
Portland State University Portland State University 

PDXScholar PDXScholar 

Electrical and Computer Engineering Faculty 
Publications and Presentations Electrical and Computer Engineering 

4-1-1975 

Electromagnetic modes of an inhomogeneous Electromagnetic modes of an inhomogeneous 

sphere sphere 

Lee W. Casperson 
Portland State University 

Follow this and additional works at: https://pdxscholar.library.pdx.edu/ece_fac 

 Part of the Electrical and Computer Engineering Commons 

Let us know how access to this document benefits you. 

Citation Details Citation Details 
Lee W. Casperson, "Electromagnetic modes of an inhomogeneous sphere," J. Opt. Soc. Am. 65, 399-403 
(1975). 

This Article is brought to you for free and open access. It has been accepted for inclusion in Electrical and 
Computer Engineering Faculty Publications and Presentations by an authorized administrator of PDXScholar. 
Please contact us if we can make this document more accessible: pdxscholar@pdx.edu. 

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/ece_fac
https://pdxscholar.library.pdx.edu/ece_fac
https://pdxscholar.library.pdx.edu/ece
https://pdxscholar.library.pdx.edu/ece_fac?utm_source=pdxscholar.library.pdx.edu%2Fece_fac%2F95&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=pdxscholar.library.pdx.edu%2Fece_fac%2F95&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/ece_fac/95
mailto:pdxscholar@pdx.edu


JOURNAL OF THE OPTICAL SOCIETY OF AMERICA

Electromagnetic modes of an inhomogeneous sphere*

Lee W. Casperson

School of Engineering and Applied Science, University of California, Los Angeles, California 90024
(Received 27 July 1974)

Vector wave solutions are derived for the electromagnetic modes of a sphere having radial variations
of the refractive index and gain. For some inhomogeneity models, confined-mode solutions exist. The
results are applicable to the refracting atmospheres of stars and planets.

Index Headings: Refractive index; Atmospheric optics.

The propagation of electromagnetic beams has been
analyzed for various types of inhomogeneous media.
Two familiar examples include propagation along
graded-slab and cylindrical dielectric structures. The
slab geometry is of practical interest because of its ap-
plication to semiconductor-junction lasers. More re-
cently, slab and rectangular waveguide channels have
been analyzed for integrated optics. Substantial effort
has also gone into the analysis of beam propagation
along cylindrically symmetric media, and optical fibers
of this type are leading candidates for single-mode op-
tical communication.' Similar profiles occur in laser
media; in the simplest cases of quadratic index or gain
variations, the resultant beam modes are characterized
by Hermite-gaussian or Laguerre-gaussian functions. 2

A few other geometries have also been considered.
The purpose of this work is to derive the electromag-
netic modes of a sphere that has radial inhomogenei-
ties. The initial equations are exact and general and
may be applied to all spherical configurations. How-
ever, in the detailed solutions, emphasis is placed on
situations that involve a spherical refracting or ampli-
fying shell with a radius that is large compared to the
shell's thickness.

There are several applications for these results.
For example, unconventional lasers can be visualized
in which the amplifying medium is localized in a spheri-
cal shell. This might be an efficient arrangement when
a point-like pump source, such as a fusion reaction is
available. The principal example in this work, how-
ever, involves the electromagnetic modes of stellar
atmospheres. The gaseous atmosphere of a star or
planet always exhibits large-scale optical inhomogene-
ity. The decrease of density of a neutral gas with
height above a stellar surface causes a decrease of re-
fractive index; this tends to confine radiation. On the
other hand, the occurrence of free electrons in the at-
mospheric plasma acts to depress the refractive index,
according to n c1 - X2Nee2(2mnrc2)-, where Ne is the
electron density, X is the wavelength of the electromag-
netic field, e is the electron charge, m is the electron
mass, and c is the speed of light. Unless the electrons
are concentrated in an ionosphere, they tend to refract
radiation out of the atmosphere. Another confining ef-
fect that is important with highly condensed stellar ob-
jects is the relativistic deflection of light by the gravi-
tational field. This effect is well known theoretically
and from solar-eclipse data. For example, for weak
gravitational fields the effective correction of the in-
dex of refraction is n, = 2GM(c2r)-', where G is the uni-

versal gravitation constant, M is the mass, c is the
velocity of light, and r is the distance from the center
of the gravitating object. 3

In addition to these effects, it is expected that the
high levels of optical and collisional excitation may lead
to a radially varying gain. Sunlight is used as an ef-
ficient optical-pump source for earth-bound lasers, 4

and OH and H20 maser action in the nebulae surround-
ing stars is also well known.5 Other unconventional
plasma-pumping techniques have also been proposed
for obtaining stimulated emission near a magnetized
star. 6 Thus the presence of gain within an atmosphere
is not unexpected. Such gain can have a profound ef-
fect on the electromagnetic modes, and laser action
with feedback may be possible.

In Sec. I, the exact vector equations governing the
field components are reduced rigorously to a set of or-
dinary differential equations. The simplest beam-mode
solutions consist of uniform traveling waves circulating
in the t direction about the equator of the spherical ob-
ject. The field variations in the 0 direction are gov-
erned by Hermite-gaussian functions. In Sec. II, the
radial equation is solved for certain plausible forms
for the radial variation of the refractive index and the
gain.

I. DERIVATION OF MODE EQUATIONS

The vector electromagnetic modes of an inhomogene-
ous sphere may be found as solutions of Maxwell's
equations

5t - l -at ,

VXff = E0 at + a + aE .

(1)

(2)

If a harmonic time dependence is assumed in the form

E= |EZ| cos(wt+0,)=Rei'exp(iwt),

ff = I f'l| cos(wt+,P.H) = Re f' exp(iwut), etc.,

then the equations for the complex field amplitudes re-
duce to

(3)

(4)

V X E' = - iw Af'.

V X ff = iw'Ef'.

Here the permittivity E(r) is assumed to be complex to
account for the conductivity a and also because in an
absorbing or amplifying medium the polarization P is
not in phase with the electric field E. Similarly the
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permeability p (r) is complex to account for out-of-
phase components of the magnetization M. In free
space, E and ti reduce, respectively, to %0 and ,. 0.
For a general inhomogeneous medium Eqs. (3) and
may be combined to yield wave equations for the ele
tric and magnetic fields; the results are

VXVX RT' - Wp- - (VE/,E)XVX f'.

Equation (5) is really three coupled equations for
components of the vector electric field. For the pri
lem of a spherical atmosphere, the permittivity and
permeability vary only with radius; this vector wav
equation may be reduced to a scalar equation by me:
of the substitution 7

E W = VX ((rr(D)),

where 1i is a unit vector in the radial direction. The
result may be written

mensions are much larger than any wavelength of inter-
est. If the energy is localized near the equator, a use-
ful change of variables in Eq. (12) is 6'= 7r/2 - 0, so
that latitude is measured from the equator. Thus, the
equation reduces to

d2E0 der m2 0
tan ' dA +[ (l + 1) -- 7-

(5) dO'2  d I cos- 0tJO

(6) To obtain confined modes, we may try

the (OM) =A(O') exp(- iQ0 0'2/2),

Db- which leads to

a d2A dA
dO'2 -(tanO' + 2i Q0 ')

(15)

(16)

(17)
(7)

(8)V 2o) +co2AlEO (j) = Id O0 r

For small values of 0', the trigonometric functions may
be expanded, keeping only the leading terms. The re-
sult is

d 2A , 01 dA

For this set of fields, Z'(1) has no radial component
and the corresponding vector A'(1) may be found from
Eq. (3). In a similar way, we may use the substitution

1i' ) = V x r (9)

in Eq. (6) to obtain a set of fields E'(2) and f'(2) in
which the radial component of the magnetic vector van-
ishes. The scalar equation for this case is

V2o (2) + W2 e 1 ddE ao .2) (1(0)
E dr &r

Related scalar equations have been used to describe
scattering from spheres. 8

Equation (8) may be separated into three ordinary
differential equations by use of the substitution
4i = ;(40)E(0)R(r). The results are

+ [1(1 + 1) - m 2 (1 + 0/2) _ iQ9 _ Q02 012]A =0. (18)

If we set the quadratic terms in 0' equal to zero, we
obtain

dO2 - (1 + 2iQ) 0' d [ + [+1) - m 2 -.iQ] A = (19)

and the constraint Qu = - I m i. Then, from Eq. (16) it
follows that the l/e radian beam width (spot size) of
the fundamental mode (I = I m I) is wo = (2/l m I)'1/2 .

Higher-order modes can also be found. Using wo << 1
and introducing the new variable x = 21 2 0t/wo reduces
Eq. (19) to

d2A -2 dA A1(+1)-ImI(Im1 +1) A-O
d x A=l

(11) This may be written, approximately, asd 2+ 2(b = O,

lI d d(sin 0 d6 +[,(, + 1) _-2]E)=0,

1 d (,)_1 dA dR + 211 M+ 1) R 0
r- Pr A dr dr I r2

(12)

(13)

The lowest-order modes would be expected to involve
fields that simply propagate around some great circle
of the sphere. Therefore, we choose for @ the trav-
eling-wave solution

=,,o exp(- ibn), (14)

where m is an integer. Other sets of modes that de-
scribe 0-directed propagation, for example, are also
possible.

The solutions of Eq. (12) involve the associated Le-
gendre functions, provided that I is an integer that sat-
isfies 1 2 I m I. Although these solutions are correct,
more-useful expressions can be obtained for the limit
in which I m I and I are much greater than unity. This
limit is appropriate for a typical star, where the di-

d 2A dA =
dx dx

(20)

(21)

where we have introduced n = I - I m I and used again
I m I >> 1. The solutions of Eq. (21) are the Hermite
polynomials H,. Thus the 0' dependence of the fields
is expressible in terms of the Hermite-gaussian func-
tions

e(oM) = 30oHg(2l 12 6'/w,) exp(- 0'
2 /w9 ), (22)

which are analogous to the modes of conventional lasers
and lens waveguides. 2

The 6' intensity dependence of some typical low-or-
der modes is shown schematically in Fig. 1. The in-
tensity is found from I= (E/p.) 1 2 E' * E'*/2. The modes
are normalized with respect to total power; in this
example, the spot size is w9 = 7. 07° = 0. 123 rad, cor-
responding to the value m 131. This means, in ef-
fect, that the circumference of the star is approximate-
ly 131 wavelengths; in most situations the value of m
would be larger.

Vol. 65400
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MODES OF AN INHOMOGENEOUS SPHERE

FIG. 1. Schematic drawing showing the 0 ' variation of nor-
malized Hermite-gaussian modes propagating around the equa-
tor of a star. The modes shown correspond to the index values
n=0, 1, 2.

The solutions of the radial equations depend on the
forms of E(r) and ti(r). Numerical solutions of Eq. (13)
can always be obtained for arbitrary radial variations,
but it is useful to consider also some specific analyti-
cal results. We treat first the behavior of the fields at
large radii, where no spatial variations exist. Then
Eq. (13) reduces to

r2R +2r d-R+[r2k20-l1(1+1)]R=0, (23)
dr2 dr

apparent position of the sphere is displaced by m from
its actual position. In the next section, analytic solu-
tions of the radial equation are obtained for the fields
in the vicinity of a stellar surface for specific assumed
profiles of the gain and refractive index. From the
solutions of the scalar equation the vector field com-
ponents follow immediately by means of Eqs. (7) and
(9).

II. SOLUTION OF THE RADIAL EQUATION

Many profiles'are possible for the refractive index
and gain in the vicinity of a star. Under some condi-
tions, these profiles can lead to confined electromagnet-
ic modes. The simplest test for optical confinement
follows from a ray analysis for radially inhomogeneous
media. 10 Ray confinement at a radius ro is assured by
the condition

dnI < _n(r)
ro (29)

rO

These rays are attenuated due to leakage of radiation in-
to the surrounding medium. "1 For highly condensed
objects, such as dwarf stars, the gas density gradient
may lead to such ray confinement. Also for neutron
stars and black holes, the relativistic effects become
severe. In addition, inhomogeneities of the gain or loss
can strongly affect the behavior of electromagnetic
fields. In regions of spatially varying gain, ray analy-
sis is not useful.

where k2 -=2 u is a constant. In terms of the dimen-
sionless variable p= kor, Eq. (23) is

p2 -+2p dR + [p2 -l(+1)]R=o (2a

which is the standard form of the spherical Bessel
equation. 9 Thus the solutions for outward-traveling
waves involve the spherical Hankel functions

h(2) (p) = (7T/2p)' /2 H2) /2(p). (2,;

For values of p greater than 1, the Hankel functions
may be replaced by their asymptotic values

lim h {)(p) =p exp[- i(p -17r/2 - /2)].
Pa.

As an example of an object that has strong refraction
effects, we consider briefly the planet Venus. Based on
results of the Venera 4 and Mariner 5 space flights, the
index of refraction of the lower atmosphere of Venus is
given by n- 1 =4.82X 10-3exp(- 0. 066h) where h is the
height in kilometers. 12 Thus, the value of the gradient
at h = 0 is dn/dh = - 3. 18 x 10-4 km-'. But n(r)/r at the
surface of Venus (ro= 6052 km) has the value l.66x10- 4

km- , so that, from Eq. (29), refraction trapping of rays
occurs and low-loss modes may be possible.

v/

The radial field distribution of the confined modes can
always be found from Eq. (13) but, for complicated radi-

(26)

Because the energy density is proportional to f' K'*, it
follows from Eq. (26) that the energy varies inversely
as the square of the radius. The behavior of the phase
fronts follows from Eqs. (14) and (26), and the total
phase is

P= mO + p - 17r/2 - 7r/2.

Thus a surface of constant phase is described by

p = - p/m + const.

(27)

(28)

A plot of some typical phase fronts from Eq. (28) is
shown in Fig. 2. These archimedean spirals are not
extended inside of p=m, because there the asymptotic
form of the Hankel functions is not valid, and also a
detailed description of the energy source is required.
An interesting consequence of these results is that, to
an observer at a distance large compared to p = m, the

FIG. 2. Polar view of typical phase fronts of an equatorial
mode.
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al inhomogeneities, numerical methods are required.
However, considerable insight can bo obtained from
analytical solutions for a general class of refraction
profiles. The refractive behavior of the stellar atmo-
sphere can always be expanded in a Taylor series in the
vicinity of the field maximum. Thus the complex propa-
gation constant k2 =C 2Mc near the radius ro can be ex-
pressed as

k2 =k0[k 0-k,(r-r 0)-k 2(r- r0 )2], (30)

where higher-order terms are assumed to be unimpor-
tant. This profile corresponds also to the case of an
amplifying layer in the stellar atmosphere, because k
may be complex. With this substitution, Eq. (13) re-
duces to

d2B +ko [ko -kl(r-ro) -k2(r - ro)2]B ( ) (31)
dWr- 0 0 0 2 0 r2 = (1

case. For weak spatial variations, it follows from Eq.
(30) that the propagation constant is

k = ko - k, (r - ro)/2 - k2(r -_ro)2/2 . (40)

If I kok2 1 >> 312/r4 and k, = 0, Eqs. (34) and (35) reduce to

Q2 =- kok2

QS= 12 /r,

(41)

(42)

Following convention, we separate the components of the
propagation constant into their real and imaginary parts
according to k = 13 + iac. The gain or loss per wavelength
is small (o»>> ao); for this example, we assume that
there is no profile of the gain (62 =0). The solutions of
Eqs. (41) and (42) are now

-,(43)

S=il 2 r-3(13o132)1/2 (44)

where B=rR and the permeability is constant. We now
introduce r' =r -ro and require that the thickness of the
mode be much less than the radius of the star. Then the
last term in Eq. (31) may be expanded to second order
in r'; with I >> 1 we obtain

d2B F/ 2) ( 212 \ ( 312 \,21
_72 ;;~- _kok,-_--T r' - (kok2 - JrIB=0.

dr L o0  ro0 /

(32)

In analogy with conventional gaussian-beam formal-
ism, a useful substitution in Eq. (32) is 13

From Eqs. (39) and (43) it follows that the phase-front
curvature is infinite, and that the spot size is
W = 21/(1 2o2)-1/4

Equation (38) can also be readily solved. With the
previous results this equation is

d2G _ dG _ l + (go 2)1/2 12 -hoJ (g 0o32) - = 0
-P dp- Lrro13 (45)

and from Eq. (37) the radial coordinate is

p = (13opBo)l '4[r' + 12 r 3(130 32Y'].

B(r') =G(r') exp[- i(Qr'2/2 +Sr')]. (3

Equating the terms that are linear and quadratic in r'
leads to the separation

Q2= - kok2 - 312 /r4 , (34)

QS= - kokJ2 + 1?/r30 ,(35)

-;:-2i (S +Qr') r+ (k o-- )(S2+iQ)G 0. (36)

With the change of variables

p=(iQ)'1 2(r'+S/Q) , (37)

Eq. (39) becomes

d 2G p dG [2 2 +iQ + _ k2 1 0 = ° (38)

Explicit expressions for the parameters Q and S follow
immediately from Eqs. (34) and (35). These exponen-
tial terms in Eqs. (33) imply a gaussian beam with its
amplitude center displaced from ro by the amount
da =- SVQl, and itsphasecenterdisplaced byd= -S./Qr,
Here the subscripts denote, respectively, the real and
imaginary parts of the parameters S and Q. The real
part of Q implies that the phase fronts are curved in the
r' direction; in general, we can show that the real and
imaginary parts of Q are related to the exponential
beam spot size w and the phase-front curvature R by

Q = Qr+iQi = 8- i .p (39)

The implications of these results and the solution of
Eq. (38) are best illustrated by considering a special

3) The solutions of Eq. (45) are the Hermite polynomials
H,(p), provided that the integer p satisfies the condition

p= 6/2 4 +(a oP)1/2 2 + 132] (1 13)-1/2 (46)

This equation is a constraint on 1. If we assume 1 Poro
in the 14 term (to be checked later), we find

12 - gorO2 [1 + gor-2g'l + (2p - 1)g32(gop2)11/2]

or

(47)

Thus a quadratic index profile near the stellar sur-
face leads to confined Hermite-gaussian modes that are
similar to the waveguide modes of conventional quadrat-
ic lens-like media. 2 Because the index of refraction
cannot actually extend to minus infinity, some. radiation
loss occurs at the surface of the guiding region. This
leaking energy supplies the observable output fields
shown in Fig. 2. The exact level of radiation loss de-
pends on the details of the assumed refraction profile
and is not of interest here. For a truncated parabolic
profile the loss calculations can be carried out in much
the same way as for curved optical fibers. 14

As a reasonable numerical example of the previous
results, we let the radius of the object be r, = lo" m;
then, for a wavelength of 1 ,gm, g3o 27v/X= 27TXl06m-1.
If the thickness of the focusing layer is about 106 m, it
follows from Eq. (40) that P2= 8x 1- 2 O= 1. 6vrx 10-5 m-3,
and the approximation preceding Eq. (41) is valid.
Therefore, from Eq. (47), the parameter 1 for the funda-
mental mode (p =0) has the value

Vol. 6 5402
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MODES OF AN INHOMOGENEOUS SPHERE
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FIG. 3. Qualitative sketch of the normalized Hermite-gaussian
radial intensity distribution for a parabolic index profile cen-
tered at the radius ro.

I'-- 2vrX1014[1 + 10-5/1.6-2-1/" 2 27-X10 -2 ]

Because the correction terms are small, the approxima-
tion preceding Eq. (47) is also justified for this example
and l Airy. From Sec. I, I is approximately equal to
the azimuthal index m, and we get the reasonable result
that the distance between the phase fronts at the radius
ro of the index maximum is 27T/J0 =X. The displacement
of the beam is da = -Si/Qi = r =1. 25X103 m. Thus,
the amplitude center of the beam is located at a larger
radius than the maximum of the index profile. The spot
size is w = 21 /2(f g2)-1/4 = 2-3 /4 7r-/2 m so that the energy is
concentrated in a region that is thin compared to the in-
dex maximum, and the Taylor-series expansion is valid.

The preceding results are shown qualitatively in Fig.
3. The Hermite-gaussian radial modes are pushed out-
ward from the center of the parabolic refraction profile
in the same way that a circulating particle would be held
by centrifugal force against the outside of a parabolic
potential well. The correspondence between ray and
particle trajectories has recently been considered in de-
tail.' 5 It follows from Eq. (7) that the beam modes are
primarily linearly polarized in the 0 direction. Another
set of vector modes can be obtained from the solution
of Eq. (10). The term dE/dr can be ignored as long as
the chapges of permittivity per wavelength are small.
Thus, these other scalar wave functions are the same
as in the preceding case, but now the magnetic field has
only a 0 component.

Deflection of light by a refraction profile is a familiar
phenomenon. Only refraction effects have been consid-
ered in the foregoing. However, a light beam can also
be deflected in a medium where the refractive index is
constant but the gain varies with position. ' 3 Thus we
can consider the existence of high-loss electromagnetic
modes in a stellar atmosphere that contains an amplify-
ing layer, even if the real refraction profile is insuf-

ficient for mode confinement. The preceding analysis,
through Eq. (42), is valid for this case as well, but the
detailed calculations are more cumbersome when both
gain and refraction profiles are present.

III. CONCLUSION

The electromagnetic modes of a radially inhomoge-
neous sphere have been analyzed, and the results have
been applied to refraction profiles of the type expected
in stellar atmospheres. In the simplest cases, the radi-
ation propagates around a great circle of the star with
the phase fronts spiraling outward to a distant observer.
Depending on the details of the atmospheric composi-
tion, conditions may be favorable for stimulated emis-
sion in the gaseous medium, and the result is laser os-
cillation in the electromagnetic mode. The refraction
effects described here provide a mechanism for positive
feedback. Laser or maser oscillation can have a drastic
effect on the spectral and temporal properties of the ob-
served stellar emission lines. Possible effects include
emission line narrowing, optical relaxation oscillations,
and mode-lock pulsations.
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