0,7''') d7''' 
s 07' _00 Joo 

20 

+ hlJ1S~0 1~' 5(7''') d7''' ] dr + 1}- (46) 

An integration and exponentiation yield 

s J T 1(0, r) exp[s J T' 1(0,7''') HI 
.~ -~ 

+ hlJ1S~oJ: 5(7''') d7'''] dr+ 1 = exp[s J: I(~o, 7'1) dT'j. 
- - (47) 

Differentiation with respect to 7' gives 

sl(O, 7') exp[s r 1(0, 7'1) d7'1 + hlJ1 S ~o r 5(7") dr j 
, _00 .. 00 

= sl(~o, 7') exp[s ,Coo 1(~0, 7") drj (48) 

or 

exp (hlJ1S~0 f: 5(7")d7') 

= ~~~o,';! exp (s f: [I(~o, 7") - 1(0, r)] dr) . (49) 

Taking the logarithm of both sides and differentiating 
again leads to the final result 

1 [0 (/(~, 7')) l 11 
5(7') = hlJ1S~0 07' In 1(0,7') +s I (~o, 7') -/(0, 7')]J' (50) 

Equation (49) is an explicit expression for the travel
ing-wave pump distribution needed to obtain an arbi
trary output intensity pulse from an arbitrary input 
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intensity pulse. To illustrate the procedure, we con
sider again the example of pellet-compression laser 
fusion. The Simplest reasonable input pulse is the step 
function given in Eq, (20). Combining Eqs. (20), (45), 
and (50) one concludes that the required pump function 
is 

5(7')= -- -In :l! 1--1 {a [1 ( '1') _2J 
hlJ, S ~o 07' 11 7'0 

=0, 7' < O. (51) 

Performing the differentiation yields 

5(7')= -h 1 l- {_2_ +S[/2(1_~)-2 -/~}, 
lJ1SbO To - 7' 7'0 J 7'>0 

=0, 7' < o. (52) 

The general features of Eq. (52) can be shown by a basic 
numerical example, and plots of the equation are given 
in Fig. 7 assuming an initial gain of 10 (12=10/1 ) and a 
reasonable pellet collapse time of To = 20 ns. The re
quired pump profile in this case resembles closely the 
shape of the desired output pulse. If the input pulse 
were to rise gradually instead of being constant as in 
this example, then the pump function would not have to 
rise so steeply. 

One may inquire next whether pump functions of this 
type might be realizable with practical lasers. It is 
clear that useful modulated amplification is only possi
ble if the pump mechanism can be varied on a time 
scale comparable to the desired variations in the ampli
fier output. In flashlamp-pumped neodymium-glass 
lasers the fluorescence rise time is several hundred 
Ils, which would be much too slow for fusion pulse 
applications. With the electron-beam-pumped 1700-...\ 
xenon laser, on the other hand, the gain can be varied 
Significantly on a time scale of 1 ns, 13 Other modulation 
techniques are not well developed for this portion of the 
uv spectrum, and the traveling-wave gain-modulation 
method may prove to be useful. The short wavelength 
of the xenon-laser transition makes this device especial
ly interesting for late portions of the pellet-compres
sion fusion process, and modulation of the electron
beam pumping rate is feasible. For slower and more 
traditional laser applications, gain modulation might be 
a simple and effective alternative to conventional modu
lation methods. 

VI. UNSATURATED AMPLIFIERS 

The principal complicating factor in the previous 
analYSis of pulse propagation has been the highly non
linear saturation behavior. In this section the pulse 
propagation problem is reexamined briefly with satura
tion effects omitted. Some pulse amplifiers are de
signed to operate in an unsaturated mode, and this ap
proximation makes it possible to include other effects 
such as the spontaneous-emission noise input. In long 
laser amplifiers noise can be a significant factor in the 
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output, and with certain traveling-wave devices such as 
the N2 or H2 molecular lasers noise is the only input. 

If the intenSity is small, the terms S f: .. 1(l:, 7) d7' can 
be set equal to zero in Eq. (7) yielding the simple r 
equation 

(JI(~~ 7) = hvls[I(l:, 7) + 10 ) exp (- ~ )f~ 5(l:, 7') 

x expG:) d7' - yI(l:. 7). (53) 

This may be regarded as a first-order linear differen
tial equation and the general solution is9 

I(l:, 7) = exp [- yl: + hvls exp (- ~) 

xlC f~ 5(l:"7')Xexp(~:)d7' dl:] 

x{l~ hVISIO exp (- ~) 1~ 5(l:', 7') exp(~: )dT 

xexp~l:' - hvls exp (- ~) 

xl
C
' f~ 5(l:", 7') expG: )dT dl:'] dl:' +I(O,7)}. 

(54) 
For simplicity we assume that the medium is lossless 
(y=O). Then Eq. (54) may be integrated by parts 
yielding 

I(l:, 7) = [I(o, 7) + 10 ) exp [hVIS exp (- ~) 

x it f~ 5(l:', T) exp(~: )dT dl:J -100 (55) 

When spontaneous emission in the only input, Eq. (55) 
reduces to 

I(l:, 7) =Io{exp[hVIS exp (- ~) foe f~ 5(l:', T) 

xexpGJ dT dl: J -1}. (56) 

A specific traveling-wave pump function is given in 
Eq. (18). If this expression with ve=<Xl is combined 
with Eq. (56), one obtains the expliCit formula 

I(l:I~ 7) = exp (l _ ~>72 {73Vgexp (- ~ )[exp(~:J - ~ 

- 72vg exp (- ~ )[exp(~:J - ~}), 7>0 

=0, 7 < 0. (57) 

This limit corresponds to spatially independent pumping 
along the length of the laser. The more interesting 
case of a velocity-matched traveling-wave pump occurs 
with ve = vg • Then Eqs. (18) and (56) combine to yield 
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I(l:, 7) {got: --=exp -, 
10 1 - 73/72 

7>0 

=0, T <0. 

(58) 

This limit would be appropriate for Blumlein driven N" 
or H2 lasers, for example, 5,6 Equation (58) implies that 
the peak of the laser output is delayed by the amount 
7 =In(T/7)(T-1 _T-1)-1 

mil)< 2' 3 3 2 • 

In the limit that the spontaneous relaxation time is 
long compared to any other time of interest (72- oe) Eqo 
(58) may be combined with Eq, (24) to obtain the output 
characteristics of a saturating traveling-wave amplifier 
which has no input other than spontaneous emission. 
From a comparison of these equations it follows that the 
output is the same as if there were an ordinary input 
of the form given in Eq. (20) with 11 =10 , Thus Eq, (24) 
and Fig, 4 both apply to this important case of a 
traveling-wave laser with spontaneous-emission input. 
The intensity maximum occurs at a time less than the 
pumping time 7 3 , and if the relaxation time 72 is much 
greater than 73 the relaxation effects are clearly 
unimportant. 

VII. CONCLUSION 

Several new analytic models have been developed for 
laser pulse amplifiers and mirrorless laser sources, 
A basic advantage of these models is the inclusion of an 
arbitrary space- and time-dependent pump function. It 
thus becomes possible to predict the behavior of lasers 
in which the pump pulse overlaps the optical pulse. 
SpecifiC practical examples include the Blumlein driven 
uv traveling-wave lasers. On the other hand, the same 
formulas also make it possible to obtain any desired 
output-pulse shape by proper choice of the pumping 
conditions in the laser amplifier. Pellet-compression 
laser fusion has been considered as an example of this 
pulse-forming technique. 

The discussion and analysis in this work has all been 
presented within the context of pulse amplification. It 
should be noted that the same techniques and solutions 
also apply to saturable laser absorbers. Such attenua
tors are commonly used as laser Q-switching media and 
as high-speed laser-driven shutters. One can visualize 
applications where a multilevel material is optically 
pumped and made to absorb by radiation which couples 
the lower level of the absorbing transition to the ground 
state. This configuration would be the analog of the 
pumped amplifiers which have been considered in detail. 
Finally we mention that the results often apply also to 
inhomogeneously broadened media. In such materials 
the different portions of the propagating spectrum inter
act with different classes of atoms, so the spectral 
components may be treated independently. As shown 
previously, the equations governing each part of the 
spectrum may be in the same form as the equations 
governing the total intensity in a homogeneously 
broadened medium. 4 Thus all of the present solutions 
apply, and the intensity can be found by a summation 
over the various spectral components. 
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