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1 Introduction

A spatial computer [1] is a network of small computing devices that are located in a physical space,
and sparsely connected together in a way that reflects their location in that space. This means that
most or all connections are between physically nearby devices, so the cost of communication depends
on the physical distance between the components that are communicating. Each computing device
acts as a router in its immediate neighborhood, and stores a limited amount of local data.

The idea of a spatial computer was developed to facilitate the design of large-scale sensor
networks, mobile robot ‘swarms’, and biological modeling. However, modern large-scale computer
clusters and many-core processors bear an increasing resemblance to spatial computers, in that
the cost of communication — whether measured in time or energy — increases with the physical
distance between the communicating devices. Spatial computers offer considerable potential for
parallel computation, but also new constraints for the spatial programs that run on them.

Spatial programming techniques suggest a new approach to the design of fundamentally parallel
algorithms for practical computing in large-scale device networks, where large amounts of spatially-
distributed computing capacity is available but the cost of communication is proportional to the
physical distance it must span. The techniques that are beginning to be developed for these
purposes may be applicable to more sophisticated algorithms and data structures, in a variety of
spatial computing contexts. In particular, the representation of a problem in terms of concurrent
interactions between active data elements, rather than passive data that is acted on by one or more
processors, yields a simple system that makes use of our intuitions about the behavior of physical
entities.

2 Collision Sort

The problem of sorting is one of the oldest and most fundamental in computer science, as well as
being of great practical importance. Sorting also has a natural spatial interpretation, and for these
reasons we feel that it is an interesting problem for exploring the potentially novel characteristics
of spatial programs.
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Figure 1: Two conditional collision events, each involving two particles in horizontal motion; the
effect of the collision depends on their relative color. In both cases, the darker-colored particle is
sent to the left, and the lighter-colored particle to the right.

The distributed sorting algorithm we present is designed for the grid topology of contempo-
rary many-core computer systems, potentially scaled up to thousands of cores, but can also be
implemented in a GPU. Our algorithm, collision sort, represents data by mobile ‘particles’ in a
manifold-like distributed data structure, hosted by a regular patchwork of computing devices. Like
other distributed algorithms, collision sort is designed to tolerate nondeterminism in the order in
which components communicate. It can also adapt to a limited number of failed components. The
techniques we develop invite new ways of thinking about large-scale dynamic data-flow systems.
We suggest that some techniques developed for simulations of physical, chemical, or biological phe-
nomena embedded in physical space may serve equally well to organize general-purpose algorithms
in a spatial computer.

2.1 The Model: Colliding Particles

Imagine a distributed particle system, where the representation of space corresponds with the
topology of the physical communication network connecting the component computing devices. In
the simplest case, this may be a linear array of devices, each with a left and right neighbor, except
for those at the ends of the array. Further imagine that time is discrete; at each time step, particles,
representing data values, are passed between neighboring machines. We can regard an interaction
between two particles as a kind of collision, illustrated in Figure 1. The outcome of the collision
depends on the data values represented by the particles, according to the following mechanism,
which is implemented in each computing device.

Consider a set of particles P , where the sortable value of a single particle p ∈ P is v(p). Let
each particle p have the same fixed size s, but individual location x(p) and velocity ẋ(p), where
ẋ takes on one of the values −c or +c per unit time, where c < s. Thus, at each time step, the
location x(p) of particle p changes by ±c. The range of x is a bounded interval [xmin, xmax] which
will be the key space. The sort is complete when, for any two particles p and q, x(p) < x(q) if
and only if v(p) < v(q). At any time, each particle p may collide with any overlapping particle q,
where |x(p)− x(q)| ≤ s. Should p overlap multiple other particles, one may be chosen at random.
If v(p) < v(q) and x(p) < x(q), or if v(p) > v(q) and x(p) > x(q), then the collision results in
negating ẋ(p) and ẋ(q). Otherwise, ẋ(p) and ẋ(q) are unchanged.

Thus, depending on relative values of p and q, a collision will result either in particle p ‘bouncing
off’, or ‘passing through’, particle q, as shown in Figure 1. If each particle is allowed to detect and
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Figure 2: One-dimensional distributed collision sort with constant particle velocities. The grey
vertical bands show the division of the space into regions. The wavy lines indicate the trajectories
of the particles, whose colors correspond to their values.

respond to collisions once per time step, the particle system will attain a stable sorted configuration,
in which x(p) ≤ x(q) if and only if v(p) ≤ v(q). This stable configuration will be attained after a
number of time steps |xmax − xmin|/c, which is the number of steps needed to traverse the space.
This number is independent of the order in which the collisions occur.

2.2 Mapping the Model to a Spatial Computer

Although the above procedure can be performed by a single sequential machine, it makes much
more sense in parallel. After all, it would be surprising if the amount of work done by such a particle
system did not depend on the size of particle set P . So let us now consider the communications
between neighboring machines. Suppose that we have m sequential machines {Ai : 1 ≤ i ≤ m}
connected in a line; let’s partition the space between them. Assign each machine Ai, in order, a
non-overlapping region of space with size S = |xmax − xmin|/m, which we take to be no smaller
than the size s of a particle, so that the entire range of x is covered. It is important that machine Ai

be able to distinguish between its ‘left’ neighbor Ai−1 and its ‘right’ neighbor Ai+1, should both of
these exist. No communication channels other than these two are necessary for a one-dimensional
sorting process, and no individual machine needs access to global information such as the total
number of machines, the amount of data, or its own absolute position within the system.

Because particles have size s ≤ S, each particle can be in at most two regions. Within a region,
the above collision rule is executed sequentially on all of the particles in that region, in arbitrary
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order. In each step, particles that move to locations greater than i · S are passed from machine Ai

to machine Ai+1, and those with locations less than (i− 1) ·S are passed to machine Ai−1. If i = 1
or i = m, those particles that would step ‘out of bounds’ instead have their velocities negated: they
can be thought of as ‘bouncing off’ the boundaries of the space.

It should be noted that the amount of real computation performed by a machine in each time
step depends on the number of particles processed by that machine. In a system with n particles
evenly distributed between m machines, this number will be n/m. At equilibrium, the particles
will be approximately-evenly distributed; the particles diffuse somewhat like the molecules of a gas.

An unresponsive machine can be treated as a “hole” in the space, from which particles rebound.
In one dimension, such a hole will partition the array of machines, causing the particles on either
side of the gap to be sorted independently. In higher dimensions, particles will move around the
hole, and the global sorting process can continue. The system thereby tolerates some amount of
component failure. No further coordination or synchronization is needed; as the particles disperse
through the space, the system spreads the load to do as much work in parallel as possible, given
the limited number of machines. The evolution of a distributed collision sort in one dimension is
shown in Figure 2.

2.3 Reducing Communication

One potential difficulty with partitioning the space in this way is detecting collisions across the
boundaries between regions. Suppose particles p and q are located in adjacent regions corresponding
to machines A1 and A2, so that they overlap across the boundary, i.e., x(p)+s/2 > S > x(q)−s/2.
Must A1 and A2 communicate to detect this collision? According to our definition of the collision
mechanism, the answer would seem to be “yes”. The requirement for communication would seem to
increase when the dimension d of the space is greater than 1, since a particle may occupy as many
as 2d adjacent regions. Communication necessarily involves synchronization, and synchronization
costs limit the scaling of concurrent algorithms. The complexity and cost of any collision-detection
scheme that involves communication is unappealing, especially in an asynchronous system. Can
we reduce the need for communication by some sort of approximation?

Experiment shows that we can: communication for collision-detection is unnecessary. This is
illustrated in Figure 3; in this experiment, the machines access only local information, and particle
values are compared not with each other, but with the mean local particle value in their region.
As the figure shows, at equilibrium the particles are still sorted. The figure also shows the effect
of another modification, which speeds-up convergence to the equilibrium state: the velocities of
particles are no longer constrained to be ±c, but instead vary between S and −S in proportion to
the difference between their values and the mean local particle value in the region.

The synchronization involved in communication has not been entirely eliminated, since it is
still necessary to “hand off” a particle from one region to another. Without some amount of
buffering, these hand-offs will require the sending and receiving machines to wait for each other.
However, the communication required by the algorithm has been reduced to asynchronous message
passing between nearest neighbors. With appropriately sized communication buffers, the wait can
be substantially reduced in practice.

Particles tend to settle in locations that span a region boundary, existing in a dynamic equi-
librium where the particles bounce back and forth between the adjacent regions. To eliminate
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Figure 3: Collision sort with particle velocities proportional to the difference between the particle’s
value and the mean value in its local region. The system’s evolution over 100 steps is shown with
two different amounts of data.

unnecessary communication because of this phenomenon, it is convenient to set particle velocities
below some threshold to zero.

2.4 Higher-dimensional Sorting

Collision sort extends very naturally into as many dimensions as we please, so long as we can connect
the component machines in a square, cubic, or hyper-cubic lattice. Figure 4 shows a simultaneous
two-dimensional collision sort, under conditions similar to those of Figure 3. Approximately-sorted
conditions are obtained quite rapidly, although the definition of “step” in Figure 4 is a little different
from that that applies in Figure 3.

Figure 4: Variable-velocity two-dimensional collision sort of 1000 particles, each of which has both
a blue (x) and a green (y) value.
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The 2-dimensional model simulated in Figure 4 assumes that a particle can move not just in
one of the four cardinal directions (N, E, S or W) but also in one of the four intercardinal directions
(NE, SE, SW and NW). If we assume that the grid of machines that hosts the collision sort is a
rectangular lattice connected only on N–S and E–W axes, a complication arises when a particle
moves from a machine to one of its intercardinal neighbors, since these neighbors are not directly
connected. Such a move is treated as a single step in our simulation, but would actually require two
inter-machine messages in a real rectangular lattice. An implementation would have to introduce
a forwarding mechanism, whereby, for example, a particle bound for the NE neighbor is sent first
N and then forwarded E, without being compared for collisions during the intermediate step. This
will introduce some additional delay or ‘noise’ into the system. The mechanism of the distributed
algorithm can easily absorb this additional nondeterminism: even in the one-dimensional case,
particle steps that cross boundaries between machines already take more real time than those that
do not. We need to conduct further experiments to determine if it is reasonable to permit diagonal
moves in a single computational “step”.

3 Related Work

Conceptually, collision sort is closely related to the parallel bubble sort, sometimes called “even-odd
transposition sort,” which was described by Habermann in 1972 [8]. Unlike bubble sort, collision
sort does not assume a one-to-one correspondence between machines and data, nor synchronized
communication. The variable-velocity modification improves efficiency by allowing data to skip over
unnecessary comparisons. We are not aware of any prior work on simultaneous multi-dimensional
sorting.

Discretized computational models of physical particle systems have a long and rich history,
dating back as far as computing pioneer Konrad Zuse’s very early “Calculating Space” lattice-gas
cellular automata [16]. In the 1980s, particle systems found uses in computer graphics models of
fluids, fabrics, and other physical objects having complex dynamics. Modern GPU processors are
capable of handling million-particle systems in real time [10], which suggests that collision sort may
have an efficient parallel implementation in commodity hardware.

Particle Swarm Optimization methodology [9], developed originally to model social behavior
in animals, has found applications in a variety of nonlinear or otherwise irregular optimization
problems. However, Particle Swarm Optimization requires nonlocal communication, and does not
sort a space, but rather searches through it. Clustering algorithms inspired by social insect behav-
ior [6, 15] have also found industrial uses in document retrieval and mapping: ant-based clustering
is a spatial technique that acts somewhat like a randomized bucket sort, with a swarm of agents
moving passive data particles according to simple rules. It has the advantage of not relying on a
global coordinate system, although there is consequently no control over where in space the data
clusters form.

Research into programming languages for spatial computers is ongoing. Some approaches, such
as the MIT Amorphous Computing project’s Growing Point Language [4] and the more recent
Proto programming language [2], approximate a discrete spatial computer by a continuous topo-
logical manifold, and work with mathematical formalisms in the continuous abstract space. Others,
such as cellular automata, the MGS topological simulation system [14], or the Blob computing ar-
chitecture [7], work with aggregations of discrete computing elements. The sorting algorithm we
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present contains elements of both approaches: the discrete data particles move in an approximation
of a continuous space maintained by a discrete network of machines.

4 Discussion

The collision sort algorithm uses both more time and more work to sort than many well-known
sorting algorithms for parallel random-access machines. For example, the GPU radix sort of Satish,
Harris, and Garland [13] does only O(n) work at a roughly constant rate. However, this algorithm,
like most published parallel sorting algorithms, assumes global uniform access to memory, and does
not account for communication costs. In a distributed computing environment where communi-
cation cost is dependent on physical distance, it is not clear whether scalable sorting algorithms
as fast as these are possible. The Quicksort implementation described by Gruau [7] begins with a
configuration in which all data are directly connected to a central coordinating element, and thus
depends on an abstraction layer to map this un-spatial configuration into a spatially constrained
network. With large numbers of data elements, it is not possible for them all to communicate
with a central coordinator in the same short time; the fundamental trade-off for an element of a
spatial computer is between the number of other reachable elements and the distance (and thus,
communication time) to the farthest of them. Scalability, failure handling, and concurrency are
key challenges of distributed systems [5], and collision sort is designed to address these issues.

The springboard for this work is the idea that the theoretical tools developed to model or simu-
late physical, biological, and social systems that are embedded in physical space may also be useful
in the development of spatially-embedded computing systems. Many of the techniques of object-
oriented programming that have proven their worth in industrial software development have their
origin in discrete-event simulation systems like Simula [12]. The techniques have been generalized
from the specific descriptive needs of modelers to powerful abstract concepts like class hierarchies
or message-passing, which can be used to create new systems as well as describe existing ones. Per-
haps the systematization of spatially-oriented simulation techniques in the sciences may yield new
concepts with which to create spatial computing systems: cellular automata are a paradigmatic
example. In any case, as computer systems have become more diverse and more powerful, the con-
straints that they impose on their programs are beginning to have more to do with the constraints
of physical systems, and less to do with the features of any specific model of computation. New
techniques for the analysis and construction of spatially-embedded information processing systems
should complement each other. The recent development of explicitly-spatial process algebras, such
as Milner’s Bigraphical Model [11] or the Geometric Process Algebra of Cardelli and Gardner [3],
is an encouraging trend in this direction.

5 Experimental Methods

In developing the distributed algorithms of the previous sections, we have made use of the RoarVM
parallel Smalltalk virtual machine and the NetLogo concurrent agent-based modeling environ-
ment. RoarVM is a multi-threaded execution environment developed for many-core processors,
while NetLogo simulates the parallel execution of programs by randomizing the execution order of
agents’ programs within each simulated global time step. Source code for the programs that have
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generated the images shown in the figures is available at http://cs.pdx.edu/∼orhai/spatial-sorting.
RoarVM Smalltalk is available from https://github.com/smarr/RoarVM, and NetLogo from http:
//ccl.northwestern.edu/netlogo/.

6 Conclusion

We have presented collision sort, a distributed sorting algorithm for spatial computers having a
grid topology. This algorithm is designed to use only local communication to accomplish the global
task of sorting, while tolerating nondeterminism in the order of communications as well as limited
component failure.

Spatial programming techniques suggest a new approach to the design of fundamentally parallel
algorithms for practical computing in large-scale device networks, where large amounts of spatially
distributed computing capacity is available but the cost of communication is proportional to the
physical distance it must span. Our technique is a compromise between the conventional sequential
approach, where a single computing element must examine all of the data, and a massively parallel
approach, in which every data element is active. The former won’t scale because it is inherently
sequential; the latter won’t scale because it requires exponentially-increasing amounts of non-local
computation. Instead we localize computing resources in space, and move the particles representing
the data through the space so that local computation is all that is needed. It remains to be seen
whether such techniques can be applied to an interesting range of problems; our intuition is that
they can be, because the physics of the real world also favors local interaction over long-distance
interaction

Using only asynchronous local communication, in environments whose exact configurations may
be unknown or dynamic, our methods must accommodate some uncertainty or nondeterminism.
Drawing from mathematical models developed to study natural phenomena, we find that some of
the same approaches have utility in the construction of practical distributed algorithms in a spatial
computing environment.
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Elvira Mayordomo, and Lúıs Mendes Gomes, editors, Programs, Proofs, Processes, volume
6158 of Lecture Notes in Computer Science, pages 78–87. Springer, Berlin–Heidelberg, 2010.

[4] D. N. Coore. Botanical computing: a developmental approach to generating interconnect topolo-
gies on an amorphous computer. PhD thesis, Massachusetts Institute of Technology, 1999.

[5] G. Coulouris, J. Dollimore, and T. Kindberg. Distributed Systems: Concepts and Design.
Pearson Addison Wesley, Harlow, England, 2 edition, 2001.

[6] J. L. Deneubourg, S. Goss, N. Frank, Sendova A. Franks, C. Detrain, and L. Chretien. The
Dynamics of Collective Sorting: Robot-Like Ant and Ant-Like Robot. In J. A. Meyer and
S. W. Wilson, editors, Proceedings First European Conference on Simulation of Adaptative
Behavior: From Animal to Animats, pages 356–365. MIT Press, Cambridge, 1991.

[7] Frédéric Gruau, Yves Lhuillier, Philippe Reitz, and Olivier Temam. Blob computing. In
Proceedings of the 1st conference on Computing frontiers, CF ’04, pages 125–139. ACM, 2004.

[8] A. Nico Habermann. Parallel neighbor sort (or the glory of the induction principle). Technical
Report AD-759 248, Carnegie Mellon University, 1972. available at http://repository.cmu.edu/
compsci/2087.

[9] J. Kennedy and R. Eberhart. Particle swarm optimization. In Neural Networks, 1995. Pro-
ceedings., IEEE International Conference on, volume 4, pages 1942–1948, 1995.

[10] P. Kipfer, M. Segal, and R. Westermann. UberFlow: a GPU-based particle engine. In Proceed-
ings of the ACM SIGGRAPH/EUROGRAPHICS conference on Graphics hardware, HWWS
’04, pages 115–122. ACM, 2004.

[11] Robin Milner. Bigraphs and their algebra. Electronic Notes in Theoretical Computer Science,
209:5–19, April 2008. Proceedings of the LIX Colloquium on Emerging Trends in Concurrency
Theory (LIX 2006).

[12] Kristen Nygaard and Ole-Johan Dahl. The development of the SIMULA languages. In
Richard L. Wexelblat, editor, History of programming languages I, pages 439–480. ACM, New
York, NY, USA, 1981.

[13] N. Satish, M. Harris, and M. Garland. Designing efficient sorting algorithms for manycore
gpus. In IEEE Int. Symp. on Parallel Distributed Processing (IPDPS 2009), pages 1–10, May
2009.

[14] Antoine Spicher, Olivier Michel, and Jean-Louis Giavitto. A topological framework for the
specification and the simulation of discrete dynamical systems. In Peter Sloot, Bastien
Chopard, and Alfons Hoekstra, editors, Cellular Automata, volume 3305 of Lecture Notes
in Computer Science, pages 238–247. Springer, 2004.

9



[15] H. Van Dyke Parunak. “Go to the ant”: Engineering principles from natural multi-agent
systems. Annals of Operations Research, 75:69–101, 1997.

[16] K. Zuse. Calculating space. Technical Report AZT-70-164-GEMIT, Massachusetts Institute
of Technology, 1970.

10


	Parallel Sorting on a Spatial Computer
	Let us know how access to this document benefits you.
	Citation Details

	tmp.1402331287.pdf.34ENy

