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RESEARCH Open Access

Gene expression patterns that support novel
developmental stress buffering in embryos of the
annual killifish Austrofundulus limnaeus
Josiah T Wagner* and Jason E Podrabsky

Abstract

Background: The cellular signaling mechanisms and morphogenic movements involved in axis formation and
gastrulation are well conserved between vertebrates. In nearly all described fish, gastrulation and the initial
patterning of the embryonic axis occur concurrently with epiboly. However, annual killifish may be an exception to
this norm. Annual killifish inhabit ephemeral ponds in South America and Africa and permanent populations persist
by the production of stress-tolerant eggs. Early development of annual killifish is unique among vertebrates because
their embryonic blastomeres disperse randomly across the yolk during epiboly and reaggregate several days later to
form the embryo proper. In addition, annual killifish are able to arrest embryonic development in one to three
stages, known as diapause I, II, and III. Little is known about how the highly conserved developmental signaling
mechanisms associated with early vertebrate development may have shifted in order to promote the annual killifish
phenotype. One of the most well-characterized and conserved transcription factors, oct4 (Pou5f1), may have a role
in maintaining pluripotency. In contrast, BMP-antagonists such as chordin, noggin, and follistatin, have been previously
shown to establish dorsal-ventral asymmetry during axis formation. Transcription factors from the SOXB1 group, such
as sox2 and sox3, likely work to induce neural specification. Here, we determine the temporal expression of these
developmental factors during embryonic development in the annual killifish Austrofundulus limnaeus using quantitative
PCR and compare these patterns to other vertebrates.

Results: Partial transcript sequences to oct4, sox2, sox3, chordin, noggin-1, noggin-2, and follistatin were cloned,
sequenced, and identified in A. limnaeus. We found oct4, sox3, chordin, and noggin-1 transcripts to likely be
maternally inherited. Expression of sox2, follistatin, and noggin-2 transcripts were highest in stages following a
visible embryonic axis.

Conclusions: Our data suggest that embryonic cells acquire their germ layer identity following embryonic
blastomere reaggregation in A. limnaeus. This process of cellular differentiation and axis formation may involve
similar conserved signaling mechanisms to other vertebrates. We propose that the undifferentiated state is
prolonged during blastomere dispersal, thus functioning as a developmental stress buffer prior to the
establishment of embryonic asymmetry and positional identity among the embryonic cells.
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Background
The general course of early embryonic development is
remarkably conserved between vertebrates, with develop-
mental progression always following the same order:
fertilization, cleavage, epiboly, gastrulation, axis formation,
and organogenesis. Many of the morphogenic movements
associated with these processes, such as gastrulation, are
also conserved [1]. Barring developmental abnormalities
or environmental insult, these stages typically progress in
a unidirectional manner and without interruption. How-
ever, this is not the case in annual killifish development,
which is characterized by a temporal separation of the
morphogenic movements of epiboly from formation of
the embryonic axis, and discontinuity due to naturally oc-
curring periods of arrested development [2-4]. In this
study we explore the temporal expression patterns of
genes known to play key roles in the maintenance of pluri-
potency and the establishment of the vertebrate body plan
during early development in embryos of the annual killi-
fish Austrofundulus limnaeus.
Austrofundulus limnaeus (Order Cyprinodontiformes,

Family Rivulidae) is an annual killifish found in ephemeral
ponds of the Maracaibo Basin in northern Venezuela
[5,6]. Similar to other species of annual killifish, A. lim-
naeus maintains permanent populations by the produc-
tion of drought- and anoxia-tolerant embryos [7-9] that
are able to survive in the pond sediments after adult and
juvenile fish are killed by habitat desiccation [3,4,10]. Tol-
erance of the environmental stresses imposed by their
ephemeral environment is supported by the ability of the
embryos to enter into a state of metabolic and develop-
mental dormancy, termed diapause, at up to three distinct
developmental stages [3,4]. Diapause I (DI) may occur in
some species of annual killifish during the dispersed
blastomere stage prior to formation of an embryonic axis
[11], although we do not regularly observe arrest at DI in
our lab population of A. limnaeus. Diapause II (DII) can
occur midway through development in an embryo that
has undergone neurulation and segmentation, but is just
prior to initiation of the major phases of organogenesis
[4,12]. Diapause III (DIII) can occur in the late pre-
hatching embryo. Diapause II embryos display the highest
resistance to abiotic stressors such as anoxia, salinity ex-
tremes, and desiccation when compared to other develop-
mental stages [7,8,13].
In addition to the interruption of development by dia-

pause, both the African and South American clades of
annual killifish lack formation of a germ-ring or shield
structure during epiboly [2,3], which is atypical when
compared to other described teleost fish species such as
zebrafish (Danio rerio), the medaka (Oryzias latipes),
and the mummichog (Fundulus heteroclitus) [14-16] as
well as other non-annual killifish in the family Rivulidae
such as Kryptolebias marmoratus [17]. Instead of the

typical pattern of convergence and extension of the
amoeboid (deep) embryonic blastomeres that is observed
in most other teleost embryos during epiboly, deep blas-
tomeres from annual killifish exhibit contact inhibition
of cell movement [18,19] and migrate away from each
other across the yolk surface during epiboly where they
remain dispersed across the yolk surface for several days
[2]. These dispersed blastomeres later reaggregate, pre-
sumably through a delayed process of convergence and
extension to form the definitive embryonic axis [2]. Al-
though this dispersion and subsequent reaggregation
process (D/R) was described several decades ago by
Wourms [2], the molecular mechanisms that control
these movements remains unexplored and the environ-
mental and ecological relevance of this process have
only recently been investigated [20,21].
Underlying the gross morphological changes associated

with embryogenesis are expression of inter- and intracel-
lular signaling factors that encode for cellular identity and
differentiation [22]. As developmental time progresses,
embryos generally decrease expression of pluripotency
genes in favor of genes that promote differentiation. In
mammals, one of the most important factors required to
maintain pluripotency in vitro is the co-expression of
transcription factors oct4 (also known as Pou5f1) and a
member of the SOXB1 family, sox2 [23,24]. The transcrip-
tion factor sox3, also a part of the SOXB1 family, likely
precedes expression of sox2 during embryonic develop-
ment and may have both unique and redundant functions
with sox2 depending on the species studied [25-27]. Hom-
ologous genes to mammalian oct4, sox2, and sox3 have
been described in the zebrafish [28-30], and more recently
in the medaka [31,32]. Forming a complex with oct4,
SOXB1 family transcription factors have a diverse array of
targets during early fish development that are likely
critical for normal developmental timing [33]. Whether
annual killifish such as A. limnaeus express these
pluripotency-promoting genes in a manner similar to
other vertebrates is currently unknown. More importantly,
the signaling mechanisms by which annual killifish em-
bryos are able to transition from an undifferentiated blas-
tula through a period of blastomere D/R prior to the
formation of the embryo proper remain unexplored.
One of the most important periods of cellular differen-

tiation in embryogenesis occurs during the process of
axis formation, which follows the induction of gastrula-
tion and establishes the organismal body plan. Diffusible
signaling factors secreted by the Spemann-Mangold
Organizer (SMO), a structure first described in 1924
[34], have an important role in establishing asymmetry
in early vertebrate embryos [35]. In particular, correct
dorsal-ventral (DV) patterning requires signaling gradi-
ents of bone morphogenic proteins (BMPs) and activin
created by the expression of signaling antagonists by the
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SMO. The three major contributors to DV patterning
through BMP inhibition are noggin, chordin, and follis-
tatin. Chordin [36,37] and noggin [38] are potent BMP
antagonists, while follistatin [39,40] antagonizes both
BMPs and activin. Since the initial characterization of
noggin, several noggins have been described [41,42]. The
requirement of noggin and chordin expression by the
SMO to dorsalize embryos appears to be conserved be-
tween amphibians and fish, although follistatin appears
be excluded from fish organizers [43-45].
It is currently unknown how blastomere D/R and the

entrance into diapause II is regulated at the molecular
level in A. limnaeus embryos. Additionally, the changes
in expression of important developmental factors that
are required to support the differences observed in early
annual killifish development when compared to other
teleosts are unclear. Although there are no morpho-
logical indications of embryonic patterning during epib-
oly in A. limnaeus, it has yet to be shown that cellular
determination and differentiation does not occur during
this period. Therefore, two major hypotheses for axis
formation in annual killifish are: (1) cellular determin-
ation and differentiation occurs during epiboly, similar
to other teleosts, and differentiated cells reaggregate
later and segregate into germ layers to form an embry-
onic axis; or (2) cellular differentiation and therefore
embryonic patterning does not occur until after reaggre-
gation. The dynamic spatiotemporal expression patterns
and cross-species conservation of oct4, sox2, sox3, chor-
din, noggin, and follistatin make these genes ideal candi-
dates for characterization of pluripotency and axis
formation in annual killifish.
Recently, we have reported that the D/R phases of

development may act to buffer developing embryos
from what would otherwise be teratogenic environmen-
tal insults [21]. The molecular mechanisms that sup-
port this unique buffering capacity remain to be
resolved. If dispersed cells lack a unique cellular iden-
tity and location within the embryo, then cells lost or
damaged during the D/R phase could presumably be
replaced without negative consequences to the devel-
opmental program. This study describes for the first
time the relative mRNA expression levels of genes crit-
ical for the maintenance of pluripotency and establish-
ment of the embryonic axis across development in A.
limnaeus, with the goal of comparing their patterns of
expression to the highly conserved patterns noted in
other vertebrates. The gene expression patterns reported
here in A. limnaeus support a role for an extended
period of pluripotency during the D/R phases of annual
killifish development. This unique developmental pat-
tern coupled with earlier reports of tolerance to cellular
damage suggests that D/R can act as a buffering mech-
anism that supports normal embryonic development in

the face of what would otherwise be teratogenic levels
of cell damage and/or cell death due to environmental
stress [21].

Methods
Husbandry of adults and treatment of embryos
Adult and embryonic Austrofundulus limnaeus were
cared for as previously described by Podrabsky [46] and
in accordance with approved Portland State University
IACUC protocols. Mating pairs of fish were allowed ac-
cess to spawning trays containing 1 to 2 cm of 500 μm
glass beads (Thomas Scientific, Swedesboro, NJ, USA)
for 2 h. Embryos were collected by sifting the glass beads
through a 1.5 mm mesh and were transferred into em-
bryo medium using a wide-mouthed plastic pipette.
Fertilization was determined by the presence of a perivi-
telline space using a dissecting scope. Embryos were
kept in embryo medium similar to the ionic composition
of their native ponds (10 mmol 1−1 NaCl, 2.14 mmol 1−1

MgCl2, 0.8 mmol l−1 CaCl2, 0.14 mmol 1−1 KCl,
0.0013 mmol 1−1 MgSO4) with 0.0001% methylene blue
added for the first 3 days post fertilization (dpf) to sup-
press fungal growth [5,46]. At 4 dpf, embryos were
treated with two 5 min washes of a 0.001% solution of
sodium hypochlorite in embryo medium and transferred
to embryo medium containing 10 mg l−1 gentamicin sul-
fate. Embryos sampled earlier than 4 dpf were treated
with the bleaching regimen immediately before being
flash-frozen as described below. Embryos were observed
and embryo medium changed daily. Embryos were incu-
bated at 25°C in darkness.

Purification of total RNA from whole embryos and adult
livers
Embryos
Embryos were observed using a dissecting microscope
and sorted by stage as shown in Table 1 and Figure 1.
Staged embryos were collected onto a nylon mesh screen
(100 μm mesh), blotted dry with Kimwipes, transferred into
2 mL microcentrifuge tubes, and flash-frozen by submer-
gence in liquid nitrogen. Embryos were stored at −80°C
until RNA extraction.

Adult livers
Adult A. limnaeus females were euthanized by immersion
in ice water for several minutes followed by cervical
transection. Livers were removed, transferred into 2 mL
microcentrifuge tubes, flash-frozen in liquid nitrogen,
and stored at −80°C until RNA extraction.

RNA extraction
Frozen embryos were immersed in TRIzol reagent
(Invitrogen #15596-026) at a ratio of 50 μL TRIzol re-
agent per embryo. Frozen adult livers were immersed
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Table 1 A. limnaeus stages selected for qPCR analysis

Stage Age WSa Abbreviation Description Pooled
individuals

N

Early cleavage 3 hpf 3-5 EC 1-4 blastomeres 100 3

Early hollow
blastula

1 dpf 12 EHB Presence of a segmentation cavity containing blastomeres and covered by
enveloping layer cells

100 4

50% epiboly 2 dpf 17 50% EP Half of the yolk surface covered by periblast and enveloping layer. In between the
two layers are embryonic blastomeres that have become ameboid and migrated
away from the central blastula

100 4

Dispersed
blastomere
phases

4 dpf 20-21 DBP Yolk surface completely covered by periblast, enveloping layer, and randomly
distributed embryonic blastomeres

100 4

Reaggregation
phases

8 dpf 22-26 RP Embryonic blastomeres remain distributed across yolk, but a subpopulation are
beginning to migrate towards a small area of the yolk where the future embryo
will form. No discernable embryonic axis present

100 4

Solid neural
keel

10 dpf 28 SNK Presence of a solid neural keel, head fold, and Kupffer’s vesicle. No somites present 50 4

Diapause II 32 dpf 33 DII Presence of optic cups and associated lenses, otic vesicles, functional heart, and
38 to 40 pairs of somites. Heart rate of 0 to 10 bpm

100 3

Three-quarter
overgrowth

9 dpd 39 3/4 OG Embryo occupies about three-fourths of the perimeter of the yolk. Eyes are heavily
pigmented with gold colored material. Presence of incompletely developed gut,
liver, and swimbladder

40 4

Diapause III 24 dpd 43 DIII Fully formed larva that has completed embryonic development, but has not yet hatched 40 4

Adult liver Adult N/A Liver Whole liver from an adult female 1 3
aWS, Wourms’ Stage, stages based on [3].
dpd, Days post diapause; dpf, Days post fertilization; hpf, Hours post fertilization.

Figure 1 Representative photographs of embryo stages used in this study. (A) Early cleavage, (B) Early hollow blastula, (C) 50% epiboly,
(D) Dispersed blastomere phases, (E) Reaggregation phases, (F) Solid neural keel, (G) Diapause II, (H) Three-quarter overgrowth, (I) Diapause III.
Scale bar is 0.5 mm. Photos are from Riggs and Podrabsky, unpublished.
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in TRIzol reagent at a ratio of 100 mg liver per mL of
TRIzol. Immediately after addition of TRIzol, embryos
or livers were homogenized using an IKA Ultra-Turrax
T8 (Wilmington, NC, USA) at room temperature until
lysis was complete. Homogenates were subjected to
centrifugation at 10,000 × g for 30 min at 4°C to re-
move cellular debris. Supernatants were transferred
into new tubes and 0.2 mL of chloroform per mL of
TRIzol was added. Samples were gently mixed by vor-
texing and subjected to centrifugation for 20 min at
10,000 × g at 4°C. The clear aqueous phase was re-
moved carefully and transferred into a fresh tube. RNA
was precipitated using a high salt method by addition
of equal volumes (1.25 mL of each per mL of TRIzol
used) of a solution containing 0.8 M sodium citrate
and 1.2 M NaCl and 100% isopropanol. Samples were
vortexed gently and incubated at −20°C overnight to
precipitate the RNA. The following day, samples were
subjected to centrifugation at 10,000 × g for 30 min at
4°C. Supernatants were decanted carefully so as to not
disturb the RNA pellet. The RNA pellet was washed
with 1 mL of 60% ethanol (EtOH) followed by centrifu-
gation at 10,000 × g for 30 min at 4°C. Supernatants
were decanted and the wash step repeated. After the
final wash, EtOH was removed and the pellet was cen-
trifuged at 10,000 × g for 1 min at 4°C to collect re-
sidual EtOH. The residual EtOH was removed and
remaining EtOH was allowed to evaporate for 10 to
15 min. RNA pellets were resuspended in 25 to 55 μL
of 1 mM sodium citrate (pH 6.4). Incubation of sam-
ples for 4 to 5 min at 55°C facilitated RNA pellet resus-
pension. Sample concentrations and A260/A280 ratios
were determined using the Infinite M200 Pro plate
reader equipped with a NanoQuant plate (Tecan, San
Jose, CA, USA) using 2 μL of sample and default soft-
ware settings (i-control software, Tecan). RNA integ-
rity was determined by agarose gel electrophoresis of
0.5 μg of total RNA and observing distinct banding for
18S and 28S rRNA subunits. Average A260/A280 ratios
of 1.7 to 2.2 were routinely obtained with the exception
of DII embryos, which had low ratios (mean 1.3 ± 0.12
SD) but retained 18S and 28S rRNA banding after gel
electrophoresis that was comparable to other stages.
Samples were stored at −80°C or used immediately as
template for reverse transcription reactions.

Identification and PCR amplification of A. limnaeus RNA
transcripts of interest
Austrofundulus limnaeus sequences for genes of interest
were amplified from total RNA by polymerase chain re-
action (PCR). Total RNA was reverse transcribed using
the RevertAid first strand cDNA synthesis kit (Fermentas
#K1621). Prior to addition of enzymes, RNA was mixed
with primer, heated to 65°C for 5 min, and chilled rapidly

on ice. Reverse transcription (RT) reactions (20 μL total
volume) contained RNA (250 to 500 ng), 5 μM anchored
oligonucleotide dT primer (sequence: 5′ TTT TTT TTT
TTT TTT TTT TTV N 3′), 1 mM dNTP mix, 20 U Ribo-
Lock RNAse inhibitor, 200 U of RevertAid M-MuLV re-
verse transcriptase, in 1X RevertAid reaction buffer
(50 mM Tris–HCl pH 8.3, 50 mM KCl, 4 mM MgCl2,
10 mM DTT). Reactions were incubated at 42°C for
60 min and were terminated by incubation at 70°C for
5 min. The single-stranded cDNA was used immediately
for PCR or was stored at −20°C.
Prior to PCR amplification, remaining RNA from the

RT reaction was degraded by incubation at 65°C for
15 min in 200 mM NaOH and 100 mM EDTA. Follow-
ing RNA degradation, pH was neutralized by addition of
1 M Tris (pH = 7.5) to a final concentration of 20 mM.
The ssDNA samples were purified using the QIAquick
PCR purification kit (Qiagen #28104) according to the
manufacturer’s instructions and were eluted in 30 μL of
nuclease-free dH2O. RNA transcript sequences for genes
of interest from other vertebrates (Additional file 1:
Table S1) were identified using NCBI GenBank database
searches. Degenerate or specific primers were used de-
pending on sequence conservation between species and
were created using PrimaClade online software [47]. The
PCR parameters were adjusted according to specific pri-
mer pairs, and often one or more parameter had to be
adjusted in order to cleanly amplify a particular gene of
interest. In general, 1 to 5 μL of purified cDNA, 5 to 10
pmol of both forward and reverse gene-specific primer
(Integrated DNA Technologies), 0.125 U Taq polymerase
(New England BioLabs #M0267L), and 2.5 μL 10X
ThermoPol buffer (New England BioLabs # M0267L)
were used per 25 μL reaction. Reactions were cycled
for 37 to 46 cycles with varying melting, annealing, and
extension temperatures (Additional file 1: Table S1).

Cloning and sequencing of genes
Creation of plasmids with cDNA fragments and growth
of transformed bacterial cell cultures were performed
based on the methods of Sambrook et al. [48]. DNA
templates generated during PCR were analyzed by gel
electrophoresis through a 1.5% agarose gel in 0.5X TBE
for 30 to 45 min at 100 V. Fragment sizes were estimated
by comparison to a GeneRuler 1 kb Plus DNA ladder
(Thermo Scientific #SM1332). DNA fragments that were
in the range of expected PCR product size were excised
with a razor and purified using the QIAquick MinElute
gel extraction kit (Qiagen #28606) according to manufac-
turer’s instructions. DNA was eluted in 10 μL of nuclease-
free water and stored at −20°C or used immediately for
cloning. Purified PCR products were cloned into the
pGEM-T Easy Vector System (Promega #A1360). For
each 10 μL cloning reaction, 50 ng of pGEM-T Easy
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Vector was mixed with 3 μL of purified PCR product
and 3 Weiss units of T4 DNA ligase in 1X rapid ligation
buffer. Samples were mixed and incubated overnight at
4°C. The next day, 2 μL of each ligation reaction was
added to 20 to 30 μL of competent Escherichia coli cells
(Strain JM109, Promega #L2001, >108 cfu μg−1) in
1.5 mL microcentrifuge tubes. Samples were mixed gen-
tly and incubated on ice for 20 min. Cells were trans-
formed by heat shock for 50 s in a 42°C water bath and
were immediately returned to ice for 2 min. SOC
medium (2% Bacto-tryptone, 0.5% yeast extract, 10 mM
NaCl, 0.5 mM KCl, 10 mM MgCl2, 10 mM, MgSO4,
20 mM glucose) was added to each tube of cells (19 μL
SOC medium per 1 μL of cells) and cells were trans-
ferred to sterile 15 mL polypropylene round-bottom
culture tubes. Cells were incubated for 1.5 h at 37°C
while shaking (150 rpm). Following incubation, 40 to
60 μL of the SOC cultures were plated onto agar screening
plates (1.5% Bacto-agar, 1% Bacto-tryptone, 42.8 mM
NaCl, 33.5 mM KCl, 1 mM CaCl2 0.02 mg mL−1 X-Gal,
0.014 mg mL−1 IPTG, 0.1 mg mL−1 ampicillin sodium
salt). Plates were incubated overnight at 37°C. White col-
onies were selected using a sterile toothpick and used to
inoculate 1 mL of lysogeny broth (1% Bacto-tryptone,
0.5% yeast extract, 171 mM NaCl 0.1 mg mL−1 ampicillin
sodium salt. Liquid cultures were incubated overnight at
37°C while shaking (200 rpm). The following day, cultures
were subjected to centrifugation at 7,000 × g for 3 min at
room temperature to pellet cells. Plasmids were purified
from the cell pellet using the QIAprep Spin Miniprep Kit
(Qiagen, #27104) according to manufacturer’s instructions
and were eluted in 30 μL of nuclease-free water. Plasmid
quantity was determined by measuring sample absorbance
at 260 nm and quality was determined by the observation
of A260/A280 ratios between 1.8 and 2.0. Purified plasmids
were diluted with nuclease-free water and 500 ng of plas-
mid template was mixed with 6.4 pmol of pUC/M13 re-
verse primer (sequence 5′-TCA CAC AGG AAA CAG
CTA TGA C-3′) in final volumes of 20 μL. Plasmids were
submitted for Sanger sequencing at the Oregon Health
and Science University DNA Services Core (Portland,
OR, USA) using an Applied Biosystems 3730xl capillary
sequencer. Sequenced plasmids were visualized using
FinchTV software (Geospiza, v. 1.4, 2013) and vector
sequences were removed to reveal cloned A. limnaeus
sequences. Sequence identity was inferred using NCBI
blastx (non-redundant protein database) or blastn
(nucleotide database) searches for the seven genes of
interest (Additional file 2: Table S2 and Additional file 3:
Table S3). Partial mRNA sequences for sox3 and noggin-2
were identified during clone screening using primers for
sox2 and noggin-1, respectively. Sequences for β-actin
and 18S rRNA were also cloned while screening for
other genes.

Reverse transcription of total RNA for quantitative PCR
Treatment of RNA and cDNA prior to quantitative PCR
(qPCR) was based on previously described methods [49].
RNA samples were treated with DNAse enzyme to degrade
possible genomic DNA contaminants. DNAse reactions
consisted of 5.5 μg of total RNA for each sample, 2 U of
RNAse-free DNAse I (New England Bio Labs #M0303S),
40 U of RiboLock RNase inhibitor (Thermo Scientific
#EO0381), and 2 mM MgCl2, in a final volume of 16.5 μL.
Samples were incubated at 37°C for 10 min followed by in-
cubation at 90°C for 5 min. DNAse-treated total RNA
(5 μg) was reverse transcribed into single-stranded cDNA
using 1 μL of iScript advanced reverse transcriptase in
1X iScript advanced reaction mix (Bio-Rad #170-8842)
in a final volume of 20 μL. The iScript advanced buffer
contains both oligo(dT) and random primers. Samples
were incubated at 42°C for 30 min followed by reaction
termination at 85°C for 5 min. Samples were diluted 1:4
in nuclease-free water and stored at −20°C until use in
qPCR.

qPCR primer-probe design and reaction conditions
Primer and probe sequences to be used for qPCR were
created using the PrimerQuest tool and purchased
from Integrated DNA Technologies (Additional file 4:
Table S4) [50]. For probe chemistry we used PrimeTime
ZEN Double-Quenched Probes. Probes were 5′ labeled
with fluorescein (FAM), internally labeled with a ZEN
quencher, and 3′ labeled with an IBFQ quencher [51].
Probes are hydrolyzed by the 5′ > 3′ exonuclease activity of
the DNA polymerase, freeing the quenchers from the FAM
dye. The difference in estimated melting temperature (Tm)
between forward and reverse primers was designed to be
no more than 5°C. Probes were selected to have melting
temperatures approximately 5°C greater than the forward
and reverse primers. Observation of a single amplicon of
the appropriate estimated size on a 1% agarose gel follow-
ing PCR amplification from single-stranded cDNA was
used to verify primer specificity. The DNA sequence of
each amplicon from each gene/primer set was verified by
cloning and DNA sequencing as described above. Synthetic
DNA standards identical to the amplicons generated by the
qPCR primers were purchased from IDT (Additional file 2:
Table S2). qPCR reactions were set up in triplicate using
SsoFast Probes Supermix (Bio-Rad, #172-5230) and con-
sisted of 1 μL of diluted cDNA, 10 μL of 2X SsoFast Probes
Supermix, 500 nM of forward and reverse primers, and
250 nM of probe in final volumes of 20 μL. All reactions
used this 1:2 ratio of primers:probe except for the oct4
assay which used a 1:1 ratio. Assays were set up in
clear 96-well semi-skirted PCR plates (Hard-Shell High-
Profile PCR plates, Bio-Rad, #HSS-9601) with optical flat
caps (Bio-Rad, #TCS-0803). All qPCR reactions were car-
ried out in a Stratagene Mx3005P thermocycler (Agilent
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Technologies, Santa Clara, CA, USA). Standard curves
were generated using 1 × 10−3, 1 × 10−4, 1 × 10−5, and
1 × 10−6 copies of synthetic standard. Reactions were
initially heated at 95°C for 30 s to activate the DNA
polymerase and subsequently thermocycled for 40 cycles
by denaturation at 95°C for 30 s and annealing/elongation
at 60°C for 30 s. Fluorescence readings (excitation
492 nm, emission 516 nm) were taken at the end of
each elongation step. Quantification cycle (Cq) thresholds
were set automatically in Stratagene MxPro software (ver.
4.10, 2007) using adaptive baseline, moving average, and
amplification-based threshold settings. Although rarely
necessary, thresholds were manually adjusted to improve
standard curve best-fit regressions.

Statistics
Fold changes for the genes were calculated relative to
one of the SNK (10 dpf) samples using the efficiency
corrected ddCq method [52]. To correct for between-
plate variation, we used the efficiency of the standards
run on each plate for the fold-change calculations. As
suggested by Bustin and Nolan (2004), Cq values within
five cycles of the no template control or the 40th cycle
were dropped from analysis to reduce the possibility of
false positives [53]. Prior to statistical analysis, relative
expression values were normalized relative to β-actin or
18S rRNA expression and log2 transformed. Differences
in relative expression between developmental stages
were calculated using one-way Analysis of Variance
(ANOVA) followed by Tukey’s multiple comparison
test. Statistical significance was determined at P <0.05.

Results and discussion
Identification of A. limnaeus transcripts
Partial mRNA sequences for A. limnaeus oct4, chordin,
sox2, sox3, noggin-1, noggin-2, and follistatin were identi-
fied using the blastx sequence alignment tool against se-
quences in NCBI nucleotide databases for all vertebrates
or against only D. rerio (Additional file 3: Table S3 and
Additional file 5: Table S5). Putative conserved domains
were also identified by sequence similarity using blastx.
The oct4 transcript fragment (278 bp) isolated from A.
limnaeus included a POU-superfamily domain from
nucleotide residues 1 to 75 (E = 1.52 × 10−3) and a DNA
binding domain from nucleotide residues 136 to 276
(E = 1.13 × 10−4). The A. limnaeus sox2 transcript frag-
ment (287 bp) included a SOX transcription factor do-
main from nucleotide residues 35 to 286 (E = 1.94 × 10−8).
The transcript fragment for A. limnaeus sox3 (295 bp) in-
cluded a SOX transcription factor domain from nucleotide
residues 53 to 124 (E = 3.02 × 10−3) and a SOX-TCF
HMG-box, class I domain from nucleotide residues 191 to
295 (E = 1.52 × 10−6). The isolated A. limnaeus chordin
transcript fragment (773 bp) included a CHRD (chordin)

superfamily domain from nucleotide residues 1 to 294
(E = 8.57 × 10−9) and a von Willebrand factor type C do-
main from nucleotide residues 403 to 537 (E = 1.91 × 10−5).
The identified A. limnaeus noggin-1 fragment included
a Noggin superfamily domain from nucleotide residues
1 to 483 (E = 1.71 × 10−66) while the noggin-2 fragment
included a Noggin superfamily domain from nucleotide
residues 1 to 243 (E = 1.72 × 10−35). The A. limnaeus fol-
listatin transcript fragment included a Follistatin-like
SPARC (secreted protein, acidic, and rich in cysteines)
domain from nucleotide residues 71 to 286 (E = 2.31 ×
10−9) and between 521 to 661 (E = 1.20e-09). The follis-
tatin transcript also included a Kazal type serine prote-
ase inhibitor domain from nucleotide residues 176 to
280 (E = 3.19 × 10−7) and 362 to 505 (1.2 × 10−9). Nu-
cleotide residues from 41 to 598 were identified as being
a part of the high cysteine membrane protein group 4
(E = 7.82 × 10−3). For all genes tested, we observed dy-
namic expression profiles across development. Add-
itionally, we observed high r2 values for the synthetic
standards following qPCR (>0.99). We did not observe
substantial differences in expression after normalization
to either β-actin or 18S rRNA (not shown), and there-
fore we present data and focus our discussions on data
normalized to expression of β-actin mRNA. Expression
of oct4, sox3, sox2, chordin, noggin-1, noggin-2, and fol-
listatin was not observed in adult liver samples, and
therefore we focus our discussion on embryonic pat-
terns of expression.

Expression of pluripotency and neural differentiation
regulators in A. limnaeus
oct4
The transcription factor oct4 is widely conserved be-
tween vertebrates and is often associated with its ability
to maintain pluripotency during development. Homo-
logs to mammalian Oct4/Pou5f1 have been described in
a wide range of species, including Xenopus, zebrafish,
medaka, the goldfish Carassius auratus, and the chicken
[30,31,54]. Although the zebrafish oct4 gene was initially
known as pou2, the similarity to mammalian Oct4/
Pou5f1 suggests that they are indeed orthologs, and thus
the zebrafish pou2 is considered to be equivalent to oct4
in other vertebrates [33,55]. Teleost expression of oct4
mRNA begins very early during embryonic development
[30,31,56,57], suggesting maternal packaging, and similarly
we found highest expression of oct4 mRNA before the
completion of epiboly in A. limnaeus embryos (Figure 2A).
Expression of A. limnaeus oct4 mRNA decreased over de-
velopmental time until becoming undetectable after DII.
This pattern of oct4 transcript expression (Figure 3) is
similar to that found in zebrafish by Takeda et al. [30], in
medaka by Wang et al. [31], and in goldfish by Marandel
et al. [56], suggesting a conserved role for oct4 in early
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development for A. limnaeus. Interestingly, whereas me-
daka oct4 may have similar functions to mammalian Oct4
in maintaining pluripotency, zebrafish oct4 may not be
necessary for this purpose [54,57]. Localization of oct4
transcripts and protein in A. limnaeus embryos during

development will be necessary to determine if the spatial
expression of the transcription factor is similar to other
described taxa.

sox2 and sox3
Similar to oct4 transcripts, we detected a high abun-
dance of sox3 transcripts beginning in early A. limnaeus
development (Figure 2B), which suggests it is maternally
inherited. sox3 transcript abundance was high during
early cleavage, but expression generally decreased as de-
velopment progressed (Figure 1B). In zebrafish, sox3
mRNA expression is detected starting at the 32-cell stage
(Figure 3; the earliest stage sampled), suggesting maternal
inheritance, and is detectable until 48 hpf (early hatching)
[28,60]. We also observed sox3 expression for the entire
duration of A. limnaeus embryonic development, but in
contrast to zebrafish, we observed the highest expression
of sox3 just following fertilization with a significant de-
crease in expression during early development leading to
lowest expression at the SNK stage (10 dpf). A. limnaeus
sox2 transcripts were not detectable prior to reaching the
SNK stage and had highest expression between DII and
mid-organogenesis 3/4 OG (Figure 2C). In zebrafish, sox2
expression is not observed until 30% epiboly, and is asso-
ciated with initiation of gastrulation [28]. Similarly, sox2
expression is not observed prior to epiboly in goldfish,
with the first transcripts being detected at 75% epiboly
[56]. Expression of sox2 in Xenopus has been suggested to
be activated by sox3, and thus it is not surprising we ob-
served sox3 expression prior to sox2 [26]. In contrast to
zebrafish and A. limnaeus, medaka sox2 expression ap-
pears to be more transient, although the strongest ex-
pression of sox2 is between the early neurula (1 dpf )
and 16 to 19 somites (2 dpf ) stages [32]. The Japanese
flounder Paralichthys olivaceus also differs slightly from
both zebrafish and medaka in that low expression of
sox2 mRNA is first observed in the high blastula and
peak expression occurs in the early to mid-gastrula [61].
Although the expression patterns of sox2 appear to differ
across development in these teleosts, they share the pat-
tern of increased expression near the beginning of gastru-
lation (Figure 3).
SOXB1 genes, including sox2 and sox3, work with oct4

to regulate neural fate and differentiation [62-64]. Ex-
pression of oct4 early in development, and simultaneous
expression of sox2 and sox3 genes at the SNK stage (pre-
sumably the time for neural induction) in A. limnaeus
suggests that the function of these genes in regulating
pluripotency and neurulation are conserved with other
vertebrates. Interference with oct4 or sox3 function pro-
duces gastrulation defects in Xenopus and zebrafish
[55,65], and thus the expression of oct4 and sox3 in A.
limnaeus embryos prior to axis formation also suggests
a possible conserved role in gastrulation. In contrast to
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the strong upregulation of sox3 at 30% epiboly in zebrafish
[27], sox3 is downregulated after 50% epiboly in A. lim-
naeus. The developmental consequences of this reversal
in sox3 expression during A. limnaeus development are
unknown. Future studies that establish the molecular tar-
gets and localization of oct4, sox3, and sox2 in A. limnaeus
will be important in determining if the roles of these tran-
scription factors are indeed similar to other vertebrates.

Expression of DV-patterning genes during A. limnaeus
embryonic development
Chordin, noggin, and follistatin are potent BMP antagonists
that are commonly associated with their role in DV pattern-
ing. Gradients of BMP across the developing embryo are
established by secretion of these BMP antagonists by the
Spemann-Mangold organizer, a structure that forms during
gastrulation and whose function in inducing dorsal struc-
tures appears to be conserved between vertebrates [35].

chordin
Only one chordin gene has been identified in zebrafish
and medaka and its expression is required for correct
dorsal structure formation [44,45,66,67]. Expression of
chordin is first observed in the late blastoderm of both

medaka and zebrafish, just prior to epiboly, and tran-
scripts appear to be expressed until around the end of
somitogenesis for both species. We detected chordin ex-
pression throughout A. limnaeus embryonic development
(Figure 4A) with peak expression just after fertilization
followed by a sharp drop after the completion of epiboly
(4 dpf). This pattern suggests maternal packaging of the
chordin transcript, which appears to be a unique expres-
sion pattern, compared to zebrafish (Figure 5), and may
indicate a role for chordin expression in the unique disper-
sion and reaggregation phases of development observed in
annual killifish.

noggin-1 and noggin-2
At least three noggin genes have been described in zebra-
fish, with expression of noggin-1 starting at the late blastula
stage and noggin-2 appearing at the end of gastrulation
[41]. High expression of noggin-1 was observed just after
fertilization in A. limnaeus (EC stage), after which expres-
sion became undetectable until the SNK stage at 10 dpf
(Figure 4B). The constitutive expression of zebrafish nog-
gin-1, beginning shortly before gastrulation and continuing
for the duration of embryonic development (Figure 5), con-
trasts with this expression profile of A. limnaeus noggin-1

Figure 3 Gene expression patterns of oct4, sox3, and sox2 during development in A. limnaeus and other teleost fishes. All data points
(white dots) are inferred from available qPCR data. Thickness of the black bars represents relative expression levels within each species. The stage
with the first visible evidence of embryogenesis is indicated with a star for all species. Developmental stages that are absent in species other than
A. limnaeus are indicated with a gray box. For data from this study, late segmentation and organogenesis stages would correspond to the DII and
9 dpd stages, respectively. Similar developmental stages were categorized based on previously reported characterizations [14,15,58,59]. D.r, Danio
rerio; O.l., Oryzias latipes; C.a., Carassius auratus; P.o., Paralichthys olivaceus.
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[41,43]. Expression of noggin-2 was first detected at the
SNK stage in A. limnaeus in association with the formation
of the embryonic axis, similar to zebrafish where noggin-2
is first detected in the axial mesoderm at the end of gas-
trulation [41]. Expression of noggin-2 continued to in-
crease during development reaching peak levels in mid to
late organogenesis (3/4 OG) and DIII embryos (Figure 4C).
After the SNK stage, expression of both noggin-1 and nog-
gin-2 was observed for the remainder of the embryonic
stages, suggesting roles in DV patterning and neural devel-
opment similar to other teleosts during these periods of
development [41,43,68].

follistatin
While localization studies in zebrafish have determined
that chordin and noggin are likely secreted as part of the
organizer, follistatin appears to be absent in this structure
[43,45]. A. limnaeus follistatin expression is first measur-
able at 50% EB and increases dramatically between the late
reaggregation and SNK stages of development (8 to 10
dpf) after which it is expressed constitutively until the
end of embryonic development (Figure 4D). This tim-
ing of follistatin expression in A. limnaeus is similar to
zebrafish (Figure 5) in that high expression of transcripts
is not seen until the embryonic axis is visible, suggesting a
role outside of the early gastrulation processes [43].
Expression of chordin, noggin-1, and noggin-2 at the

first appearance of a visible embryonic axis, suggests that
these factors may play a role in DV patterning in A. lim-
naeus that is similar to other described vertebrates, such
as zebrafish (Figure 5). However, contrasting to zebrafish
embryos, the surprising observation of maternally pack-
aged chordin and noggin-1 during early cleavage suggests
that these genes may have a unique function during early
development in A. limnaeus. Transcript localization and
protein expression studies for these genes will be ne-
cessary to determine where these genes are expressed
during development and may clarify their roles in A.
limnaeus morphogenesis.

The dispersed blastomere stage may prolong an
undifferentiated state that can buffer environmental stress
In zebrafish, previously reported transcript data shows
that simultaneous expression of chordin, noggin-1, noggin-2,
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follistatin, and sox2 is only observed after commencement
of germ layer formation. Similarly, we do not observe sim-
ultaneous expression of these five genes until after forma-
tion of the solid neural keel when there is a visible
embryonic axis (Figures 3 and 5). Cross-species compari-
sons of sox2 transcripts also reveal that sox2 expression is
generally strongest following gastrulation (Figure 3), simi-
lar to our observation of highest sox2 expression following
axis formation (Figure 2). Taken together, expression pro-
files of the genes tested in this study suggest that gastrula-
tion and axis formation in A. limnaeus is not completed
until late in the reaggregation process or perhaps shortly
after (between 8 and 10 dpf).
Wourms [2] suggested that the dispersed cells might

be ‘developmentally equivalent’ and therefore able to re-
place cells that are damaged or destroyed after environ-
mental insult. Recently, we have shown that A. limnaeus
embryos irradiated with ultraviolet-C (254 nm) during
the dispersed blastomere phases (4 dpf) suffer a delay in
development, but are able to develop normally at doses
that cause a high degree of abnormal development in
SNK stage embryos [21]. Taken together with the gene
expression profiles in this report, these data support the
hypothesis that the dispersed cell phase in annual killi-
fish can serve to buffer development against potentially
teratogenic insults through the prolonged maintenance
of pluripotency and the delay of sensitive developmental
processes (for example, gastrulation and axis formation)
until the environment is favorable for normal development.

The fact that many species of annual killifish can either
substantially prolong D/R or enter diapause at this stage
in response to environmental stress [3,4,11] suggests a
mechanism for embryos to survive prolonged bouts of
what would otherwise be lethal or teratogenic environ-
mental stress. To our knowledge, this is the first evidence
supporting this type of mechanism for dealing with envir-
onmental stress during development.

Gene expression during diapause II and implications for
the annual killifish life history
In all lineages of annual killifish, the processes of D/R
and the ability to arrest development in diapause always
co-occur despite the lack of a necessary connection be-
tween the two processes. This has led us to hypothesize
that the molecular mechanisms that support the two
processes may be somehow linked. We observed mRNA
expression of oct4, sox3, sox2, chordin, follistatin, nog-
gin-1, and noggin-2 in DII embryos. Perhaps most inter-
esting is the high and prolonged expression of chordin
for the entire duration of embryonic development in A.
limnaeus which is in contrast to the pattern observed in
zebrafish (Figure 5). While the genes investigated in this
study are of central importance to normal development,
it is not clear why their expression would be maintained
during diapause II. Previous work suggests low rates of
protein turnover during diapause II, but the reduction is
not complete and some transcripts are very likely trans-
lated during dormancy [69]. Presently, it is unclear if

Figure 5 Gene expression patterns of chordin, noggin-1, noggin-2, and follistatin during development in A. limnaeus and zebrafish.
Developmental stages are based on A. limnaeus timing and development. All data (white dots) are inferred from available qPCR or northern blot
data, except for zebrafish noggin-2 which was inferred from whole embryo in situ hybridization (noted by the striped bar). Thickness of the black
bars represents relative expression levels within each species. The first visible evidence of embryogenesis is indicated with a star for both species.
For data from this study, late segmentation and organogenesis stages would correspond to the DII and 9dpd stages, respectively. Developmental
stages that are absent from zebrafish are indicated with a gray box.
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these seven mRNAs in DII embryos are: (1) actively
translated and have a role in maintaining diapause; (2)
stabilized in order to support rapid resumption of devel-
opment once diapause is terminated; or (3) leftover from
pre-DII development. Further studies of the action of
these genes before, during, and after diapause II, especially
the prolonged expression of chordin, might lead to inter-
esting discoveries on the molecular regulation and evolu-
tion of this complex developmental pattern.

Conclusions
The expression of oct4, sox3, sox2, chordin, follistatin,
noggin-1, and noggin-2 are dynamic across embryonic
development in A. limnaeus. Our data suggest that A.
limnaeus embryonic cells begin to acquire specific iden-
tities after the D/R process is completed and gastrulation
commences. The dispersed blastomeres during the D/R
stage are very likely pluripotent and lack spatial orienta-
tion, and this may benefit the embryos by delaying the
sensitive process of gastrulation and axis formation until
environmental conditions are favorable. The implications
for this work reach far beyond the peculiar developmen-
tal patterns of annual killifish, and suggest that even
highly conserved developmental pathways that are re-
quired for the formation of the basic vertebrate body
plan can be altered in response to intense selective pres-
sure to generate unique life histories and alter the timing
of early development.
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