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Abstract 
 

Cellular receptor dynamics are often analyzed 
using differential equations, making system dynamics 
(SD) a candidate methodology. In some cases it may 
be useful to model the phenomena at the biomolecular 
level, especially when concentrations and reaction 
probabilities are low and might lead to unexpected 
behavior modes.  In such cases, agent-based 
simulation (ABS) may be useful. We show the 
application of both SD and ABS to simulate non-
equilibrium ligand-receptor dynamics over a broad 
range of concentrations, where the probability of 
interaction varies from low to very low. Both 
approaches offer much to the researcher and are 
complementary. We did not find a clear demarcation 
indicating when one paradigm or the other would be 
strongly preferred, although SD is an obvious choice 
when studying systems at a high level of aggregation 
and abstraction, and ABS is well suited to studying 
phenomena at the level of individual receptors and 
molecules. 
 
1. Introduction 

 
This paper responds to the call by Scholl [1] for 

cross-study and joint research into agent-based 
simulation (ABS) and system dynamics (SD) 
modeling. We contrast these two approaches in the 
context of modeling cellular receptor dynamics. 

We are aware of at least three fundamentally 
different simulation paradigms that might be useful for 
improving understanding of receptor dynamics:  1) SD 
modeling (cf. [2]), which is differential equation 

based; 2) traditional stochastic, discrete time, discrete 
entity Monte Carlo simulation (cf. [3]); and 3) ABS 
(cf. [4]). Each paradigm has strengths and limitations. 
For example, SD is particularly well suited to studying 
systems containing a complex web of feedback loops, 
while discrete system simulation is preferred when the 
system contains a high degree of uncertainty. A key 
strength of ABS is its ability to incorporate spatial as 
well as probabilistic aspects of the system. 

This paper contrasts two of these paradigms, SD 
and ABS, in terms of their ability to increase 
understanding and inform research into the dynamics 
of cellular receptors. Of particular interest is the way 
in which these two paradigms may help to generate 
complementary insights and increase the researcher’s 
understanding of the dynamics of systems and 
processes. This comparison considers the overall 
approach, the underlying mathematics and analysis, 
the ease with which results can be communicated to 
others, research relevance, and educational potential. 

As mentioned above, SD is based on ordinary 
differential equations and their numerical solution 
over time. The governing rate equations for the system 
are developed, parameters are estimated, and the time 
trajectories of the variables of interest are computed 
and displayed. SD is a mature methodology that has 
been applied in biomedical applications (cf. [5][6]). 
Our background includes the application of SD to 
biomedical systems, including pharmacokinetics 
[7][8], epidemiological analysis, and non-equilibrium 
receptor binding. 

In ABS, the properties of the system emerge from 
relatively simple rules governing the interactions of 
independent agents located on a spatial grid [9]. This 

 



paradigm originated in the field of biology, where 
research into computer algorithms was being carried 
out for the purpose of creating “artificial life.” In 
recent years, software has become available to make it 
easier to implement these algorithms and portray the 
results graphically. Simple versions of the software, 
such as StarLogo [10][11] are restricted to two-
dimensional models, although the concepts are easily 
generalized to three dimensions.  

For our comparison of SD and ABS, the 
application area will be the study of non-equilibrium 
binding of receptors on the surface of a cell in the 
presence of different concentrations and types of 
agonists and antagonists (cf. [12]). Most of the 
research on receptors has been carried out from an 
equilibrium perspective, but recently attention has 
shifted to the behavior over time for the various 
reactions. Both SD modeling and ABS facilitate such 
analysis. We will focus specifically on the analysis of 
positive and negative cooperative binding exhibited by 
the divalent insulin receptor under various 
experimental conditions. A recently published 
differential equation based model for these dynamics 
[13] provided the necessary details. 

Motivating our interest in this area is the fact that 
equilibrium-binding experiments are expensive and we 
believe that simulation may contribute to the design 
and interpretation of more efficient experiments. Most 
researchers report only the final equilibrium 
parameters, KD and Bmax, and not the forward and 
reverse time constants for the reactions. To carry out 
equilibrium-binding experiments, the biological 
material must be isolated, expensive radioactive 
ligands obtained, and pilot experiments conducted to 
confirm the viability of the material over the time 
horizon of the experiment and to determine the 
concentration range and how long the equilibration 
process takes. Unfortunately, experimental researchers 
typically do not obtain transient data from their 
experiments, perhaps due to logistical difficulties or 
because they do not see any good reason to do so. Yet, 
without these time constants, it is difficult to develop 
credible dynamic computer models of these important 
processes. We believe that the availability of 
compelling and useful simulation models might 
influence researchers to capture this additional data.  

To provide a specific context for comparing SD 
and ABS, we reviewed several biomedical papers that 
presented relevant time-course data and/or models, 
including receptor biosynthesis and degradation [14], 
glucose transporter mechanisms [15], and insulin 
receptor dynamics [13]. After creating initial 
exploratory models, we selected the Wanant and Quon 
paper on insulin receptor dynamics as the basis for 
comparison. The primary advantages of this paper 
were that the authors provided their parameter values 

and differential equations, and also developed the 
complexity of the model in a progressive fashion. 
 
2. Background 
 

Many cellular processes maintain some form of 
relative equilibrium between multiple states of a fixed 
amount of cellular component. Over time, the total 
amount of the cellular component remains constant for 
all practical purposes, but is reversibly converted 
between two states, {A} and {B}, as shown in Figure 
1. 

      
Figure 1. Two states, {A} and {B} 

For example, in the presence of soluble ligands 
(small molecules such as drugs and hormones), 
membrane-bound receptors exist in equilibrium 
between the unbound state {A} and the bound state 
{B} [16]. Normally inactive enzymes {A} are 
activated by phosphorylation (to {B}), and inactivated 
again by hydrolysis of the phosphate bond (back to 
{A}) [17]. Drugs may be found in equilibrium 
between water {A} and lipid {B} phases, depending 
on their oil/water partition coefficients [18] [19].  

Ligand-receptor (LR) binding is among the most 
important of biological mechanisms. The binding 
process is second order and depends on ligand 
concentration, receptor concentration, and a forward 
rate constant (k1_f; 1/mol2-time). Receptor 
concentrations are usually normalized to 1 (or 100%), 
and k1_f simplifies to 1/mol-time, dependent only on 
ligand concentration. In the body, ligand 
concentrations vary over time and from one location to 
the next. In the laboratory, however, ligand 
concentrations are often held constant during LR 
binding experiments. Under these conditions, the 
effective forward rate constant thus simplifies further, 
carrying the familiar units of a first-order process: 

 
k1_f_EFF = (1/mol-time) x ligand (mol) = 1/time    (1) 

 
Given the assumption of constant ligand 
concentration, binding can be described as shown 
below, and  binding decreases as unbound receptor R 
is depleted. 
 
(LR_associations/time) = R • k1_f_EFF            (2) 
 
The LR complex also dissociates spontaneously, again 
following first-order decay kinetics: 

k1_r  =  1/time               (3) 

 



LR_dissociations/time  =  LR • k1_r            (4) 
 

In contrast to binding, dissociations increase over 
time as the LR concentration rises. Taken together, the 
binding fraction LR/(R_total) approaches an 
asymptote as the forward and reverse rates equalize. 
The asymptote depends on the concentration of the 
ligand, whereas the amount of time required to reach 
the asymptote depends on the rate constants. 

The Michaelis-Menten equation describes the 
binding saturation as a function of ligand 
concentration L: 
 
Bound R = ((Total R) * L) / (KD + L)            (5) 
 
KD (moles/l) is the concentration of L that leads to 
half-maximal binding, as can be seen by (L)/(KD + L) 
in the above equation. The concentration KD can also 
be shown to equal k1_r/k1_f. 

Binding experiments are typically conducted 
with a series of incubation tubes containing fixed 
receptor concentrations and with ligand concentrations 
that remain fixed within each tube, but which increase 
progressively from one tube to the next.  Pilot studies 
are used to determine how long the cultures must be 
allowed to incubate before measuring the amount of 
bound ligand in each tube. 

Within each tube, binding occurs over time as an 
inverted exponential process. When plotted for a series 
of concentrations, receptor saturation (0-1) as a 
function of ligand concentration resembles a 
rectangular hyperbola. These data are usually plotted 
on a log-concentration scale to produce a dose-
response curve that is often referred to as a sigmoid 
dose-response curve. The midpoint of the curve (i.e., 
the concentration that half-saturates the receptor 
population) is known as KD and is widely reported as a 
measure of ligand-receptor affinity. Typical values 
range from 1e-12 mol (picomolar) to 1e-6 mol 
(micromolar), with smaller numbers indicating greater 
affinity. Log curves are used because these widely 
varying concentrations preclude the use of a linear 
scale on the X-axis. KD can be readily determined and 
compared for different ligands by visual inspection of 
such graphs. 

Another common representation of these same 
data is known as the Scatchard plot. The ratio of 
bound LR to the free ligand concentration is plotted on 
the ordinate, against the bound LR on the abcissa. In 
the case of a single species of receptor in the 
incubation tube, the Scatchard plot yields a straight 
line with slope  =  -1/KD (steeper slope indicates 
higher affinity), and the x-intercept indicates the 
maximum number of receptors bound (Bmax). Since the 
actual number of receptors is generally unknown, 

relative Bmax is generally reported as receptor density 
per mg protein. 

Biological preparations are often quite complex. 
Incubation tubes may contain two or more types of 
receptors that interact with the same ligand, each with 
its own distinct rate constant. In this case, the 
rectangular hyperbola and the log dose-response 
curves are likely to appear to be distorted, depending 
on the different rate constants present and the 
stochastic noise of the system. Nonlinear Scatchard 
plots are often seen, providing evidence of more 
complex binding relationships. A binding site with 
lower affinity (larger KD) will only be seen with 
higher concentrations, and, since the KD is larger, the 
slope (-1/KD) will be flatter. Taken together, these data 
lead to a Scatchard plot that is concave upwards to the 
left. With enough data points, it is sometimes possible 
to resolve the curvilinear results into two straight lines, 
thus establishing KD and Bmax for each of the two 
receptor populations.  

Other cases include multivalent receptors that 
bind two (or more) ligand molecules per receptor. 
Again, curvilinear Scatchard plots are obtained. In this 
case, however, binding of the second ligand occurs as 
a second-order delay and binding of the first ligand 
may change the shape of the receptor complex, thus 
altering the affinity of the second ligand molecule. 
This interaction between subsequent ligands is known 
as cooperative binding—negative if the second ligand 
exhibits lower affinity and positive if the second 
ligand exhibits higher affinity. Scatchard plots will 
appear concave upwards or downwards, respectively. 
 
3. Application of SD to receptor dynamics 
 
3.1. Application of SD to simple 2SE processes 

Because of the ubiquity of two-state equilibrium 
(2SE) processes in biological systems, we believe that 
a solid understanding of basic 2SE dynamics might 
help researchers to improve the design and 
interpretation of laboratory experiments involving 
cellular processes. SD is easily and naturally applied 
to the study of multi-state equilibrium processes. The 
researcher/modeler specifies aggregate state variables 
to represent the amount or concentration of both 
unbound and bound receptors, with the flux from 
unbound to bound and from bound to unbound 
represented as unidirectional flows (rates of change). 
Figure 2 illustrates the generic structure of a simple 
2SE model. This model assumes that material is 
conserved: {A}t + {B}t = 1 (or 100%) for all t. 

We implemented the simple 2SE model using one 
of the popular SD packages, STELLA [20], and 
created a user interface to facilitate experimentation 

 



with the model. Although we were already quite 
familiar with 2SE processes, the activity 

 
Figure 2. Generic 2SE model 

of constructing and experimenting with these 
admittedly very simple SD models was invaluable—
forcing us to clarify our understanding of the 
underlying phenomena, which in turn enhanced our 
ability to infer what “should” happen under different 
circumstances. 

It is relatively easy to add additional states 
and additional reaction processes to an SD model 
in order to model such phenomena as the 
interaction of agonists and antagonists, the 
opening and closing of ligand-gated ion channels, 
initial binding events that trigger a sequence of 
reactions (as in the case of second-messenger 
cascades), or divalent receptors that exhibit 
positive and negative cooperative binding. 

3.2. Application of SD to insulin receptor 
dynamics  

We implemented the divalent insulin receptor 
model described by Wanant and Quon [13] using 
STELLA. This is a 3SE system, with three state 
variables used to represent the three possible receptor 
states: unbound, singly bound with one insulin 
molecule, and doubly bound with two insulin 
molecules. Receptor-ligand binding kinetics of the 
first insulin molecule are represented by a bimolecular 
reaction where the first-order rate constant of 
association is k1_f and dissociation is k1_r. In order to 
represent the availability of the two binding sites on 
the divalent receptor, the forward rate constant, k1_f, 
is multiplied by two. Because the forward rate 
constant is dependent on ligand concentration, there is 
an effective rate of association, k1_f_EFF, which is 
the product of ligand and receptor concentrations. 

After the binding of the first ligand, the divalent 
receptor model assumes that a second ligand may bind 
to the same receptor. The first-order rate constant of 
association for the second ligand is k2_f. Because only 
one binding site on this receptor is available, k2_f is 
not doubled. The effective rate of this constant,  
k2_f_EFF, is the product of ligand concentration and 
the concentration of available singly bound receptors. 
The dissociation constant for the doubly bound ligand 
is k2_r. 

Parameter values for the simulation runs 
corresponded to the values used by Wanant and Quon. 
Receptor concentration was kept constant at 1 x 10-10 
M. The range of insulin concentration was 1 x 10-14  to 
1 x  10-6 M. Insulin concentrations were varied in a 
fashion similar to the way experiments are performed 
in the laboratory. The data from these simulation runs 
were used to generate Scatchard plots in order to 
verify that the SD model generates data comparable to 
the differential equation models used by Wanant and 
Quon. 

The default values for forward and reverse rate 
constants were also those chosen by Wanant and 
Quon. The range of values was consistent with 
published values, 3 x 105 to 4 x 106 M-1 s-1 for k1_f 
and 1 x 10-4 to 1 x 10-3 s-1 for k1_r. Based on the 
results of Pang and Shafer (1984) and DeMeyts, et al 
(1976), as reported by Wanant and Quon [13], k2_r = 
100*k1_r. 

We first implemented the divalent insulin receptor 
model in STELLA. Figure 3 shows the STELLA 
version. Rate constants are defined as described above. 
By adjusting the rate constants k1_f, k1_r, k2_f, and 
k2_r, one can simulate both positive or negative 
cooperative binding.  

insulin
k1 f

k1 f EFF

k1 r

R R R RX

RR to R RX
association

R RX to R R 
dissociation

RX RX
R RX to RX RX 

association

RX RX to R RX 
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k2 f 
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FIGURE 3. Divalent insulin receptor model in 

STELLA 

 



Figure 4 illustrates the binding of radioactive 
ligand to a monovalent receptor (simulated by setting 
k2_f to zero). Each trace on the graph represents a 
different ligand concentration in the simulated 
incubation tube. This is done using automated 
sensitivity analysis. With increasing ligand 
concentration, the receptor is progressively saturated. 
In addition, the equilibration time decreases with 
increasing dose because of the increase in k1_f_EFF. 

 
Figure 4. Fraction bound over time with different 

ligand concentrations 

Figure 5 shows a log dose-response curve 
produced by the STELLA model. The smooth sigmoid 
curve suggests the presence of a single receptor 
population. Producing this type of graph in STELLA 
required the use of comparative x-y graphs and special 
logic to suppress most of the trace so that only the 
endpoint of each comparative run shows. 

 
Figure 5. Log dose-response curve 

Figure 6 provides a Scatchard plot. The fact that it is 
linear is also indicative of a single receptor population. 

The x-intercept indicates the concentration of receptor, 
in this case  1e-10  moles/liter.  The slope 

 
Figure 6.  Scatchard plot from SD model 

indicates −1/KD, which identifies the half-maximal 
binding concentration. 

3.3. Summary 
The results from the SD model match the data 
presented in the literature, and SD modeling appears to 
be an excellent fit for the analysis of multi-state 
equilibrium processes. We also determined that the 
software is able to create the types of plots and charts 
used by biomedical researchers. By building SD 
models and understanding their structural properties, 
and through experimentation with widely varying 
parameter values, the researcher would be able to 
significantly enhance their intuition regarding the 
underlying biological processes, and thereby enhance 
their ability to design and interpret laboratory 
experiments and experimental data. 

 
4. Application of ABS to receptor dynamics 
 

For our comparison, we selected StarLogo, an 
introductory two-dimensional ABS package that may 
be downloaded from MIT [11]. Originally developed 
for educational use, it has more than enough capability 
to model multi-state receptor dynamics. 

One approach for doing so is to treat the 
background grid of spatial locations as a portion of the 
cell surface. In StarLogo, each grid location is called a 
patch. A small percentage of these patches (identified 
by their x-y coordinates on the grid) are specified to be 
receptor sites. The initial state of these receptors is 
either bound (with a molecule) or unbound. The 
molecules are modeled as agents. In ABS models, the 
motion of agents typically has a random component. 
In the receptor example, the motion is purely random 
(i.e., Brownian motion). As time proceeds in the 

 



simulation, the molecules (agents) come into contact 
with the receptors. Upon contact, the molecules 
sometimes bind to the receptor, with a binding 
probability near zero. Given sufficient time, however, 
bindings do occur. Once bound, receptors unbind with 
a particular probability, freeing up the previously 
bound molecule. 

If two different types of ligand molecules are 
present, such as agonists and antagonists, the receptor 
could be in one of three states (unbound, bound to 
agonist, and bound to antagonist), so it would be a 
type of 3SE model, but different from the 3SE model 
discussed in Section 3.2 where there is only one type 
of ligand molecule, but the receptor is divalent. 

In ABS, The binding logic is implemented as a 
small computer program. Other programs establish 
initial conditions and carry out other administrative 
functions. As model complexity increases, more 
programs are written. The divalent receptor, for 
example, would be implemented with the addition of a 
doubly bound state for the receptor, plus additional 
functions to represent the transition to and from the 
doubly bound  state.   Similar  additions could account 

for channel opening and closing, and other complex 
processes. 

In StarLogo, the user interacts with the model 
using various controls such as buttons and sliders. For 
example, a <setup> button might be used to establish 
the initial conditions, and a <go> button might be used 
to cause the model to run. Various “sliders” are used 
to set the values of parameters, such as the number of 
receptors, constants used to determine the probability 
of binding and unbinding, etc. When a model is run, 
icons representing the different types of agents 
(molecules and/or receptors) appear on the screen, 
moving around and/or changing state (based on their 
logic). The state of an agent is represented by its color 
and/or the shape of its icon. For example, when a 
molecule contacts a receptor, it may bind to it, which 
could be represented by the receptor changing color or 
shape. Over time, the receptors might eventually 
change back to their original color or shape, signifying 
that the molecule has unbound from the receptor. 
Figure 7 shows the Starlogo user interface from our 
model. 

Figure 7. StarLogo model interface 
 

The number of agents over time that meet various 
criteria may be plotted, and, with a few lines of 
programming, data regarding the number of bound and 
unbound molecules over time may be saved to a file 
for subsequent analysis using Excel or a statistical 
analysis package. It is also relatively easy to program 
StarLogo to conduct a set of experiments wherein the 
model is run repeatedly, with parameters being varied 
in a systematic fashion. An experiment might consist 

of a single model run or several runs with the same 
parameter values but with different random numbers. 

4.1. Application of ABS to simple 2SE processes 
We first programmed the simple 2SE model with 

the receptors represented as patches and the molecules 
represented as agents. We graphed the number of 
bound and unbound receptors over time. We were 
mesmerized by the visual effects of the “molecules” 
dancing about, binding to the receptors, the receptors 

 



changing color and then reverting back. We adjusted 
the probabilities dynamically and “experienced” the 
equilibrium point shift (through the changing colors on 
the screen), either quickly or slowly, and either to a 
large degree or to a lesser degree, depending on how 
the parameters were changed. 

We imagined what it would be like to connect the 
model to a planetarium-like projector that would fill 
an entire hemisphere with tens of thousands of 
receptors and millions of molecules; the observer 
would seem to be inside a cell looking outwards 
toward the cell surface watching the biochemistry at 
work on the surface. We viewed the plots with 
different parameter values and were intrigued by the 
random effects superimposed on the essentially mono-
exponential graphs. 

4.2. Application of ABS to Insulin Receptor 
Dynamics 

Initially we thought we would continue to model 
the receptors as coordinates on the x-y grid (patches in 
StarLogo), but we soon realized that it is 
computationally more efficient to model the receptors 
as agents, even though we did not anticipate having 
them move. Our initial divalent insulin model used 
agents to model both ligand molecules and receptors.  

Although watching the molecules move around 
and sometimes bind to a receptor “felt right,” as we 
began to run experiments, we quickly realized that in 
order for the model to even remotely resemble 
biological reality, we would need to have at least 103 
receptors. With realistic binding probabilities, the 
number of ligand (insulin) molecules would need to be 
several orders of magnitude higher, which is not 
possible in StarLogo. We were stymied until one of 
the authors said, “I’ve been pondering our dilemma, 
and I don’t think we really need the molecules!”  It 
sounded like heresy!  But they were right. All we 
needed to model was the probability of a receptor 
binding in a given time period. The model ran 
dramatically faster. 

In order to reproduce the binding experiments, we 
wrote logic to execute a sequence of runs with varying 
ligand concentrations. We provided sliders to set the 
lower and upper ligand concentration. The model 
determined how many runs were needed, at four 
values per decade, on a log scale. We began running 
experiments and quickly realized that at lower 
concentrations the model needed to run much longer 
to reach equilibrium and that there was considerable 
variance in the ending number of bound ligand 
molecules from one run to the next. The total number 
of bound ligand molecules is the number of singly 
bound receptors plus two times the number of doubly 
bound receptors. These are the numbers typically 

obtained from the binding studies using radioactive 
ligands. Making the necessary runs took many hours 
in StarLogo. We tried using a time interval deltaT 
greater than 1 second in order to shorten the run time. 
In these runs, the probability was multiplied by deltaT, 
and time was advanced each iteration by deltaT 
instead of 1. With a deltaT of 10, the runs were 10 
times faster, but due to the variance in the ending 
number of bound receptors, we were not confident that 
we had accurately determined the asymptote.  At the 
lowest concentration, we knew that the theoretical 
value was 50, but we obtained values from 33 to 65. 
We instrumented the model to make multiple runs 
with the same parameter values. We spent countless 
hours making multiple runs in order to assure 
ourselves that the results were due to inherent 
randomness and not model errors. 

Table 1 provides sample lab notes from these 
runs. Note that the reaction rate parameters are 
integers. This is because StarLogo provides integer 
valued random numbers rather than Uniform[0,1] 
random numbers. We began by expressing the reaction 
probabilities as numbers between 0 and 1000, but soon 
realized we needed to increase the upper limit. In Runs 
A, B, and C we used 0 to 100000, and by Runs D and 
E we had converted the model to express them as 
numbers between 0 and 1000000. The decisive run 
(not shown in Table 1) was for 40000 seconds (five 
times longer than what we had thought was necessary) 
using a deltaT of 1 second. The data from this run 
showed an approximate asymptote of 50 with 
considerable variance, increasing our confidence in the 
model. 

A separate issue was that at higher concentrations 
equilibrium came quickly. We reduced the print 
interval and shortened the run times, since the longer 
runs necessary at lower concentrations were 
superfluous. Overall, considerable “babysitting” was 
required during the experimental runs, to adjust the 
run  length   and  because   StarLogo  simply   stopped 

Table 1. Lab notes regarding multiple model runs 
at low concentrations 

 Final # Bound 
Concen-
tration Run A 

Run 
B Run C Run D Run E 

1.00E-11 33 48 65 37 39 
1.78E-11 49 71 87 87 91 
3.16E-11 125 133 127 n/a 131 
5.62E-11 178 213 237 n/a 238 
1.00E-10 287 316 321 n/a 305 
Parameters      
Run Length 4000 8000 8000 8000 8000 
K1f 2 10 2  20 20 
K1r 40 200 40 400 400 
K2f 1 5 1 10 10 

 



K2r 8000 40000 8000 80000 80000 
DeltaT 1 5 1 1 1 
Prob=1 105 105 105 106 106

running from time to time for no reason we could 
determine. Figure 7 shows the final StarLogo model 
and Table 2 shows a selection of the model logic. 

Table 2. StarLogo code fragments from the 
divalent insulin receptor model 

setsim_num 0 
 setligconc (10 ^ ligconc_lower) 
 calc-keffs 
 setnumber_sims 4 * (ligconc_upper - 
ligconc_lower) + 1 
 repeat number_sims 
   [ 
   setsim_num sim_num + 1 
   setrun_num 0 
   repeat runspersetting 
     [ 
     setrun_num run_num + 1 
     run-sim 
     ] 
   setligconc ligconc * (10 ^ .25) 
   calc-keffs 

An illustrative 
segment of the 
control logic 
for running 
experiments, 
potentially 
multiple times 
for a given 
ligand 
concentration 

to calc-keffs 
  setK1f_eff1000000 1000000 * 2 * ligconc 
* K1f * (10 ^ K1f_exp) * deltaT 
  setK2f_eff1000000 1000000 * ligconc * 
K2f * (10 ^ K2f_exp) * deltaT 
  setK1r1000000 1000000 * K1r * (10 ^ 
K1r_exp) * deltaT 
  setK2r1000000 1000000 * 2 * K2r * (10 ^ 
K2r_exp) * deltaT 

Logic to 
calculate the 
reaction 
constants for a 
given ligand 
concentration 

To check-bind 
 if (state = unbound)  
  [ 
    if (random 1000000) < K1f_eff1000000 
      [ 
        ifelse ((random 100) < 50) 
           [setshape shape-R_XR] 
           [setshape shape-XR_R]  
        setstate bound 
        setstate_num -1   

A fragment of 
an agent 
procedure that 
determines if 
binding will 
occur, and if so, 
what happens 

 
Figures 8-11 were created using Excel from the 

data collected during the many experiments that we 
ran. Data from the StarLogo runs was written to the 
output window in a tab-delimited format to allow 
quick and easy transfer to Excel. 

Figure 8 shows simulations of insulin binding to 
the high-affinity site of the divalent insulin receptor. 
Insulin concentrations were held constant at 1e-11, 
1.7e-11, 3.2e-11, 5.6e-11, and 1e-10 nM. These 
concentrations saturate about 50% of the receptor 
sites. Three simulations were conducted at each 
concentration, showing the stochastic variability 
observed, even with just 1000 receptors in the model. 
The observed variability decreases considerably with 
larger numbers of receptors, but at the cost of a 
significant increase in simulation times. 

Figure 9 shows receptor saturation vs. ligand 
concentration, yielding the expected rectangular 
hyperbola. 

 
Figure 8. Ligand-receptor binding vs. time 

 

 
Figure 9. LR binding vs. ligand concentration 

Figure 10 illustrates the sigmoidal dose-response 
curve. With simple monovalent receptors, a single 
sigmoidal curve would be expected in the lower left 
graph.  In  this  case,  however,  the  lower left portion 
of the curve shows the ligand approaching saturation 
of the first (high-affinity) site (density = 1 ligand per 
receptor). As the concentration rises further, the 
second (low-affinity) site begins to bind, ultimately 
saturating the receptor with two ligand molecules per 
receptor. 

 
Figure 10. Log dose-response curve 

Figure 11 is a Scatchard plot of the data shown in 
Figure 10. The linear portion of the curve to the left is 

 



due to the high-affinity site; the slope = -1/KD 
(affinity), and the x-intercept indicates Bmax, or the 
density of receptors. In this simulation, Bmax is 0.1 
nM/liter, as described in Wanant and Quon [13]. The 
Scatchard plot is concave upwards to the left, 
indicating the presence of a second, low-affinity 
binding site in the incubation tube. Further laboratory 
experiments would be required to determine if the 
concavity is due to a single divalent receptor 
population or two separate receptor populations with 
different binding characteristics. 

 
Figure 11. Scatchard plot, divalent insulin receptor 
 
4.3. Summary 

Visualization and the ability to vary aspects of the 
simulation dynamically are excellent in ABS. It is easy 
to communicate simulation results to others by having 
them observe the simulation. By watching the motion 
and color changes of agents and observing graphs over 
time regarding the number of various types of agents 
present, both students and researchers can gain 
insights into the functioning of cellular receptors. In 
addition to seeing the receptors bind and unbind, 
observers can see the variability in the runs with low 
ligand concentration, an aspect of realism that is not 
apparent with SD models. 

The rules governing behavior are embedded in 
computer programs, which might tend to make the 
models less accessible. However, the logic is in fact 
rather simple and quite easy to read and comprehend. 
With adequate documentation of the program, an 
individual with little or no programming experience 
can understand the functions of the various 
subprograms. Thus, ABS is a good candidate for 
collaborative work between individuals with 
specialized knowledge about a given phenomenon and 
individuals with programming skills. 

We also found some limitations when using 
StarLogo for this type of research. Due to the slow 
execution speed, we often had to “baby-sit” the 
simulation runs, customizing the run parameters for 
each run in order to gain efficiency. When we tried to 
make long unattended runs, we found that for no 

apparent reason StarLogo often stopped running after 
an indeterminate number of hours. 

Nevertheless, we found that ABS can help 
provide insights into receptor binding that are difficult, 
if not impossible, to derive from SD models alone. 

 
5. Overall Comparison of SD and ABS for 
Studying Receptor Dynamics 
 

System dynamics models portray the structure of 
the interrelationships between variables very 
effectively and allow the user to easily experiment 
with different parameter values and compare the 
resulting graphs of behavior over time.  SD models 
may be considered more conceptually descriptive than 
ABS models, and they force the modeler to consider 
carefully the appropriate level of aggregation. 
STELLA is easy to use and highly “approachable.” 
However, sensitivity testing with non-trivial STELLA 
models is very time consuming (although orders of 
magnitude faster than with StarLogo). 

The agent-based simulation paradigm forces the 
modeler to consider carefully the definition of agents 
and to specify their behavioral rules in the simplest 
possible fashion. ABS models are spatial and are able 
to easily portray interactions at the cellular/molecular 
level. This allows the model to reflect, among other 
things, the random way in which molecules bind and 
unbind with receptors. Thus, ABS is ideally suited for 
studying problems when the probability of interaction 
is low and the stochastic aspects of the process are 
important. 

We found the process of developing and testing 
models using two very different paradigms to be 
incredibly useful. We believe that both paradigms 
could be productively used to help educate biomedical 
researchers and assist with laboratory research. 
Conducting dynamic experiments on the computer and 
observing simulations unfolding on the screen greatly 
enhances awareness of the interesting underlying 
dynamics. We believe that this enhanced awareness 
would lead to the design of better laboratory 
experiments in this important area of research. SD 
might be a more appropriate research tool, but ABS 
models may be better suited for educational purposes. 
Although a scientist doing advanced research on 
receptor dynamics might prefer SD models, a student 
or researcher still learning about receptor dynamics 
might benefit by first creating ABS models. 
Researchers who use either of these paradigms are 
more likely to design laboratory experiments that fully 
characterize the time dynamics of the processes being 
studied. 

We conclude with a comparison of SD and ABS 
in terms of overall approach, mathematics, ease of 

 



communications, research relevance, and educational 
potential (Table 3). 

 

Table 3. Comparison of SD and ABS 
 System Dynamics (STELLA) Agent Based Simulation (StarLogo) 
Overall approach Abstract, via state variables and equations that are 

solved to simulate behavior over time 
Physical emulation of “agents” whose rules for 
behavior mirror the real world  

Mathematics Calculus; numerical integration of difference 
equations  

Logic, algorithms, and simple probabilities 

Ease of 
communications 

Very good for showing model structure and numerical 
results 

Excellent for showing the behavior of 
individual entities 

Biomedical 
research 
relevance 

Appropriate for modeling the aggregate behavior 
resulting from interactions between multiple types of 
material. However, the reliance on variables that lump 
together all of the material of a particular type makes 
it difficult to address unique behavior and dynamics at 
the entity level and to show how the aggregate 
behavior might emerge. Its use in biomedical research 
is likely to increase as the software becomes 
increasingly user friendly and is further adapted for 
biomedical applications 

Appropriate for modeling movement and state 
changes of individual entities, and the 
interactions between such entities; but 
inefficient at modeling very large numbers of 
interacting entities. The process of running 
experiments on the computer closely resembles 
the actual experimental process, which 
significantly increases its relevance for research  

Educational 
potential 

Particularly useful for increasing conceptual 
understanding, especially regarding the very powerful 
and general methodology of compartmental analysis 

Very useful, due to the way it mimics the actual 
physiological processes and also, potentially, 
the experimental procedures employed in the 
laboratory 
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