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mixtures8
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The existence of the dielectric constant E is investigated for fluid mixtures of rigid polar molecules. The 
investigation is performed using the functional-derivative formalism for mixtures, and is closely analogous to 
that previously carried out for pure dipolar fluids [J. Chem. Phys. 68. 5199 (1978)]. Sufficient conditions for 
the existence of E are obtained in terms of the direct correlation function matrix caP(12). It is found that E 

exists if ca,a(12) depends only on relative positions and orientations, and becomes asymptotic to - Bap(12)/kT 
at long range, where Bap(12) is the dipole-dipOle potential between a molecule of species a and one of species 
{3. An expression for E in terms of the short-range total correlation function matrix emerges automatically 
from the development. This expression is equivalent to an earlier result obtained by a different method. 
Expressions for E in terms of cap (12) are derived for axially symmetric molecules and for molecules of 
arbitrary symmetry. In the former case, the expression involves the inverse of an Nc XN, matrix, where N, is 
the number of components in the mixture. This expression facilitates the evaluation of E in the mean spherical 
approximation. For molecules of arbitrary symmetry, the expression for E in terms of cap (12) involves the 
inverse of an N, X N, supermatrix, each element of which is a 3 X 3 matrix. 

I. INTRODUCTION AND SUMMARY 

The purpose of this article is to establish sufficient 
conditions for the existence of the dielectric constant E: 

in dipolar fluid mixtures, and to examine the form of E: 

in such mixtures in somewhat greater detail than has 
previously been done. Our development constitutes the 
extension to mixtures of previous work on pure dipolar 
fluids. 1 As before, we restrict attention to rigid (un
polarizable) polar molecules. 

The development is based on the functional-derivative 
formalism for fluid mixtures, and is closely analogous 
to that previously carried out for pure dipolar fluids. 1 

The functional-derivative formalism leads naturally to 
the introduction of the direct correlation function matrix 
clls(ab) , in terms of which sufficient conditions for the 
existence of E: can be simply expressed. It is found that 
E: exists if clls(ab) is the sum of a short-range term that 
depends only on relative pOSitions and orientations, and 
a 10ng-rangeterm-8Ils(ab)!kT, where 8aS(ab) is the di
pole-dipole potential between a molecule of species a 
with coordinates (a) and one of species f3 with coordinates 
(b). These conditions are straightforward mixture ana
logs of the sufficient conditions for the existence of E: in 
pure dipolar fluids. 1 

As in the single-component case, an expression for E: 

emerges automatically as a by-product of the existence 
theorem. The structure of the present development is 
such that this expression involves a short-range total 
correlation function matrix h~B(ab), rather than cas(ab). 
This expression is equivalent to an earlier result ob-

a) Work performed in part under the auspices of the United 
states Department of Energy. 

tained, using an entirely different approach, by Martina 
and Deutch2 and by H~ye and Stell. 3 

We also derive expressions for E: in terms of cas(ab), 
first for axially symmetric molecules and then for mole
cules of arbitrary symmetry. In the former case, the 
expression involves the inverse of an NcxNc matrix, 
where Nc is the number of components in the mixture. 
An equivalent expression is implicit in the work of H.Oye 
and Stell. 3 [Note that ~J should be replaced by ('T- l

),} in 
their Eq. (16).] This expression facilitates the evalua
tion of E: in the mean spherical apprOXimation, since it 
makes the explicit consideration of finite-volume ef
fects4 unnecessary. We perform this evaluation in 
terms of the functions c!s(r) and c~B(r) used by Freasier, 
Hamer, and Isbister4 (FHI). The resulting expression 
for E: agrees with that of FHI when allowance is made 
for an error in their finite-volume correction. 

Our expression for E: in terms of c",s(ab) for mole
cules of arbitrary symmetry has not previously been 
presented, although H.Oye and Stell3 have indicated how 
this expression could be derived within the framework 
of their formalism. This expression involves the in
verse of an NcxNc supermatrix, each element of which 
is a 3 x 3 matrix. The expressions for E: in terms of 
cll/I(ab) are more complicated than the expression in
volving h~s(ab) because of the matrix inversions, but 
they have the advantage of being more easily evaluated 
in certain special cases, such as the mean spherica14 

and linearized Debye-Hiickel5 approximations. 

II. EXISTENCE OF € 

In this section we establish sufficient conditions for 
the existence of E: in terms of the behavior of cas(ab). 
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3512 J. D. Ramshaw and N. D. Hamer: Dielectric constant in dipolar fluid mixtures 

In the process, we automatically obtain an expression 
for t: in terms of h~8(ab). 

We consider a finite volume V, of arbitrary shape, 
containing an arbitrary mixture of rigid (unpolarizable) 
polar molecules at constant temperature T. The number 
of components in the mixture is N c ' and the number of 
molecules of component or species a is N a. The num
ber density of species a is p",=Nalv. The mOlecules of 
each species are of arbitrary symmetry. 

The position and orientation of the kth molecule of 
species a are denoted by r ak and W"'k' respectively, and 
are collectively represented by the shorthand notation 
(ak). Similarly, dummy coordinates (ra , wa) are repre
sented by (a), (rb , wb ) by (b), and so on. The angular 
measure f dw. is denoted by n. 

To each molecule is rigidly affixed a coordinate frame 
which translates and rotates along with the molecule. 
These molecular coordinate frames are defined in the 
same way for all molecules of a given species, so that 
two such molecules coincide if their coordinate frames 
coincide. A molecular orientation W is then defined by 
any convenient set of coordinates which specifies the 
orientation of the molecular frame with respect to the 
laboratory frame. If these coordinates are taken to be 
the Euler angles, 6 then W = (8, cf>, X) and n = 811'2. In the 
special case of axially symmetric molecules, the angle 
X is irrelevant and we may take W = (8, cf», which makes 
n =411'. 

Let ~=eP(wa)' where eP(w) is the unit vector along the 
p axis (p = 1, 2, 3 or x, y, z) of a coordinate frame with 
orientation w. The dipole moment vector of a molecule 
of species a with orientation w. can then be written as 

/J.a.=L/J.~~ , (1) 
p 

where /J.~ is the component of the dipole moment of a 
molecule of species a along the p axis in the molecular 
frame. The magnitude of the molecular dipole moment 
for species a is 

/J.a=[~(/J.~)2r/2 • (2) 

Our development is based upon the functional-deriva
tive relations for fluid mixtures, which we now proceed 
to summarize. These relations are straightforward 
generalizations of those for pure fluids. 7 We are con
cerned here only with linear dielectric polarization, so 
we shall require these relations only in their zero-field 
limiting forms. This means that we may use the grand 
canonical relations even though we are in the canonical 
ensemble, provided that the 1/N correction terms in the 
total correlation functions are discarded. 8.9 

Suppose that the sample is subjected to external fields 
which add a term 

to the total potential energy of the system. The linear 
(first-order) deviation lin",(a) of the single-molecule 
generic distribution function for species a from its zero-

field value of Pain is then given by 

lina(a) = - (3T na L J d(b) cf>8(b) [n8 h",8(ab) + oaB o(ab)) , ·(3) 
8 

where (3T = 1/kT, n", =Pa/n, Oa8 is the Kronecker delta, 
o(ab) is the Dirac delta function in positions and orienta
tions,. and has(ab) is the total correlation function ma
trix in zero applied field. The inverse of this relation 
Is 

-f3T cf>",(a)=2;J d(b)on8(b)[-c"'8(ab)+n~loa8o(ab)), (4) 

where c",8(ab) is the direct correlation function matrix 
in zero applied field. It follows from Eqs. (3) and (4) 
that h",8 and C <>8 are related by the Ornstein-Zernike 
equation for mixtures, 

has(ab) = ca8(ab) + L ny J d(e) hay(ae) cy8(eb). (5) 
y 

We now specialize to the case of dielectric polariza
tion, in which the only external field present is an ex
ternal electric field Eo(r). The latter is arbitrary ex
cept for two restrictions: it must be weak enough that 
the sample responds to it linearly, and it must vary 
slowly (in a molecular sense) with the position r. The 
external potential functions cf> a (a) now become 

(6) 

The dielectric behavior of the sample is determined by 
the polarization (induced dipole moment per unit volume) 
P(r), which is related to ona(a) by 

P(r.) = 2; J dw. on", (a) /J.a •• (7) 

Sufficient conditions for the existence of t: are most , 
easily expressed in terms of the direct correlation func
tion matrix c",8(ab). We adopt two fundamental assump
tions about its behavior: 

(i) We assume that at long range (large I r. - rbl), 
ca8(ab) becomes asymptotic to - f3 T times the dipole
dipole potential between a molecule of species a with 
coordinates (a) and one of species (3 with coordinates 
(b). That is, 

ca8(ab) = c~8(ab) - f3 T 8a8(ab) , 

8a8(ab)=-/J.a.· T O(r.-rb)· /J.8b , 

To(r) =H(I rl -a) vv I rl-1 
, 

(8) 

(9) 

(10) 

where c~8(ab) is a Short-ranged function, H(x) is the 
Heaviside unit step function, and it is understood that 
the limit a- 0 is ultimately to be taken. 

(ii) We assume that c~8(ab) depends only on relative 
positions and orientations. 

These assumptions are entirely analogous to those 
which imply the existence of t: in pure dipolar fluids. 1 

In an infinite system, the validity of (i) may be inferred 
from the work of Hpye and Stell, 3 and that of (ii) is a 
trivial consequence of translational and rotational in
variance. In the finite systems of present concern, the 
validity of (i) and (ii) is very plausible (except of course 
in a negligibly thin surface layer, where (ii) will break 
down) but as yet unproved, and we shall not pursue the 
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question here. We shall simply show that (i) and (ii) do 
indeed imply the existence of E in dipolar fluid mixtures. 

Combining Eqs. (4), (6), and (8), we obtain 

{3T Jl. aa • EL (ra) = ~ J deb) 6na(b) [- c~a(ab) +n;.16aa 6(ab)] , 

(11) 
where 

EL (r) = Eo(r) + J dr' To(r - r') . per') (12) 

is the Lorentz electric field, which is related to the 
Maxwell electric field E(r) by EL (r) = E(r) + (41T /3) P(r). 
In order to invert Eq. (11), we introduce a Short-ranged 
total correlation function matrix h~a(ab) defined by 

h~a<ab) = c~a(ab) + 1; ny f dee) h~y(ae) c~a(eb) • (13) 

This definition enables Eq. (11) to be solved for 6na (a), 
with the result 

6na(a) ={3T na ~ J deb) [nah~a(ab)+ 6aa 6(ab)] Jl.ab • EL(rb) • 

(14) 
Since c~a(ab) is short ranged, so is h~a(ab). The spatial 
integrals over rb in Eqs. (11) and (14) may therefore be 
extended over all space instead of just over the volume 
V, provided that ra is farther than the range of c~a(ab) 
or h~a(ab) from the surface of V. The integral over r. 
in Eq. (13) may similarly be extended over all space. 
In contrast, Eqs. (3), (4), and (5) involve the long
ranged functions caa(ab) and haa(ab), and the spatial in
tegrals in these equations extend only over the sample 
volume V. 

Since Eo(r) is slowly varying and the system is a fluid, 
it is clear that Per) and hence EL (r) will also be slowly 
varying. Combined with the fact that h~a(ab) is short 
ranged, this means that EL(rb) in Eq. (14) may be evalu
ated at the point rb = r a and taken outside the integral 
over (b). When this is done, the result combines with 
Eq. (7) to yield 

(15) 

where 

A(r a) = {3T L na J drbdwadwb [nah~a(ab) + 6aa 6(ab)]Jl.a a Jl. 8b • 
aa 

(16) 
But since c~a(ab) depends only on relative positions and 
orientations according to (ii), it is clear from Eq. (13) 
that the same is true for h~a(ab). By symmetry, there
fore, A (z;,) must be independent of r a and proportional to 
the unit tensor U. ThusA(ra)=AU, andA=(1/3)A:U. 
Equation (15) now reduces to Per) =AEL(r), which showslO 

that the dielectric constant exists and is given by (E - 1)/ 
(E + 2) = 41TA/3; i. e. , 

(17) 

We have therefore shown that assumptions (0 and (ii) im
ply the existence of E in dipolar fluid mixtures, with E 

given by Eq. (17). This expression for E is equivalent 

to that obtained by Martina and Deutch2 and H.oye and 
Ste1l3 using an entirely different method. [These au
thors' Waa(ab) is the same as our PaPah~a(ab).] 

III. € IN TERMS OF c"/l(ab) FOR MOLECULES OF 
AXIAL SYMMETRY 

In this section we derive the expression for E in terms 
of caa(ab) for axially symmetric molecules. To this end, 
we define 

ma=nlj2Jl.a , 

(na nW
l/2 J 0 Baa= n drbdwadwbhaa(ab) Jl. aa • Jl.ab· 

Ila Ila 

Equation (17) can now be rewritten as 

(18) 

(19) 

(20) 

where m is the Nc-dimensional column vector with ele
ments rna, mT is the corresponding row vector, j is the 
NcxNc unit matrix with elements 6aa, and if is the Nc 
xNc matrix with elements Baa. 

Multiply Eq. (13) by (nll a IlW-1 (na na)1/2 Ilaa • Ilab and 
integrate over r b, w., and wb• The result is 

( )1/2 
B -C + nana 

aa- all nlla Illl 

xL ny f dwad(b)d(e) h~y(ae) c~ll(eb) Il aa ' Ilab , 
Y 

(21) 

where 

(nan/l)1/2 f 0 
C all = n drbdwadwbCall(ab)Jl.aa·llllb 

Ilallil 
(22) 

We note that c~ll(ab) may be replaced by call(ab) in Eq. 
(22) without changing Call' so we can equally well write 

(na nW
l/2 J C all = n drbdwadwbcall(ab)llaa· Ililb . 

Ila Illl 
(23) 

The proof that this replacement is legitimate will be 
omitted, as it is entirely analogous to that of the corre
sponding property for pure dipolar fluids. 1 

The axial molecular symmetry, together with (ii), 
implies that fd(b)c~ll(eb)Jl.ab=Drllllre, whereDYIl is a 
constant independent of (e). Its value may be determined 
by taking the dot product with Jl. r., and integrating over 
w. for good measure. One thereby finds D yll =(nynll)"1/2 
X (IlJlly)C yll, so that 

J deb) c~a(eb) Jl.llb = (nyna)"1/2(IlJll y) CyllJl.'If' (24) 

With this result, Eq. (21) reduces to 

(25) 

or in matrix notation 

H=C+HC , (26) 

where C is the NcxNc matrix with elements Caa. It fol-
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lows from Eq. (26) that (1 +H) =(i -Cr1, which combines 
with Eq. (20) to yield 

E -1 = 41T (3Tn[mT(i -Gr1 m] 
E+2 9 

(27) 

Equation (27) is the expression for E in terms of cO/8(ab) 
for fluid mixtures of dipolar molecules with axial sym
metry. An equivalent expression "is implicit in the work 
of H~ye and Stell. 3 

IV. € IN TERMS OF c"il(ab) FOR MOLECULES OF 
ARBITRARY SYMMETRY 

The development here follows the same outline as that 
of the preceding section, but is complicated by the fact 
that it is now necessary to resolve the dipole moment 
vectors into their components using Eq. (1). Let 

Ht;.°8=n-1(nO/n8)1/2! drbdwadwbh~8(ab)e!' e~ , 

so that Eq. (17) can be rewritten in the form 

E - 1 _ 41T (1 n '""' P ( nbo ) 0 

2 - 9 I-'T O' L...J mOl 5O/85po +n',,8 m8 
E + 0/890 

(28) 

(29) 

(30) 

Here ih is an Nc-dimensional column supervector, whose 
O!th component is a three-dimensional column vector with 
components m~; ihT is the corresponding row supervec
tor; iI is an NcxNc supermatrix whose 0!{3 element is a 
3X3 matrix with elements Ht;.~; and i is the unit NcxNc 
supermatrix, whose 0!{3 element is the 3 x 3 matrix with 
elements 5O/85po • One readily verifies that the multipli
cation rules for such supervectors and supermatrices 
are precisely those embodied in Eq. (30). 

Now multiply Eq. (13) by n-1(nO/ nJ1/2 e!. e~ and inte
grate over r b , wa' and Wb to obtain 

xLn.,.! dWad(b)d(e)h~(ae)c~8(eb)e!· e:, (31) 
.,. 

where 

(32) 

The second equality in Eq. (32) expresses the fact that 
c~8(ab) may be replaced by cO/8(ab) without changing C~~; 
the proof is again analogous to that for pure dipolar 
fluids, 1 and hence is omitted. It should perhaps be noted 
that the analogous replacement of h~8(ab) by hO/8(ab) in 
Eqs. (19) and (29) is not permissible. 

Because of (ii), the quantity I d(b) c~8(eb) e~ must be a 
fixed vector in the molecular frame with orientation we; 
it is therefore of the form ~rD~~ e;, where D~~ are con
stants independent of (e). These constants may be deter-

mined by taking the dot product with e;, and integrating 
over we for good measure. This yields D~~ = (n.,. n8t1/2 
x C~~, so that 

(33) 

This result now combines with E;q. (31) to give 

HPo - CPo '""' nbr Cro 0/8 - 0/8 + L...J n·O/.,. .,.8 , (34) 
7r 

or in supermatrix notation 

H=C +HC , (35) 

where C is the NcxNc supermatrix whose 0!{3 element is 
the 3X3 matrix with elements C~08. It follows from Eq. 
(35) that (i + iI) = a -ct1, whence Eq. (30) becomes 

E -1 = 41T {3 n [ihT(I -Ctlih] 
E+2 9 T 

= 4; (3T n L m~[(i -ctlra08m~ 
0/890 

(36) 

Equation (36) is the expression for E in terms of cO/8(ab) 
for dipolar fluid mixtures with arbitrary molecular sym
metry. This expression does not appear to have been 
previously presented, although H~ye and Stell3 have in
dicated how an equivalent expression could be derived 
in their theory. 

V. THE MEAN SPHERICAL APPROXIMATION 

In this section we show how the expression for E in 
terms of cO/8(ab) may be used to evaluate E in the mean 
spherical approximation (MSA) in terms of known func
tions. Since the MSA entails axial molecular symmetry, 
the appropriate equations are those of Sec. III. 

The evaluation of E for dipolar mixtures in the MSA 
has recently been considered by Freasier, Hamer, and 
Isbister4 (FHI). These authors performed the evalua
tion by generalizing Wertheim's procedurell to the case 
of mixtures. Unfortunately, this procedure involves a 
rather cumbersome finite-volume correction, which 
compensates for the fact that the system is finite rather 
than infinite. In the present development, however, no 
such correction is necessary; finite-volume effects are 
automatically accounted for by the fact that the spatial 
integral in the Ornstein-Zernike equation (5) extends 
only over the sample volume V. We may therefore 
evaluate E simply by substituting the MSA expression 
for c0l.8(ab) into Eq. (23) and combining the result with 
Eq. (27). 

The MSA solution for cct8(ab) is of the form4 

c O/8(ab) = C~8( I r Db I) + (IJ. 01. IJ. 8tl C!8( I r ab I ) IJ. cta . 1J.8b 

+(1J.O/1J.8tlc~8(lrabl)lJ.O/alJ.8b:(3Irabl-2rabrab-U) , 

(37) 
where rab = ra - rb • Equation (37) combines with Eq. (23) 
to yield 

cO/8 = (41T/3)(pO/P8)1/2 f~ r 2drc!8(r) , 
o 

(38) 

where use has been made of the easily verified relation 
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f dW"SL .. "SLaa = (~/3) SL~ U. In terms of the conventional 
functions4 c!S(r) , Eq. (38) becomes 

The MSA result for E is now determined by Eq. (27), 
with CaS given by either Eq. (38) or Eq. (39). 

We must now compare our MSA result for E with that 
found by FHI. The FHI result is obtained by combining 
their Eqs. (2.60) and (2.62). Their quantities c~B, .. (k = 0) 
correspond to our quantities 41T f r2drc~l!(r). We note, 
however, that their Eq. (2.60) for the finite-volume cor
rection is incorrect due to an error in transcription; the 
correct equation is obtained by replacing Y!s with - y~s. 
When this is done, it becomes a simple matter to verify 
tnat their result is precisely equivalent to our Eqs. (27) 
and (39). (Note that the result in this form is not re
stricted to binary mixtures.) 
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