
Portland State University Portland State University 

PDXScholar PDXScholar 

Physics Faculty Publications and Presentations Physics 

9-1-1987 

Energy-transfer theory for the classical decay rates Energy-transfer theory for the classical decay rates 

of molecules at rough metallic surfaces of molecules at rough metallic surfaces 

P.T. Leung 
Portland State University 

Thomas F. George 

Follow this and additional works at: https://pdxscholar.library.pdx.edu/phy_fac 

 Part of the Physics Commons 

Let us know how access to this document benefits you. 

Citation Details Citation Details 
Leung, P. T., & George, T. F. (1987). Energy-transfer theory for the classical decay rates of molecules at 
rough metallic surfaces. Physical Review B (Condensed Matter), 36(9), 4664-4671. 

This Article is brought to you for free and open access. It has been accepted for inclusion in Physics Faculty 
Publications and Presentations by an authorized administrator of PDXScholar. Please contact us if we can make 
this document more accessible: pdxscholar@pdx.edu. 

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/phy_fac
https://pdxscholar.library.pdx.edu/phy
https://pdxscholar.library.pdx.edu/phy_fac?utm_source=pdxscholar.library.pdx.edu%2Fphy_fac%2F92&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/193?utm_source=pdxscholar.library.pdx.edu%2Fphy_fac%2F92&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/phy_fac/92
mailto:pdxscholar@pdx.edu


PHYSICAL REVIE%' B VOLUME 36, NUMBER 9 15 SEPTEMBER 1987-II

Energy-transfer theory for the classical decay rates of molecules at rough metallic surfaces

P. T. Leung and Thomas F. george
Department of Physics and Astronomy and Chemistry, 239 Fronczak Hall,

State University of New York at Buffalo, Buffalo, New York 14260
(Received 24 April 1987)

The problem of the decay rates for molecules at rough metallic surfaces is considered, where the
classical electromagnetic energy-transfer theory of Chance, Prock, and Silbey for a flat surface is

generalized to the case of a rough boundary. A dynamical theory is constructed through the corn-
bination of the Sommerfeld antenna theory and the integral equation formalism of Maxwell's

equations at rough boundaries established mainly by Maradudin, Mills, and Agarwal. Perturba-
tive solutions are obtained and numerical results are given with reference to a shallow sinusoidal
grating surface. The results, when compared with those obtained previously from the application
of the image 6eld theory, show that this latter theory can be very inaccurate for cases involving

highly conducting substrates or large molecule-surface distances, consistent with previous observa-
tions for the case of flat surfaces.

I. INTRODUCTION

Surface-enhanced spectroscopy is a highly interdisci-
plinary area of research which has recently aroused im-
mense interest from both chemists and physicists due to
its various practical and fundamental aspects. ' Some
typical examples of research interest involve possible
enhanced photochemical processes, ' distortion of ab-
sorption line shapes for admolecules, ' and possible
cooperative phenomena for an ensemble of admolecules.
While some of this work may lead to practical applica-
tions such as laser-assisted heterogeneous catalysis,
most of the fundamental goals of these investigations are
aimed at the understanding of the mechanisms by which
admolecules interact with substrate surfaces. Among
these diverse phenomena, one common concern is the
determination of the lifetimes of those molecules in the
vicinity of the substrate surface. The reason for this is
that the surface-induced decay rate for the admolecule
will in many circumstances compete with the surface-
enhanced field, which will determine whether an ulti-
mate enhancement is possible for processes such as
fluorescence and other resonant absorption phenome-
na. ' '" This problem, namely, molecular lifetimes in the
presence of a dielectric (often metallic) surface, has been
investigated intensively for the last two decades, both
theoretically' and experimentally. " By now it has be-
come clear that the simplest and most appropriate
theory to describe such phenomena under usual experi-
mental conditions" is the energy-transfer (ET) theory es-
tablished chiefly by Chance, Prock, and Silbey' (CPS)
based on the Sommerfeld theory for a radiating dipole
antenna above the surface of the earth. ' It is fair to say
that, in most cases, as long as the molecule-surface dis-
tance is greater than a few angstroms so that the "quan-
tum spreads" of both the surface electrons and ad-
molecule can be neglected, ' this classical phenomeno-
logical (CP) approach has been found adequate. ' Furth-

ermore, this theory (ET) leads to results identical with
quantum-mechanical ones and reduces to the image
theory (IT) in appropriate limits. ' Hence, the theoreti-
cal aspect of this problem seems to have been settled, at
least for the case where perfect flatness is assumed for
the surface boundary as in all these previous theories. '

For rough surfaces (which are more realistic in most ex-
perimental situations), however, there seems to be a lack
of a complete theory which describes well such decay
rates for the admolecules. Recently, prompted by the
discrepancy observed between the CPS theory and the
measurements of the decay rates for pyrazine molecules
near certain noble-metal surfaces carried out by Rossetti
and Brus (RB),' the effects of surface roughness on such
decay rates have been considered theoretically for both
random' and periodic' roughnesses as a possible ex-
planation for the observed discrepancy in the RB experi-
ments. Moreover, all these previous theories' ' were
based on the image-potential theory for a rough bound-
ary established by Rahman and Maradudin. ' It has
then been a wide belief" ' that as long as the
moleculer-surface separation d is much shorter than the
wavelengths k of the molecular emissions, which is true
under most experimental conditions of interest (1 510
A and A, -10 A), ' ' such a static theory (IT) should
yield results as good as the more exact dynamical theory
(ET). However, it has been observed recently that the
condition d ~&X is not sufficient for IT to be valid. The
exact comparison between ET and IT actually involves
three distance scales, namely, d, A, , and the skin depth 5
of the metal substrate. In addition to d &~A, , we must
also require d &&6 for IT to be valid. In particular, for
highly conducting substrates, such as silver (Ag), it has
been found that IT breaks down for d ~0.01k, for the
case of a flat surface. Roughly speaking, the physical
origin for such a drawback of IT stems from the fact
that the Helmholtz wave equation in a conducting media
does not reduce to the static Poisson equation in the lim-
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it A.~ m if the conductivity of the media becomes
infinitely large.

It is therefore necessary to establish a dynamical
theory (ET) for a complete description of the decay rates
of admolecules at rough metallic surfaces. The present
paper undertakes this task by a combination of the Som-
merfeld antenna theory' and the integral-equation for-
malism of Maxwell's equations for rough boundaries es-
tablished chiefly by Maradudin and Mills and
Agarwal. We shall present the theory in Sec. II, calcu-
lations for a simple configuration of the problem in Sec.
III, and numerical studies in Sec. IV. For simplicity and
for illustrative purposes, we shall always assume the
molecular dipole to be located at (0,0,d) and oriented
perpendicular to the rough boundary. The generaliza-
tion to other molecular orientations is straightforward
(though tedious) by following the lines in the original
CPS theory for flat boundary. Advantages and limita-
tions of the present theory will be discussed further in
the conclusion section.

II. THEORY

According to the CP approach, the admolecule is
modeled as a point dipole (}u, ) described by the equation
of motion for a damped harmonic oscillator. ' The
molecular decay rates (y) in the presence of a substrate
surface can be obtained in the form' ' '

&F =pp 1+
3

IrnG

}'R ='Yo 1+
3

Im(G +G )
2 k

(2)

=1+XR

XF

3—~ ImG'
2 k

I+—~ ImG~3
2 k

(4)

The remaining task in this theory is to calculate the
G(co) functions. In general, within the CP approach,
there are two ways of doing this. In the exact treatment
(ET), one has to solve the full set of Maxwell's equations
(ME) (or equivalently, the Helmholtz wave equation) by

where q is the quantum yield of the emitting state, k is
the emission wave number, and the indices R, F, and 0
stand for cases with a rough surface, flat surface, and
free molecule, respectively. The G functions of Eqs. (1)
and (2) are defined as the refiected (E") from the surface
boundary acting on the molecular dipole per unit dipole
moment as a function of the emission frequency,

( )
E(co)

p

Note that in writing Eq. (2), we have followed previous
approaches' ' by separating the contributions to the
surface-induced decay rates from the flat boundary and
from the roughness, respectively. To exhibit more clear-
ly the effect due to the surface roughness, it is useful to
define the ratio

regarding the dipole emission as the incident (source)
field E' ' and matching boundary conditions at the sur-
face. Thus for the case of a flat surface, Chance, Prock,
and Silbey' solved this problem by applying
Sommerfeld's theory for a radiating dipole antenna
above the earth's surface. As an example, for p locat-
ed at (0,0,d ) and oriented perpendicular to the surface,
the CPS theory gives'

—21 d
GFT(co) = —k j du Re

0 l)

where co=ck, d =kd, R =(12—el, )/(12+el
& ), i, =

i(—1 —u )', 12= —i(e —u )', and e(co)=e, (co)
+ie2(co} is the bulk dielectric constant of the substrate
material.

The other method of calculating the G functions
would be the IT. This theory, which is approximate but
much simpler, regards E" as given by the image field,
which is obtained from solving the electrostatic Poisson
equation by matching the appropriate boundary condi-
tions. ' Thus for the above example, one obtains

F k' e —1
GtT(co) =

4d3 g+1

While both theories (ET and IT) have been established
for a flat surface boundary, to our knowledge only IT is
available for situations where surface roughness cannot
be neglected. ' ' However, in a previous publication,
we have pointed out that IT can give very unreliable re-
sults for highly conducting substrates even in the limit
d «A, . Hence in this section we shall attempt to estab-
lish a dynamical theory (ET) for rough surfaces by calcu-
lating G fT(co) below.

The calculation of reflected fields E' from rough sur-
faces is a long-existing problem beginning with the clas-
sic papers of Rayleigh and Fano. By now it has be-
come clear that there are two general ways of approach-
ing the problem: direct boundary matching of the field
quantities or application of the integral-equation
formalism. "' In the former approach, either the vec-
tor potentials or the fields ' are matched across the
boundary with a profile function z =g(x,y }, and the solu-
tions are obtained usually to the lowest order in g by a
perturbation method. ' Although a more general solu-
tion has been obtained by Toigo et al. which in princi-
ple (though tedious) can give expressions for the field to
any order in g, the Raleigh hypothesis (which is known
to guarantee convergence only for small-g cases) has
nevertheless been assumed in all these formalisms,
so that they are of limited applicability in this sense. On
the other hand, the integral-equation approach usually
starts by avoiding direct matching of the field quantities
across the boundary z=g(x, y) by converting the
Maxwell-Helmholtz equation to an integral equation by
means of the Green's-function method or the applica-
tion of the extinction theorem. The Green's-function
method of Maradudin and Mills (MM) has been criti-
cized by other researchers (who have followed the
direct-matching approach) as being too crude with their
perturbative approximations which led to final solutions
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inconsistent with those obtained by these later research-
ers. However, the correct reason which leads to such
disagreements between these two approaches was only
pointed out later by Agarwal, who proved that the
MM formalism is actually correct and consistent with all
other approaches ' (including the extinction theorem
approach ), except that MM had not treated the discon-
tinuity of the field quantities across the plane z =0
correctly. With a remedial recipe, Agarwal has shown
that the MM formalism can actually lead to the correct
results. Hence we shall adopt the MM theory in this
present investigation to calculate GFT(co) and shall dis-
cuss the advantages and limits of this formalism in Sec.

33

The main idea of MM's theory is to regard the surface
roughness g as a source to the homogeneous Hemholtz
equation for the case of a perfectly flat boundary. Thus,
by expanding the dielectric constant in the form

d k
rii)= f " e' ii '((g(k

(2~)

ik .rE' (r co)=e' ii 'iiE(o)(k(o)to
f

z)p s
(12)

Er ErF+ErR
P P P (13)

where F and R stand for the contributions from the flat
boundary and the roughness, respectively. According to
MM, we have to order g (Ref. 35)

kE" (r;co)= — [e(to) 1]—

with rii
——(x,y, 0) and kii

——(k„,k„0), we can finally obtain
the total re+ected field (E") in the presence of surface
roughness in the form

e(z co) =eo(z to ) + [e(co ) —1 ]g(x,y )5(z )

——,'[e(co) —1]g (x,y)5'(z)+O(g ),
with

&( d klle' ll 'll g g«]

&& f dz'd„„(k(iai
f

zz')
(14)

1, z)0 X5(z')E(,o'(k(i(o'~
f

z') .

d r'D„r, r';co

X g(x', y')5(z')E, (r';co),

where E„ is the tota1 field for perfectly flat boundaries,
D„ is the Green's tensor ("propagator") for the corre-
sponding wave equation, and Einstein s summation con-
vention has been adopted. Following MM's approach,
by invoking the "Born-type" approximation and by in-
troducing the two-dimensional Fourier transforms

(2'�)' (10)

the Helmholtz equation for the pth component of the to-
tal electric field can be expressed in the form of an in-
tegral equation, and to lowest order in g one has

kE„(r,co) =E„(r,to) — [e(co)—1]

We notice already from Eqs. (13) and (14) that one good
feature of this theory is that E„" can be expressed com-
pletely in terms of the fiat-surface solutions (with
E„" =E„' ' E„,E—

~ being the incident field), which are
in general easily attainable. Thus, towards our ultimate
goal of the calculation of GFT(to):E" Ip, we can—just
insert the solution for E' ' from the CPS theory' into
Eq. (14) since all the Green's tensors d„„are already
given in MM.

Before going to specific case studies, let us also give
the result for Ez to order g, which is the lowest non-
vanishing order when small (Gaussian-distributed) ran-
dorn roughness is present. ' One must be very careful
and consistent in working out the MM theory to this or-
der. In particular, one has to collect terms from the
second-order Born-type approximation to order g in

E„(r;to) in Eq. (9) together with those from the first-
order Born-type approximation to order g in the origi-
nal, exact integral equation for E„(r;co). With some ma-
nipulation, we finally obtain to order g

2

E„' (r;co)= —
3

[e(co)—1] f d kiie " " g(kii —ki'i ') f dz d„('k((t„o
f

zz')5(z')E' (kii 'co
f

z')

+ 2 f d'k i(&(ki()«ki( —
kii

—kii")

x fdz', [d„.(k„~
f

zz')E(oi(k(((oi~
f

z')]5(z')
az'

2 I

[e(~)—1]fd'k
i,
«k„g(ki( —k'„")e'" 'ii f dz d„,(l „~ f

zz )5(z )

X f dz "d„(ki(ai
f

zz")5(z")E' '(kii 'to
f

z")
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III. CAI.CUI.ATION

X du dv e g+h exp — +g d, 16
0 0

where f, g, and h are functions of u and v, given by
2 ]/2

f (u, v)= u+ — +v
2

(17)

Here we want to illustrate the dynamical theory (ET)
established in Sec. II by considering the simplest case
that one can have, namely, a perpendicular dipole ()M) lo-
cated at (O, o, d) above a shallow sinusoidal grating sur-
face g(x,y)=foe'~". Previously, we have obtained to or-
der g the G function for this case via the image method
(IT), which can be expressed as'

400 e —1
Gn. —

(e+1)'

r=(o, o,z), CPS theory gives'

u 1&(z —d )
3

E'"(z;co)=e,(uk f du e '

o I)

QQ u —11(z+d )
3

E" (z co)= —e (Mk f du R e
0 l)

(20)

(21)

E' (z;cv) =e,)u, k f du —(1 —R) e ' ', (22)
0 6 Ii

with z=kz and other quantities defined as in Eq. (5).
Equations (20) —(22) represent the incident, refiected, and
transmitted fields, respectively. To simplify our applica-
tion of these results to calculate Eq. (14), we assume fur-
ther that k~~

'-—0, i.e., only the wave normally incident
on the surface is reflected back at the location of the
source dipole. Obviously, this approximation is good
only when the roughness is small. Granting this ap-
proximation, we then have for E'„' within Eq. (14)

'2

g(u, v)= u —— +v
2

1/2

(18)
E'„'(kI( '

~

')=&', '( ', )5„, ,

and since E' '=—E'"+E", from Eqs. (20) and (21) we ob-
tain (for z' &0)

h (u, v)=u +v
4

(19)
@(o)(k(0)~

~

~)cc) z
In the following, we shall calculate GET for this case ac-
cording to Eq. (14) and then compare with the results
obtained from Eq. (16).

First, let us start by recalling the fields obtained in the
CPS theory for this case. For a flat surface boundary at

k3 f ~
d

u
(

l)(z' —d) + l)(z'+d))5
o li

(23)

Furthermore, using the Appendix of the MM paper,
we obtain

2mk(( k) +e(CV)kq, l, (z+z )

kk2 k, —e(cv)k2
ik2 fz —z'] 4~—e ' + 5(z —z') for z &0, z'&0

k
d„(k„~

[

zz') =
7Tl 1 ik2z+ik

1
z'

z e ' ' for z~0, z'&0,
k, —e co kp

(24)

where k =(v/c, k~(
——(k„,k~, o), and

k) ———[e(co)k —k() ]

(k k)' k k—

2 ~ k2 k2 1/2 k2 k2

(25)

(26)

X fd'k~(g(k(() f dz d-(k

XE,' '(z', lv)5(z'),

With (23) and setting kI(
'—-0 in Eq. (14), we finall ob-

tain (with r~(
——0)

kE," (z;lv)= — [e((v) —1]
16m.

we finally obtain the following equivalent expressions:

f dz'd„(k(((o
i
zz')E,' '(z', (v)5(z')

=dzz(k((co
i zo+)E,' '(0, (v)

1
d„(k((

~

O )E,"'(O,
e (0

=e((v)d„(k((~
l

zo —)E,' '(O, cv) . (28)

Using any one of the results of Eq. (28) and with the
help of Eqs. (22) or (23) and Eq. (24), we finally obtain a
unique expression for Eq. (27) at z =d given by

ik2d

E,""(d;co)= i pk 2
—f d k()g(k(()

4m k )
—ek2

where d„ is given by Eqs. (24) —(26).
Let us first evaluate the integral involving z' by taking

care of the discontinuity of the function d„E,' ' at z'=0.
Following MM (Ref. 24) and Agarwal's prescription,

X du1 —R e
o Ii

(29)

%'ith the Fourier transform for the shallow sinusoidal
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grating profile given by

g(k~~) =(27r) $05(Q —lc~~),

where

Q=ge

(30)

(31)

106

~710

ik d2

ik —go(e —1)~ 3 e

k) —ek2
RGE

Eq. (29) finally yields

ErR
z -8

CC
10

where

du(1 —R) e
o I)

(32)
-9

10

k, = —[e(co)k —g ]'/

(k2 g2)1/2 k2 g2
2 (g2 k2)1/2 kz g2 (33) 10

Combining Eqs. (5) and (32) with Eq. (2), we have a com-
plete dynamical description (ET) of molecular decay
rates at shallow sinusoidal grating surfaces. On the oth-
er hand, Eqs. (6) and (16) together provide the static cal-
culations (IT) for the same problem from Eq. (2). '

10 l

50 d (A)

l

100

IV. NUMERICAL RESULTS AND DISCUSSIONS

We have compared the two theories by computing
both the quantities ImG and the ratio A in Eq. (4) via
the two theories (ET and IT) for different grating param-
eters and molecular emission frequencies. Figure 1

shows the comparison of ImG &z and ImG ET according
to Eqs. (16) and (32), respectively, for a shallow Ag grat-
ing (go ——0.7 A, g =0.01 A ') at co=2. 5 eV, from which
one can see that IT gives correct results only for small
values of d and lies consistently below ET for larger d
values, a behavior consistent with that observed previ-
ously for flat surfaces. Figure 2 shows the same corn-
parison for a Ni surface (co =3.3 eV), which exhibits
similar discrepancies between the two theories. Al-
though Ni is a less conducting material than Ag, the an-
ticipated better agreement between the two theories for
Ni is manifested only slightly in the short-distance re-
gime (e.g. , the deviation between ET and IT at d =20 A
is about 28% for Ni and 36% for Ag), in contrast to the
case for flat surfaces where such comparison is more sen-
sitive to the conductivity of the substrate surface. As
discussed before, the physical origin for the "large-
distance discrepancies" is that IT includes only nonradi-
ative energy transfer, whereas ET includes both radiative
and nonradiative energy transfers, and hence the in-
duced molecular damping is more serious as compared
to IT at large molecule-surface separation. Figure 3
shows a calculation of the ratio A in Eq. (4) as a func-
tion of d according to ET [Eqs. (5) and (32)] for different
emission frequencies and grating parameters for a Ag
surface. As before, we have assumed q = 1. ' ' It is of
interest to observe that while all graphs show the disap-
pearance of the roughness effects at large values of d,
%~ 1 much faster for the case of a deeper grating

10

-510—

-610—

(3

-710—

-810—

10 '

5O d(A')
I

ioO

FIG. 2. Same as Fig. 1, but for a Ni grating at co=3.3 eV.

FIG. 1. Comparison between the energy-transfer theory
(ET, solid curve) and the image theory (IT, dashed curve) for a
Ag grating substrate (go ——0.7 A, Q=0.01 A ) at co=2. 5 eV
for a range of molecule-surface distances d. The unit of G is in
A



36 FOR THE CLASSICAENERGY-T RANSFER THEORY 4669

IT for the rat&on between ET aFIG 4 Comparison e
s in»gsarethesameasin 1d. Other condit&on

510

. CONCLUSIONca rates as givenn of the molecular decay
a Hatin Fi . 1 with those for a atb ET at the rough gA surface as in ig.

ratingt emittmg r
* '

fre uencies and g
Curve a: co=2.5 e

=0.01 A . Curve
period. ur . — e
eV, =0.01 A . Curve e: co=
d: co=3.74 eV, Q=0.08 A

A '). Furthermore, or co= . =co
SP) resonance frequency, w

of hcan cause dsmtnu
'

g
fits f 1

picture, wemore co p
IT or va uepanson between ET an

ich we can see athat at close dis-
F

A surface from w ic
ImG and ImG &Tcre ancy between mp

% for
'

or
ca c e Ni surface s ows s' '1 bh

to conclude that ue
rvives at

It is consistent to
e effect o t e rh f h roughness survradiative transfer, t e

in ET as compare to-surface distances m
5 we show the variation o y~ 7

n fre uencies co[Eq.
e A grating as in(d= A

uch close distanceobserve
ET h hcorn ared toreasona bly accurate as comp

from eac oh ther in the neigh-he largest deviation
This is due to

showt e a
onance frequency.bor ooh d of the SP resonan
s. 16) and (3 i

' '
a2) 't is obvious thathe acfact that from Eqs.

in IT and k ~
—ek2 inhe resonance factors su

her [the same dhff'eren
t e res

nt from each ot er
from

ET are very differen
G as can be seen rre occurs for a

should
ho 1o hnot be trustwort y a

1 f om the surface.molecu e is rom

10

~(eV)
4

d IT for the ratio y~ /yo
'

on between ET anFICx. 5. Companson
e A rating as in Fig.v d = 10 A for the same g grvs co at fixed

work, ' ' we have inpour previous wor,
theptisp

ca
d 1details or a

ut
faces.

h b k dal rating ave
lt 'bt"n'd

above a s
the revious resu ts o

h b d
an c

Once again, we
h to a

the image theory.
conductivity (thougthe substrate con

t) o
'

th
bl fo 1

1 minor extent as
e result ob-s Presumab y, iflat sur aces.



4670 P. T. LEUNG AND THOMAS F. GEORGE 36

tained in Eq. (15) to the case of Gaussian-distributed
random roughness for a perpendicularly oriented dipole,
the results for yz then obtained should show similar
comparisons with those obtained before using IT for this
case by Arias, Aravind, and Metiu. ' We have pointed
out that more complicated configurations (e.g. , mole-
cules oriented parallel to the surface) can also be treated
by the combination of the CPS (Ref. 10) and MM (Ref.
24) theories along similar lines as developed in this pa-
per. We want to give below some further comments on
the MM theory which we have applied.

As mentioned in Sec. II, all these past
theories ' ' for the calculation of rejected fields
from rough surfaces have advantages and disadvantages.
Here we just want to summarize the advantages and the
drawbacks of the MM theory. Our results in Eqs. (14),
(15), (29), and (32) will enjoy (suffer) the same advantages
(drawbacks) as in the MM theory. First we want to re-
state that the most serious limitations of this theory is
the use of the two-dimensional Fourier transform for the
Green's tensor D„ in Eq. (10), which assumes transla-
tional invariance along the surface. This use of the so-
called "bare propagator" has also been commented on
by some other investigators and has limited the accura-
cy of the theory to only lowest orders in the surface
roughness g(x,y). Nevertheless, it is exactly this approx-
imation which renders the MM formalism capable of
avoiding direct matching of the boundary conditions for
the field quantities across the rough surface, which is a
complicated task and for which explicit analytic results
have been obtained only to order g. ' Expressions to
order g will be very difficult (if not formidable) to obtain
via the direct-matching method. However, within the
MM theory, as we have seen in Sec. II, one can obtain
systematically (though tediously) results of higher order
in g as long as one is careful in collecting terms of the
same order in both the roughness and the kind of
"Born-type" approximation which has been applied.
Since this approach has been shown by Agarwal explic-
itly to give identical results obtained by all other
methods (at least to order g), we have therefore adopted
the MM approach in our present theory. Furthermore,
the MM theory is a vector theory, which thus has ad-
vantages over ordinary scalar theories. ' It is possible
that some very recent formalism using path-integral ap-
proaches by Gersten and Nitzan to the same problem

may lead to more handy and accurate numerical treat-
ments of the calculations of the decay rates, and this will
be left as a future investigation. In addition, the as-
sumption that kI~

' -—0 restricts our result in Eq. (32) to
be accurate only for very shallow gratings, although this
restriction has nothing to do with the MM theory. In
principle, one can carry out a more complicated analysis
of the different possible rejected rays back at the molec-
ular site taking into consideration the interference
effects. However, for those numerical examples which
we have been analyzing (goQ 50.006), the approxima-
tion k~~

' —-0 should be very accurate.
Finally, we want to indicate that in the past few years

there have been a lot of theoretical and experimental ac-
tivities dealing with the comparison between the CPS
theory (ET), image theory (IT) and the quantum-
mechanical models due to Persson and co-workers.
The latest experimental study (to our knowledge) is the
one published Alivisatos, Waldek, and Harris, ' which
seems to give support to the Persson theory as opposed
to the classical CPS theory, even at large molecule-
surface distances. This is quite surprising since
Persson's original theory, when compared to the static
image theory, shows that the discrepancy is again relat-
ed to the conductivity of the substrate, the same origin
for the discrepancy between ET and IT found in our re-
cent work. Furthermore, as admitted by Alivisatos,
Waldek, and Harris in the conclusion of their paper, ' it
is in fact difficult for them from their experimental data
to distinguish between the CPS and the Persson theories.
In addition, surface roughness may very likely play a
role in the comparison between these experiments and
theories. Thus, it would be very interesting to compare
and clarify these three different theories, namely, ET, IT,
and the Persson theory (taking into consideration the
effects of surface roughness) for different molecular emis-
sion frequencies and substrate conductivities. Work is in
progress in this direction in our group.
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