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EFFECTS OF SEX AND MYCORRHIZAL FUNGI ON GAS EXCHANGE
IN THE DIOECIOUS SALT MARSH GRASS DISTICHLIS SPICATA

Kassandra Reuss-Schmidt,* Todd N. Rosenstiel,* Sally R. Rogers,* Allie G. Simpson,* and Sarah M. Eppley1,*

*Center for Life in Extreme Environments and Department of Biology, PO Box 751, Portland, Oregon 97207-0751, USA

Editor: Pamela K. Diggle

Premise of research. In dioecious plant species, males and females often differ in physiology, andmycorrhizal
fungal relationships are likely to influence these differences. However, few data are available on the potential role
of mycorrhizal fungi in altering sex-specific physiology and population sex ratios of dioecious plant species.

Methodology. In this study, we measured leaf gas exchange in a multifactorial greenhouse experiment
with and without mycorrhizal fungal additions and under field conditions in Distichlis spicata, a dioecious C4
salt marsh grass, displaying extreme spatial sex ratio variation.

Pivotal results. We found a significant interaction between gas exchange, plant sex, and mycorrhizal fungal
infection. Specifically, females but not males had significantly lower transpiration rates and higher water use
efficiency (WUE) in treatments with increased mycorrhizal fungi. Additionally, field data showed similar WUE
between plants at female-majority sites and male-majority sites, despite significantly lower rates of net assimi-
lation and stomatal conductance in plants at female-majority sites.

Conclusions. Our results suggest that the higher WUE associated with increased mycorrhizal fungi in female
D. spicata plants may be an important physiological attribute enabling female success in the higher-stress salt-
water environment contributing to the spatial segregation of the sexes observed in this dioecious species.

Keywords: dioecy, mutualism, photosynthesis, reproduction, spatial segregation of the sexes, water use effi-
ciency.

Introduction

Understanding sex-specific physiology and how it varies
with abiotic stress is key to understanding the role of physi-
ology in reproductive allocation and the maintenance of sex
ratio variation in dioecious plant species (Barrett and Hough
2013). However, sex-specific differences in physiology are not
well understood in plants and vary widely among species (for
review Dawson and Geber 1999; Nicotra et al. 2003; Álvarez-
Cansino et al. 2010). For instance, in Silene latifolia, males
have consistently higher rates of net assimilation and stomatal
conductance than do females, and nutrient treatments do not
appear to affect this result (Gehring and Monson 1994; La-
porte and Delph 1996). Conversely, females in Sabina vul-
garis have consistently higher net assimilation rates and water
use efficiency (WUE) than do males (He et al. 2003). In other
species, environmental stress causes sex-specific physiological
differences to increase (e.g., Xu et al. 2008; Montesinos et al.
2012; Li et al. 2013), even in some cases where such differ-
ences do not occur under mesic conditions (Correia and Díaz
Barradas 2000).

Sex-specific physiological differences have been associated
with sex ratio variation in many plant species (Li et al. 2007),
as differences in physiology between males and females may
lead to sex-specific mortality. In species exhibiting extreme sex
ratio bias, including spatial segregation of the sexes (SSS), dif-
ferences in physiology between the sexes have been found,
and these differences often change along environmental gradi-
ents (Dawson and Bliss 1989; Dawson and Ehleringer 1993;
Sánchez-Vilas and Retuerto 2009; Groen et al. 2010; Sánchez-
Vilas and Retuerto 2011). Ongoing climate change is altering
both environmental gradients and the effects of sex-specific
physiology and thus is predicted to alter sex ratios in many
dioecious plant species (Hultine et al. 2013).
Despite these observations, remarkably little information is

available on how sex-specific physiology in dioecious plants
interacts with other biological components of the community,
including mycorrhizal fungi, herbivory, and competition, and
yet such interactions are likely to have direct effects on pop-
ulation sex ratios. In dioecious plant species, mycorrhizal fungi
have previously been found to have significantly different ef-
fects on males and females (Varga and Kytöviita 2008; Varga
2010; Vega-Frutis et al. 2013b for review). However, the ef-
fects of mycorrhizal fungi on plant sex-specific physiology are
largely unexplored. Mycorrhizal fungi form symbiotic rela-
tionships with more than 80% of flowering plants (Lee et al.
2013), generally having a mutualistic relationship, although
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the relationship may break down into parasitism (Johnson
et al. 1997; Hoeksema et al. 2010 for review). Fungi benefit
mainly via carbohydrate gain from their plant hosts (Finlay and
Söderström 1992). The benefit for plants may include increased
nutrient uptake (often phosphorus uptake; Marschner and
Dell 1994; Smith and Smith 2011), protection from drought
stress (Auge 2001), and alleviation of saline stress (Evelin et al.
2009; Porcel et al. 2012 for review). Differences in physiology
between male and female plants are likely to alter the cost-
benefit balance of these mutualistic relationships, as differ-
ences in a plant’s photosynthetic rate may alter the availability
of carbohydrates a plant has in excess to trade, and differences
in a plant’s nutrient or water needs may alter the benefit of
trading for these limiting resources with the fungal partner.
Thus, to understand the role of mycorrhizal fungi in dioecious
plant populations, we need to understand how mycorrhizal
fungi affect sex-specific plant physiology and how this might
ultimately alter sex ratios via sex-specific mortality.

In this study, we examined sex-specific physiology in Dis-
tichlis spicata, a C4 salt marsh grass in which sex is genetically
determined and that exhibits extreme sex ratio bias, result-
ing in SSS (Freeman et al. 1976; Eppley et al. 1998). In the
D. spicata system, a difference in arbuscular mycorrhizal fun-
gal (AMF) infection rate has been observed between male
plants and female plants, with females showing infection 1.6–
2.6 times higher than their male counterparts (Eppley et al.
2009). Majority-female D. spicata sites have substantially
higher phosphorus levels (Eppley 2001; Eppley et al. 2009) and
higher salt levels (Lazarus et al. 2011) and are inundated more
often than are majority-male D. spicata sites (Eppley 2001).
Particularly for female plants, with their high cost of repro-
duction, mycorrhizal fungi colonization inD. spicatamay play
a role in accessing phosphorus or in alleviating stress in the
high-salt, low-freshwater sites.

To address the role of mycorrhizal fungi and nutrients in the
D. spicata system, we examined leaf gas exchange parameters
collected under greenhouse conditions under differing phos-
phorus and mycorrhizal fungi treatments and compared them
to physiological measurements taken in the field. Females in
dioecious and subdioecious species have generally been found
to have higher photosynthetic rates than males, and this is
likely to compensate for a higher cost of reproduction in females
(Dawson and Ehleringer 1993; Laporte and Delph 1996;
Tozawa et al. 2009). We thus hypothesized that females would
have higher photosynthesis rates (net assimilation rates) than
males under limiting resources (low phosphorus) and access
to mycorrhizal fungi. If females have higher costs of repro-
duction than males, these costs are likely to include both car-
bohydrates and limited nutrients. Thus, with a higher cost of
reproduction in females, females may need to increasingly trade
carbohydrates for limiting resources (such as phosphorus or
water) with their mycorrhizal fungal partners to support in-
creased gas exchange and fruit production.

Material and Methods

Study Species

Distichlis spicata (L.) Greene (Poaceae) is a dioecious C4 salt
marsh grass found in coastal salt marshes in North America

and Mexico (Hitchcock 1971). The plants are wind pollinated
(Hitchcock 1971), and their seeds are water dispersed (S. M.
Eppley, personal observation). Distichlis spicata also spreads
vegetatively via rhizomes and tillers (Hitchcock 1971). This
study focuses on twoD. spicata populations on the West Coast
of the United States: one at Point Reyes National Seashore,
Marin County, California, and one at Whalen Island, Tilla-
mook County, Oregon. Distichlis spicata exhibits SSS in both
populations (Eppley et al. 1998, 2009). Female-majority sites
are significantly lower in elevation in the marsh than are male-
majority sites (Eppley 2001). Also, in the Whalen Island pop-
ulation, higher concentrations of soil phosphorus have been
observed inD. spicata female-majority habitats compared with
male-majority habitats (Eppley et al. 2009), and similar results
were found in a Tomales Bay, California, population (Eppley
2001) within 20 km of the Point Reyes population. Nitrogen
soil content was not found to vary significantly between male-
majority sites and female-majority sites and was therefore not
examined in this study (Eppley 2000, 2001; Eppley et al. 2009).
We measured mycorrhizal fungal colonization in the Whalen
Island population in the field, and females were significantly
more likely to be colonized by AMF than were males (Eppley
et al. 2009). For the Point Reyes population, we measured
mycorrhizal fungal colonization in the greenhouse and found
similar results (Eppley et al. 2009), suggesting that even in a
common garden environment the sexes respond differently to
AMF.

Greenhouse Experimental Design

To test the effects of phosphorus levels andmycorrhizal fungi
colonization on gas exchange under controlled conditions, male
and female plants were grown in a research greenhouse at
Portland State University (PSU). Distichlis spicata seeds were
collected from the Point Reyes population in 2005 and grown in
a greenhouse as stock plants. The sex of these plants was de-
termined via sex-specific molecular markers (Eppley et al.
2009). In August 2010, 30 genetic individuals—15 males and
15 females—were randomly selected from the Point Reyes
population being cultivated in the greenhouse. These 30 indi-
viduals were vegetatively cloned by planting 6 cm of rhizome
possessing at least two nodes into 164 mL Cone-Tainers (Ray
Leach Cone-Tainers Nursery, Canby, OR) that were filled with
a mixture of one part nursery-grade sand to two parts Sunshine
Mix #2 (Sun Gro Horticulture, Vancouver, BC), creating four
replicates of each genotype, one placed in each of the four
treatment combinations. The soil was chosen as it was made of
Canadian Sphagnum peat moss, coarse perlite, gypsum, and
dolomitic limestone for water retention and had no nutrient
additions, so that we could control nutrients. Additionally, a
similar Sun Gro soil was used in a previous study, in which
we found mycorrhizal fungal colonization was comparable be-
tween greenhouse samples and field samples (Eppley et al.
2009). The cones were placed in racks in trays, and each rack
of cones stood in a tray where the cone bottoms were sub-
merged in a nutrient solution consisting of 100 ppm nitrogen
and 100 ppm potassium made using 4-0-0 nitrogen and 0-0-4
potassium liquid fertilizer (Nature’s Nectar Hydroponic Nu-
trients, Kingston, ON) to supply macronutrients except phos-
phorus. Both the position of plants within the trays and tray
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placement in the greenhouse were randomized. Trays were
randomized within the greenhouse twice a month, and new
nutrient solution was added during randomization. No addi-
tional light was added, and daytime greenhouse temperatures
were maintained between 187 and 267C.

To examine the effects and interactions of sex, phosphorus
level, and mycorrhizal fungi, the trial groups were divided
into trays that differed in phosphorus and mycorrhizal fungi
exposure. Using 0-4-0 phosphorus liquid fertilizer (Nature’s
Nectar Hydroponic Nutrients), plants were exposed to one of
two levels of phosphorus, 60 or 10 ppm, which correspond
to the higher and lower levels of phosphorus measured in
female- and male-majority field sites, respectively.

Half of the plants in each of the high- and low-phosphorus
treatments were subjected to one of the two mycorrhizal
fungi treatments and half to the other treatment (resulting in
four treatment combinations). For the mycorrhizal fungi treat-
ments, either plants were inoculated with mycorrhizal fungi
spore treatment or were treated with a sterile equivalent (con-
trol inoculum). Air-dried soil from male- and female-majority
sites at Whalen Island was mixed to include the breadth of
fungal spores in that population. Spores were collected from
Whalen Island rather than Point Reyes (where the plants orig-
inated), as we no longer have access to Point Reyes, which is a
federally protected site. The soil (with roots removed) was then
either sterilized in an autoclave for the control inoculums or
directly added to deionized water to make the mycorrhizal
fungal inoculums. The control inoculum was sterilized to re-
duce the number of mycorrhizal fungal spores, potentially af-
fecting the nutrient content; however, this inoculum was only
a small proportion of the soil used in the experiment, as it
was added to existing soil in which the plants were grown, and
thus its effect on plant nutrition was likely to have been small.
However, the sterilization would remove all microbial addi-
tions, including bacteria and other types of fungi, and thus the
control treatment must be considered in this light. Plants were
inoculated with 5 g of slurried soil from the respective treat-
ments (mycorrhizal fungal inoculum or control inoculum) ev-
ery other week to maintain high inoculum levels within the
mycorrhizal fungal treatments.

Greenhouse Data Collection

In mid-February 2012, between 900 and 1700 hours, leaf
gas exchange parameters were measured by utilizing a Li-Cor
6400XT portable photosynthesis system (Li-6400XT, Li-Cor,
Lincoln, NE). Gas exchange parameters included net CO2 as-
similation rate (A, a measure of mean light-saturated rate of
photosynthesis), stomatal conductance (gs), and transpira-
tion rate (E). Gas exchange parameters were measured with a
6-cm2 LED cuvette (LI-O2B) with cuvette conditions set at
2000 PAR mmol photons m22 s21 (as this is the light level at
which saturation occurred; no photoinhibition was seen for
any samples), a CO2 concentration controlled at 400 ppm with
an onboard mixer, and temperature matched to ambient con-
ditions. Chamber humidity was monitored, and levels consis-
tently fell within 55%–66% relative humidity. Four to six
mature leaves from each plant were secured onto the chamber
head and brought to their maximal rates of net assimilation at
the given conditions; leaves typically reached steady state con-

ditions within 10 min of enclosing within the cuvette. Intrin-
sic WUE was calculated as a ratio of net assimilation rate to
transpirational water loss (A/E). To determine total leaf area,
the leaves were then harvested, photographed, and analyzed in
ImageJ (Abramoff et al. 2004). Leaves harvested to measure
leaf area were dried at 607C in a drying oven for 48 h, weighed,
and later added to the shoot mass in the destructive harvest.
To account for other variables that might affect gas ex-

change, chlorophyll content and specific leaf area were mea-
sured in February 2012 to coincide with the gas exchange
measures. Chlorophyll content was measured using a Minolta
SPAD-2 leaf chlorophyll meter. Specific leaf area was deter-
mined by collecting 5 leaves from 15 different male and fe-
male plants not involved in this gas exchange experiment that
were grown concurrently in the greenhouse. A different set of
plants from the primary research plants was used because we
did not want to alter the final biomass results, and plants were
not harvested for biomass for another month (as this was part
of a larger experiment). The leaves were dried at 607C for
48 h and weighed. Area was again determined via photo anal-
ysis with ImageJ software.
A destructive harvest was carried out during the first week

of March 2012 (72 wk after planting) to measure total bio-
mass and to determine the plant root-to-shoot ratio. Roots
were cleaned and mechanically separated from the shoot bio-
mass. A random small portion of the root, taken from the entire
root collection for each plant, was harvested in order to quan-
tify AMF colonization rates. The remainder of the roots and
shoots was then placed in a drying oven at 607C and left for
48 h. The respective portions were then weighed.

AMF Colonization Analysis

The portion of roots set aside for AMF colonization quan-
tification was taken from storage at 47C and washed with tap
water. Collected roots within a sample were stained with Try-
pan blue, following Koske and Gemma (1989). After staining,
50 1-cm root segments from each plant were randomly chosen
and mounted on slides. AMF colonization was quantified using
the magnified intersection method of McGonigle et al. (1990).
We were able to obtain colonization data on 112 of the 120
plants from the greenhouse experiment. We found that, al-
though we tried to maintain our noninoculated treatment with
no mycorrhizal fungi colonization, this treatment in fact had
mycorrhizal fungal colonization, though to a lower degree than
our inoculated treatment. Because we grew plants of nonin-
oculated and inoculated treatments close to each other for over
a year with plants submerged in water, cross contamination
likely occurred from water spray among trays. Thus, we ended
up with low and high mycorrhizal fungal treatments similar
to those used by Botham et al. (2009) due to mycorrhizal fun-
gal colonization of their noninoculated treatment. Our analy-
sis of arbuscular mycorrhizal colonization between treatments
showed that plants in the treatment inoculated with mycor-
rhizal fungal spores were significantly more likely to be colo-
nized with arbuscules (inoculated plants p 4.1% 5 0.7%
arbuscular colonization vs. noninoculated plants p 2.3% 5
0.5% arbuscular colonization; Fp 4.69, Pp 0.03; Np 112,
using a Welch’s ANOVA due to unequal variance) and mar-
ginally significantly more likely to be colonized by all deter-
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minants of AMF, including hyphae, arbuscules, and vesicles
(inoculated plants p 35.5% 5 0.2% AMF colonization vs.
noninoculated plants p 29.2% 5 0.2% AMF colonization;
F p 3.38, P p 0.07; N p 112), than plants in the nonin-
oculated treatment. Male and female plants did not differ sig-
nificantly in arbuscular colonization (F p 0.99, P p 0.75,
using Welch’s ANOVA) or in total measure of AMF coloni-
zation (Fp 2.39, Pp 0.13). Similarly, we found no significant
differences in arbuscular colonization (Fp 0.19, Pp 0.66) or
in total AMF colonization (F p 0.06, P p 0.81) between
phosphorus treatments.

Field Data Collection

To measure gas exchange in plants under field conditions,
during the second week of July 2012, a field campaign to the
Whalen Island site was undertaken to measure 32 plants.
Daily high temperatures during this period were 19.07 5 1.07C
and daily lows were 10.67 5 1.17C, with no recorded precip-
itation (data from the Clovedale, OR, weather station within
10 km of the site; data from the National Climatic Data Center,
National Oceanic and Atmospheric Administration). Previous
work in this site determined that patches of D. spicata are
extremely sex biased, with female-majority sites having sex
ratios of 0.32 5 0.05 SE and male-majority sites having sex
ratios of 0.73 5 0.04 SE (Eppley et al. 2009). As this popu-
lation was flowering, male- and female-majority sites were
determined via their inflorescences. To facilitate a comparison
between the measurements in the greenhouse (which were
nonflowering), only nonflowering individuals were used for
gas exchange measurements. Measurements were taken be-
tween 1030 and 1730 hours with the same Li-Cor 6400XT
unit and attachments as in the greenhouse experiment. The
three uppermost fully expanded leaves of each plant were
placed in the Li-Cor chamber head and measurements, in-
cluding A, gs, and E, were taken. Leaf cuvette chamber con-
ditions were the same as those used in the greenhouse study, as
temperature and humidity saturation levels were found to be
similar. Intrinsic WUE was again calculated as a ratio of net
assimilation rate to transpirational water loss. To determine
total leaf area, the leaves used in field gas exchange were then
harvested, photographed, and analyzed in ImageJ (Abramoff
et al. 2004), and gas exchange parameters were corrected for
total leaf area during each measurement.

Data Analyses

Gas exchange data from both the greenhouse and field
plants were analyzed via ANOVA. In the greenhouse exper-
iment, we determined the effects of sex, phosphorus treatment,
mycorrhizal fungi treatment, and interactions among these ef-
fects on net assimilation rate, stomatal conductance, transpi-
ration rate, and instantaneous WUE. For the field data, the
same gas exchange measures were compared between male-
majority sites and female-majority sites. All data conformed to
the assumptions necessary to apply the ANOVA except for
transpiration rate in the field experiment, which showed un-
equal variance until transformed (1/x). Significant differences
among treatments were determined by post hoc analyses.When
significant, hour and humidity level were included as covariates
in the models for gas exchange. To determine whether mycor-
rhizal colonization differed between the sexes or treatments, we
used ANOVAorWelch’s ANOVA for cases when the variances
were unequal. All analyses were conducted using JMP 10 (SAS
Institute 2012).

Results

Greenhouse Results

In the greenhouse experiment, net assimilation rates were
significantly greater in the high-phosphorus treatment com-
pared with the low-phosphorus treatment but not signifi-
cantly affected by sex, the mycorrhizal fungal treatment, or
interactions between these factors (tables 1, 2). On the other
hand, stomatal conductance was marginally significantly af-
fected by the interaction between sex and the mycorrhizal
fungal treatment; stomatal conductance was not directly af-
fected by sex, the mycorrhizal fungal treatment, or the phos-
phorus treatment. Transpiration rate was significantly affected
by the interaction between sex and the mycorrhizal fungal
treatment (table 1; fig. 1a), while WUE was significantly af-
fected by the phosphorus treatment, the interaction between
the mycorrhizal fungal treatment and the phosphorus treat-
ment, and the interaction between sex and the mycorrhizal
fungal treatment (fig. 1b). Biomass was significantly greater in
the higher-phosphorus treatment compared with the lower-
phosphorus treatment (tables 1, 2). Chlorophyll content and
root-to-shoot ratio were significantly affected by the mycor-

Table 1

Effects of Sex, Mycorrhizal Fungi, and Phosphorus on Leaf Gas Exchange and Biomass for Greenhouse Plants

A gs E WUE Biomass Root∶ shoot Chlorophyll

F P F P F P F P F P F P F P

Sex .67 .42 .80 .37 .28 .60 .12 .73 .29 .59 .45 .50 1.19 .28
Phos. 12.90 .0005 1.63 .20 .58 .45 18.96 !.0001 15.63 .0001 .79 .38 2.34 .13
Myc. .35 .56 .02 .90 .00 .95 .72 .40 .55 .46 6.46 .01 7.96 .006
Phos. # sex 1.66 .20 1.29 .26 1.64 .20 .00 .97 .02 .88 .00 .95 .59 .44
Phos. # myc. 1.42 .24 .00 .97 .08 .78 3.81 .05 .88 .35 .00 .98 2.89 .09
Sex # myc. .61 .44 3.77 .06 4.33 .04 5.85 .03 .00 .98 1.04 .31 .46 .50
Sex # myc. # phos. .88 .35 .48 .49 .13 .72 .01 .92 .06 .80 .21 .65 .00 .98

Note. ANOVAs were used to determine the effects of sex, mycorrhizal fungi infection treatment (Myc.), phosphorus treatment (Phos.), and the
interaction between these on net assimilation rate (A), stomatal conductance (gs), transpiration rate (E), water use efficiency (WUE), total biomass,
root-to-shoot ratio, and chlorophyll content in greenhouse-grown Distichlis spicata plants. Significant P values are underlined. N p 120.
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rhizal fungal treatment (tables 1, 2), with both lower in the
mycorrhizal fungal treatment compared with the sterile treat-
ment. There was no significant difference in specific leaf area
between male and female plants (mean p 272.5 5 9.7 and
272.1 5 14.3 cm2 mg21, respectively; P p 0.99).

Field Results

A significant difference in net assimilation rate and moder-
ately significant difference in stomatal conductance was ob-
served between plants in male-majority sites and female-
majority sites (table 3; fig. 2). In both cases, male-majority
sites showed higher rates than their female counterparts.
Transpiration rate showed no significant differences between
male-majority sites and female-majority sites (mean p 2.09 5

0.20 and 1.78 5 0.09 mmol H2O m22 s21, respectively), and
WUE also showed no significant difference between male-
majority sites and female-majority sites (mean p 8.68 5 0.64
and 7.61 5 0.60 mmol mol21, respectively).

Discussion

We have previously shown that there are significant sex-
specific differences in AMF infection in Distichlis spicata, with
female plants showing infection 1.6–2.6 times higher than
their male counterparts (Eppley et al. 2009). Here we have
extended this work to examine sex-specific differences in leaf
gas exchange as well as the role of AMF interactions in in-
fluencing carbon and water exchange in this C4 marsh grass
species. Given the higher level of AMF infection previously
observed in females, we hypothesized that females of D. spi-
cata would maintain greater rates of net assimilation than
males. However, as has been shown previously (Lazarus et al.
2011), we found no inherent differences in gas exchange mea-
surements between male and female D. spicata plants under
greenhouse conditions. Instead, our experimental results show
a significant interactive effect of sex with AMF on transpiration
rate and instantaneous WUE, with AMF substantially altering
female values. Furthermore, in the field we found significant
differences in gas exchange between plants in male- and female-
majority sites, yet despite these differences, we observed com-
parable levels of instantaneous WUE between sites. Taken to-

gether, these results suggest that females ofD. spicata positively
respond to AMF infection by reducing E and increasing WUE.
These results may help to explain the previous observations of
greater AMF infection in female plants, as reduced E and en-
hanced WUE are both likely key traits for surviving the greater
salinity of female-majority sites. Below we discuss the interac-
tion between AMF and sex with respect to plant carbon-water
trade-offs and the impacts of these trade-offs on the mainte-
nance of biased population sex ratios and SSS in D. spicata.

Sex-Specific Physiology and Mycorrhizal Fungi

In dioecious plant species, the sexes have been shown to
differ in mycorrhizal fungi colonization and to be affected
differentially by mycorrhizal fungi (Varga 2010; Vega-Frutis
et al. 2013b for review), suggesting that males and females
may differ in their cost-benefit relationship to these symbi-
onts. However, our data are the first to show that the inter-
action between mycorrhizal fungi and dioecious plants affects
sex-specific physiology, as the D. spicata females in the green-
house gain an advantage in reduced E and gs and greater WUE
with mycorrhizal fungi additions while males do not. While
male WUE was not significantly affected by the mycorrhizal
fungal treatment, females showed significantly higher WUE
when treated with mycorrhizal fungi, and though not signifi-
cant, females also displayed the lowest overall rates of tran-
spiration in the presence of mycorrhizal fungi additions (fig. 1).
Since the male and female plants were grown under identical
greenhouse conditions, these results suggest a fundamental
difference in the interactions between male and female plants
and the mycorrhizal fungi. Specifically, females appear to ben-
efit from mycorrhizal fungi partnerships, at least with respect
to transpiration and WUE, while males do not. However, we
cannot rule out the possibility that males of D. spicata derive
some other benefit (e.g., nutrient acquisition) from mycorrhizal
infection in exchange for carbohydrates. The addition of my-
corrhizal fungi did significantly lower chlorophyll content in
both sexes, suggesting there is a definite cost associated with
forming these fungal relations inD. spicata, as is expected if the
plants are providing carbohydrates to their fungal partners.
Given the interactions between AMF and sex-specific gas

exchange we have observed, our results suggest that females
may be able then to outperform males in the high-stress areas

Table 2

Leaf Gas Exchange and Biomass Measures for Distichlis spicata Greenhouse Plants

Male Female Phos. 1 Phos. 2 Myc. 1 Myc. 2

A (mmol CO2 m22 s21) 18.70 5 .61 17.47 5 .59 19.49 5 .63 16.68 5 .53 18.36 5 .65 17.81 5 .56
gs (mol H2O m22 s21) .17 5 .01 .16 5 .01 .17 5 .01 .16 5 .01 .17 5 .01 .17 5 .01
E (mmol H2O m22 s21) 3.02 5 .10 2.84 5 .09 2.99 5 .11 2.86 5 .09 2.94 5 .11 2.92 5 .09
WUE (mmol mol21) 6.30 5 .14 6.24 5 .12 6.66 5 .14 5.88 5 .11 6.35 5 .13 6.19 5 .14
Biomass (g) 4.79 5 .26 4.59 5 .28 5.40 5 .30 3.98 5 .18 4.56 5 .26 4.82 5 .27
Root∶ shoot (g21) .94 5 .03 .97 5 .04 .93 5 .03 .97 5 .03 .90 5 .03 1.01 5 .04
Chlorophyll 29.47 5 .25 28.91 5 .39 29.58 5 .29 28.80 5 .44 28.47 5 .36 29.91 5 .37

Note. Net assimilation rate (A), stomatal conductance (gs), transpiration rate (E), water use efficiency (WUE), biomass, root/shoot, and
relative leaf chlorophyll content, with means (5SE) for male and female plants, plants in high- and low-phosphorus treatments (Phos.), and
plants in the two mycorrhizal fungal treatments (Myc.). Underlined values indicate where measures significantly differed among phosphorus or
mycorrhizal fungal treatments; values did not differ between sexes (when pooled across phosphorus and mycorrhizal fungal treatments). N p
120.
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of the salt marsh by an increased interaction with AMF that
facilitates lower rates of transpirational water loss and higher
WUE. In previous research we found that females host greater
mycorrhizal colonization than males (Eppley et al. 2009), po-
tentially resulting in lower transpirational water loss and higher
WUE for females. However, the benefits females may gain with
AMF infection under field conditions likely come at a greater
carbon cost (see field discussion below) yet may be necessary to
successfully compete and dominate the saltier, lower-elevation
sites in the marsh. Our results are consistent with numerous
studies indicating enhanced WUE with AMF mycorrhizal as-

sociations (Auge 2001; Miransari 2010) yet provide a novel
perspective on the potential for sex-specific interactions of this
widespread mutualism.

It should be noted that in the greenhouse our mycorrhizal
fungi treatments were mild, as the treatments to which we
added spores had high colonization while the ones to which
we added only sterile soil had significantly lower but detect-
able colonization.More stringent treatment conditions, as were
achieved previously in which the experiment was conducted
for one-fifth of the time period (Eppley et al. 2009), might
result in mycorrhizal fungi treatments that increase the dif-
ferential effect of the treatments as difference in the costs and
benefits of the mutualistic trade-off between the plants and
fungi might increase. However, under field conditions these
costs and benefits vary but are rarely zero, and our experiment
was able to explore how variable investment in this relationship
affected sex-specific gas exchange in this species. While our
treatment changed potential mycorrhizal fungal interactions,
it also presumably changed the interaction potential of other
microbes, as we used sterilized inoculum as a control. Thus,
variation in other microbes (including bacteria) between the
sexes might have contributed to some of the observed results,
and sex-specific differences in microbial colonization beyond
mycorrhizal fungal colonization have been reported to occur in
a variety of dioecious species (Vega-Frutis et al. 2013a for re-
view). To date, much of the work on sex-specific nonmycor-
rhizal microbial differences in plants has been done in horti-
cultural species, and future research should focus on how
potential differences between the sexes affect microbial com-
munities and how such communities might affect the stress
physiology and evolutionary ecology of dioecious species.

Sex-Specific Physiology and SSS

SSS has been observed in more than 30 dioecious and sub-
dioecious plant species (Bawa and Opler 1977; Bierzychudek
and Eckhart 1988; Dawson and Bliss 1989; Iglesias and Bell
1989; Shea et al. 1993; Bertiller et al. 2002; Dudley 2006;
Nuñez et al. 2008). When SSS occurs, it generally correlates
to an environmental gradient, most typically elevation, mois-
ture, or nutrient gradients (Bawa and Opler 1977; Dawson
and Bliss 1989; Iglesias and Bell 1989; Shea et al. 1993;
Bertiller et al. 2002; Dudley 2006; Nuñez et al. 2008), with
males often in more nutrient-poor, stressful environments than
females (Bierzychudek and Eckhart 1988; Dawson and Bliss

Fig. 1 For Distichlis spicata plants grown in the greenhouse, in-
stantaneous water efficiency (WUE; mean 5 SE; a) and transpiration
rate (E; mean 5 SE; b) for female plants (F) and male plants (M) with
(plus) and without (minus) the mycorrhizal fungi treatment. Different
letters indicate that means are significantly different. For transpira-
tion, the post hoc test was unable to distinguish significance among
treatments despite a significant effect of sex by mycorrhizal fungal
treatment in the ANOVA. N p 120.

Table 3

Effects of Site Majority Sex on Leaf Gas Exchange for Field Plants

F P

A 6.10 .02
gs 2.74 .06
E 4.91 .16
WUE 14.18 .32

Note. One-way ANOVAs were used to compare net assimilation
rate (A), stomatal conductance (gs), transpiration rate (E), and water
use efficiency (WUE) for Distichlis spicata plants between male- and
female-majority sites. Significant P values are underlined. N p 32.
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1989; Shea et al. 1993). Differences in environmental condi-
tions between male-majority sites and female-majority sites in
species with SSS suggest sex-specific differences in physiology
that are adaptive to their respective microhabitats.

Unlike results from our greenhouse study, here we found
significant differences in leaf gas exchange between plants from
male- and female-majority sites of D. spicata in the field.
Despite higher soil phosphorus content, females in female-
majority field sites showed lower net assimilation rates than
males in male-majority sites, as well as depressed levels of sto-
matal conductance (fig. 2). These results were contrary to our
expectations and are contrary to what has been found in other
plant species with separate sexes. We hypothesized that females
would have higher rates of photosynthesis than males, and fe-
males in dioecious and subdioecious species have been found
to have higher photosynthetic rates than males (Dawson and
Ehleringer 1993; Laporte andDelph 1996; Tozawa et al. 2009).
One likely contributing factor to the differences we have ob-
served in the greenhouse and the field that might explain the
depression of net assimilation rates at female-majority sites is
exposure to high concentrations of NaCl and inundation stress
due to repeated inundation, as female-majority sites are lower
in the marsh than male-majority sites. Though no difference
in soil salinity was observed between male-majority sites and
female-majority sites at the Whalen Island population, the level
of saltwater inundation in the female dominant areas is much
higher than that in male sites (Eppley 2001). Increased salt
concentrations have been shown to depress photosynthetic
rates in D. spicata (Tiku 1976; Kemp and Cunningham 1981;
Warren and Brockelman 1989; Lazarus et al. 2011). Further,
Kemp and Cunningham (1981) attributed a large portion of
the observed depression in photosynthesis to stomatal closure,
consistent with the lower stomatal conductance and depression
in net assimilation observed here in our female plants. Another
factor to explain the lower net assimilation rate in plants in
female-majority sites compared with male-majority sites might
be that female photosynthetic rates are depressed during re-

production. This phenomenon has not been observed in this
species but has been reported in Honckenya peploides, a sub-
dioecious dune species that exhibits SSS (Sánchez-Vilas and
Retuerto 2011). Although the plants we measured were not
flowering, theywere collected during the flowering seasonwhen
nearby ramets were in flower. Water sharing between ramets
has been observed in D. spicata (Alpert 1990), so it is proba-
ble that nonflowering shoots are sharing in the reproductive
burden.
For D. spicata plants growing in the salt marsh, the envi-

ronment is physiologically stressful, increasing in saltiness
along a strong gradient. Because saltwater has low water po-
tential, selection favors plants with highWUE efficiency in salt-
water. In fact, many plants in salt marshes are C4 plants, in-
cluding D. spicata, as C4 plants have greater WUE than do C3
plants (Sage and Monson 1999). In addition, lower stomatal
transpiration is selected in saltwater environments, as transpi-
ration in salt marshes often involves costly salt pumps (Long
and Mason 1983); D. spicata has such pumps working to ex-
clude sodium and chloride ions fromD. spicata leaves, covering
them with salt crystals (Hansen et al. 1976). The reduction in
stomatal conductance (yetmaintenanceofWUE)weobserved in
female plants in the field is consistent with female plants’ likely
greater exposure to salinity.
Given our greenhouse results, it seems likely that AMF may

be associated with maintaining WUE in females in the field, as
female plants of D. spicata gained greater WUE with the ad-
dition of mycorrhizal fungi than males, consistent with a phys-
iological adaptation to maintain water balance in the higher
salt conditions found in majority-female sites. Similarly, with
the addition of mycorrhizal fungi, females exhibited lower
transpiration rates than did males, suggesting that they may be
adapted to respond to these saltier conditions, minimizing re-
liance on costly salt pumps. The observation of no significant
differences in instantaneous WUE between male and female
plants of D. spicata under field conditions suggests that the
abundance of mycorrhizal fungi associated with females’ roots,

Fig. 2 For Distichlis spicata plants growing in the field, net assimilation rate (A; mean 5 SE; a) and stomatal conductance (gs; mean 5 SE;
b) as observed in female-majority (F) and male-majority (M) sites. N p 32.
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as we have shown in previous work (Eppley et al. 2009), may be
a key physiological strategy enabling greater access to water
(and maintenance of WUE) in this saline habitat. As results of
our study indicate a substantial interaction between AMF and
sex-specific patterns of water exchange, this widespread halo-
phyte species may provide a unique experimental system for
contributing to ongoing efforts aimed at resolving the physio-
logical and molecular basis for AMF alleviation of drought and
salt stress (Auge 2001; Evelin et al. 2009; Ruiz-Lozano et al.
2012). Further, results from this work highlight the potential
need for considering biotic interactions when evaluating pat-

terns of sex-specific physiology and sex-specific plant functional
traits (Reinhart et al. 2012).
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