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Abstract 

 
Non-indigenous species (hereafter NIS) have long been recognized as adversely 

affecting habitats they invade. While many of their documented ecological impacts have 
been to specific species, namely prey, they may impact whole food webs.  Both vertebrate 
and invertebrate NIS have been present in the Columbia River since the mid 1800’s.   The 
New Zealand mudsnail, (Potamopyrgus antipodarum, hereafter NZMS) was first reported in the 
Columbia River Estuary in 1995.  This typically freshwater NIS invaded Youngs Bay, a 
shallow embayment within the Columbia River estuary system, and has proliferated within 
this benthic community.  To date, there have been no inquiries into the impact of NZMS 
on the food web in a brackish water estuary within the United States.  To identify 
community-level impacts by the invasive NZMS, an ecological census of the benthic 
communities of Youngs and Cathlamet Bays (reference site) was conducted, including 
comprehensive sampling of vertebrates and benthic invertebrates from these two brackish 
water systems.   Stable isotope analysis (SIA) from these two systems is being utilized to 
identify trophic level food web relationships.  50% of one common estuarine fish, the 
Pacific staghorn sculpin (Leptocottus armatus) were found to contain NZMS in their guts. 
Furthermore, I have found densities reaching 15,711 snails/m2 sampled.  These results 
indicate NZMS in Youngs Bay may affect higher trophic levels. 
 
Introduction 
    

The New Zealand mudsnail, (Potamopyrgus antipodarum, hereafter NZMS) is a 

freshwater snail that has invaded several parts of the globe, including the United States. 

Although males and female snails exist in their native New Zealand, in the Western US, this 

species is entirely female and parthenogenic in nature(Dybdahl and Kane 2005).  Adult 

snails can reach 6 mm in length(Dybdahl and Kane 2005), and have the ability to tolerate a 

wide range of physical conditions.  This is accomplished by having a hard shell with an 

operculum that can be sealed to protect against desiccation, digestion, and other stresses, 

including a wide-range of  pH and salinity variation (Jacobsen and Forbes 1997; Alonso and 

Camargo 2004).  In fact, despite the lack of genetic variation, they thrive in a diversity of 

habitats (Dybdahl and Kane, 2005).  In general, NIS arrive in their new environment 

http://en.wikipedia.org/wiki/Non-indigenous_species
http://elib.cs.berkeley.edu/kopec/tr9/html/sp-pacific-staghorn-sculpin.html
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without their natural predator, which often leaves these populations unchecked and able to 

experience dynamic population growth.  For example, NZMS have the capability of 

reaching extremely high densities, up to 800,000 per m² in Lake Maarsseveen, in the 

Netherlands (Dorgelo 1987).  In addition, they are able to dominate the benthic 

community; in one study NZMS constituted 65–92% of total invertebrate productivity 

(Hall, Dybdahl et al. 2006).   

The NZMS was first identified in the United States in the middle section of the Snake River 

in central Idaho in 1985 (Langenstein and Bowler 1990). Currently, the NZMS has been 

identified in all of the western states.  The NZMS was first reported in the Columbia River 

Estuary in 1995 (Sytsma et al., 2004, Wonham and Carlton, 2005).  This population is 

believed to have been transported via human vectors from other river systems in the 

Western U.S. In fact, the Lower Columbia River population of NZMS is monogenic, being 

comprised of the same clone that is found in all the riverine populations in the Western US.  

The Columbia Estuary population comprised the first NZMS sighting in a brackish water 

system in the United States, although they are now known to exist in other estuaries such as 

Coos Bay, OR. High densities (up to 200,000 individuals/m2) (Litton 2000), have been 

found at sites in Youngs Bay, a brackish bay in the Columbia River Estuary.  At high 

densities, NZMS are capable of consuming large volumes of algae and detritus, potentially 

reducing the production of native benthic estuarine inhabitants (Hall, Dybdahl et al. 2006).   

    A greater understanding of the impact of this invasive species in an estuarine system 

requires knowledge about its effects on native benthic invertebrates, their prey, and 

predators. It is important to understand whether the high densities of NZMS, such as those 

in Youngs Bay, alter the food web in this sensitive estuarine system. These shifts in food 

web relationships may have lateral impacts on native species that occupy roughly the same 
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trophic level as the NZMS, such as amphipods and isopods, due to their use of scarce 

resources (e.g., food or physical space). These native epibenthic invertebrates are an 

important food source for many predators. This bottom up effect of an invasive secondary 

trophic level species may also impact higher trophic level predators such as Three-Spine 

Stickleback (Gasterosteus aculeatus) and Pacific Staghorn Sculpin (Leptocottus armatus). These 

species may inadvertently feed on the NZMS, which are nutritionally inferior to the native 

benthic invertebrates that are present (McCarter 1986; Sagar and Glova 1995; Bruce and 

Moffitt 2005; Vinson, Dinger et al. 2006).  New Zealand mudsnails have been documented 

in the digestive system of juvenile Chinook sampled from the Lower Columbia Estuary  

(Bersine et al., in prep), demonstrating that they may have become incorporated into the 

diet of this endangered species. 

    NZMS primarily feed on algae, which predominantly occurs in the photic zone. 

Therefore, we expected that higher NZMS densities would be found in the shallowest 

sampling depth, five feet. Also we expected to find a relationship between lower salinity 

values and an increase in mudsnail density, bearing in mind that this NIS primarily lives in 

freshwater river systems.  

Materials and Methods 

Site description 

Columbia River  

    The Columbia River Basin is the largest freshwater river system in the Pacific Northwest, 

and is the second largest river system in the U.S. with reference to volume discharged.  Its 

drainage basin covers 671,000 km2 in seven states and one Canadian province.  From the 

mouth to Skamokawa, WA (~river km 56) the lower Columbia River is a coastal plain 

estuary (Simenstadt et al., 1990).  Both vertebrate and invertebrate invasive species have 

http://elib.cs.berkeley.edu/kopec/tr9/html/sp-threespine-stickleback.html
http://elib.cs.berkeley.edu/kopec/tr9/html/sp-pacific-staghorn-sculpin.html
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been present in the Columbia River since the mid 1800’s.  Domestic and international 

shipping are thought to be the primary vectors for the introduction of NIS on the 

Columbia River. The two study sites, Youngs and Cathlamet Bays, are shallow embayments 

within the Columbia River Estuary (Holton, 1984).  

 Youngs Bay 

    Youngs Bay is a shallow embayment on the south shore of the Columbia River. Youngs 

River flows into Youngs Bay, which stretches approximately three and a half miles from the 

confluence of the Walooski River to the mouth of Youngs bay on the Columbia River 

Estuary.  Youngs Bay is roughly a mile and a half across at the widest point.  Its bathometry 

can be described as a wide, gentle demersal slope, which generally is no deeper than 15 feet 

on average.  The middle of the bay has been dredged repeatedly to allow larger ship traffic, 

but is only 35 feet deep at its deepest point.  Seasonal water temperature varies from nine to 

20 C, and salinity measurements generally were below 10 parts per thousand (here after 

ppt), but occasionally exceeded 25 ppt (Higley 1974).   

 

Fig. 1.  Youngs Bay Sample Sites  
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Cathlamet Bay  

    Cathlamet Bay is also a shallow embayment on the south shore of the Columbia River, 

upstream of Youngs Bay.  At the mouth of the John Day River, the bay reaches its deepest 

point, roughly 30 feet.     Temperature ranges between 2.4 and 23.9 C, and salinity values 

ranging from 0 to 23.7 ppt (Database 2001-2007).  However, primary production in 

Cathlamet bay is considerable lower than Youngs Bay at 22.63 g C m3/yrcompared to 

71.19 g C m3/yr²־ yr¹ respectively (McIntire 1984). 

Field Sampling   

    Fish and benthic invertebrates were sampled to characterize the estuarine food webs in 

Youngs and Cathlamet Bays and to determine the potential impacts of mudsnails on these 

food webs.  Biological and physical samples were collected at three depths (5, 10 and 20 ft) 

along four transect perpendicular to the shore, for a total of twelve samples per bay.  
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Youngs Bay was sampled from the 5th of July 2007 through 22nd of July 2007, and 

Cathlamet Bay was sampled from the 30th of July 2007, through the 2nd of August, 2007.     

    Fish were collected with baited (canned cat food) Wildco collapsible mesh minnow traps 

deployed at the five foot depth of each transect for 24 hours.  Fish were identified to 

species, counted, and then randomly chosen for gut content analysis. To analyze the gut 

contents, we opened the digestive tract and noted the presence or absence of NZMS (only 

Youngs Bay fish samples) as well as presence of other invertebrates.  Fish muscle tissue 

samples were collected from these fish and placed in a 1.5ml tube and frozen for later 

analysis.   

    A petite ponar grab was employed to sample benthic invertebrates.  Two grabs (totaling 

0.045 m2) were taken per sample site with the resulting sediment being sieved through a 

1mm mesh.  The remaining invertebrates were then stored in a 500 ml Nalgene sample 

bottle and suspended in 70% ethanol solution.  Invertebrate tissue samples were taken 

randomly for later analysis.  Plankton net with an 80 µm cod end was towed through the 

water to full length of the retrieving rope, 15 ft. The sample (phytoplankton and water) was 

then taken up by a 50 ml syringe, retained on filter paper, stored in a 1.5 ml tube, and 

frozen for future analysis.  

    Abiotic characteristics were measured at each site to describe the physical parameters.  

An Eagle Cuda Fish finder was used to determine water depth.  The petite ponar grab was 

used to retrieve water samples directly adjacent to the benthic sediment at each sample 

depth (5, 10, 20 ft).  The resulting water was then subject to a series of measurements:  

temperature, salinity, conductivity, pH, and TDS using an Extech ΙΙ Extik pH/conductivity 

EC 500.   Sampling was done between 9 am and 6 pm, and no special consideration was 
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taken in regards to the tidal influence.  A Magellan Explorist 100 was used to record 

geographic coordinates at each sample site. 

    Animal tissue (1 mg) and phytoplankton (on precombusted Whatman GF/C filters) 

samples were dried for 48 hours at 60C and weighed into tin capsules (Costech) for stable 

isotope analysis. Stable isotope analysis will be performed by the Stable Isotope Facility at 

the University of California, Davis using a Europa Hydra 20/20 continuous flow isotope 

ratio mass spectrometer. This data will be coupled with previous stable isotope data to 

construct a food web for the system.   

Statistical Analyses 

    Analysis of variance (ANOVA) was used to determine whether there were any 

correlations between NZMS density and the varying sampling depths in Youngs Bay. The 

assumptions of ANOVA were met (normality of residuals, homogeneity of variance). 

Results 

Fish Gut Content Analysis: 

    The most striking result of the gut content analysis was that 57% of Pacific Staghorn 

Sculpin with full stomachs contained NZMS. However, statistical analysis of fish species 

versus NZMS predation did not yield any statistically significant data because of the small 

sample size of fish collected. Power was low (0.4) but it is likely that a larger samples size 

would show significant effects.  Also, the assumptions of ANOVA were not met because 

the data gathered was not normally distributed (Table 1, Figure 2).  

 
Table 1.  Percentage of fish with NZMS in full stomach 
Fish Species Total n Non-empty % empty # w/NZMS% w/NZMS 
3-spine stickleback 14 7 50 1 14.3
Pacific staghorn sculpin 8 7 12.5 4 57.1
Prickly sculpin 2 1 50 0 0.0
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Fig. 2.   Percentage of fish with NZMS found in gut 
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Density and Depth Correlation in Youngs Bay: 

 There was no significant correlation between NZMS density and the different sampling 

sites (Table 2, 3 and Figure 3).        

 

Table 2.  Analysis of Variance 

Source DF Sum of Squares Mean Square F Ratio 
Model 4 3.22 0.80 1.73 
Error 7 3.26 0.47 Prob > F 
C. Total 11 6.47 0.2473 
 

Table 3.  Effect Tests 

Source Nparm DF Sum of Squares F Ratio Prob > F
Transect name 3 3 2.8826182 2.0652 0.1934
Log Ref Depth (ft) 1 1 0.3349124 0.7198 0.4243

 

Fig. 3.  NZMS density by depth and transect 

Regression Plot 
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Multivariate correlation between NZMS density and abiotic parameters: 

    The multivariate analysis of NZMS density and various abiotic parameters yielded no 

significant correlation between snail density and the spectrum of abiotic characteristics that 

were measured in Youngs Bay. Not surprisingly, several abiotic parameters were highly 

correlated with one another (Table 4).  

Table 4: Pairwise Correlations  

Variable by Variable Correlatio
n

Cou
nt

p-
value 

Temp F NZMS #/m2 0.4493 12 0.1428
Salinity ppt NZMS #/m2 -0.3530 12 0.2604
Salinity ppt Temp F -0.9380 12 0.0000
Conductivity 
ms 

NZMS #/m2 -0.3496 12 0.2652

Conductivity 
ms 

Temp F -0.9309 12 0.0000

Conductivity 
ms 

Salinity ppt 0.9990 12 0.0000

pH NZMS #/m2 -0.3022 11 0.3664
pH Temp F -0.7922 11 0.0036
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Variable by Variable Correlatio
n

Cou
nt

p-
value 

pH Salinity ppt 0.8797 11 0.0004
pH Conductivity 

ms 
0.8739 11 0.0004

TDS ppt NZMS #/m2 -0.3494 12 0.2655
TDS ppt Temp F -0.9277 12 0.0000
TDS ppt Salinity ppt 0.9992 12 0.0000
TDS ppt Conductivity 

ms 
0.9997 12 0.0000

TDS ppt pH 0.8736 11 0.0004
Actual depth 
(ft) 

NZMS #/m2 0.3228 12 0.3062

Actual depth 
(ft) 

Temp F 0.0046 12 0.9886

Actual depth 
(ft) 

Salinity ppt 0.1220 12 0.7056

Actual depth 
(ft) 

Conductivity 
ms 

0.1202 12 0.7098

Actual depth 
(ft) 

pH 0.0920 11 0.7878

Actual depth 
(ft) 

TDS ppt 0.1293 12 0.6889

 
Discussion 
 
    Although the fish gut content analysis did not produce any statistically significant data 

due to the small sample size, we can still glean useful information from it.  The mudsnail 

was found in the digestive track of two fish species, Pacific staghorn sculpin (Leptocottus 

armatus ), and three-spine stickleback (Gasterosteus aculeatus).  Of fish with non-empty 

stomachs, the Pacific staghorn sculpin had a high frequency of ingested NZMS, 57% of 

this species (4 out of 7) sampled had NZMS in their gut.  The three-spine stickleback had a 

lower frequency of NZMS ingestion, with 14.3% of fish (1 out of 7) sampled having 

mudsnail in their stomachs.  We can compare this data with a NOAA report that was 

executed in 2002 through 2005 where the diet of juvenile Chinook was examined for the 

presence of NZMS.  They found no snails present in 2002 or 2003, but in 2004 two out of 

370 salmon had NZMS in their gut, which is only about a 0.5% frequency.  In 2005, 64 

http://elib.cs.berkeley.edu/kopec/tr9/html/sp-pacific-staghorn-sculpin.html
http://elib.cs.berkeley.edu/kopec/tr9/html/sp-pacific-staghorn-sculpin.html
http://elib.cs.berkeley.edu/kopec/tr9/html/sp-threespine-stickleback.html
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Chinook were sampled, and only one was found to have NZMS in its stomach.  This rate 

of occurrence is only 1.5% for 2005 (Bersine, Brenneis et al. in prep.).  The rate of NZMS 

ingestion occurrence we found in Youngs Bay was drastically higher than what the NOAA 

report concluded. This is likely due to feeding differences, with a higher NZMS occurrence 

expected in benthic feeders such as sculpin. 

    Contrary to our predictions, depth did not appear to limit NZMS distribution in Youngs 

Bay. There was no correlation between NZMS density and depth (from 0 to 20 ft) or 

transect site.  In fact, the highest NZMS density, 15,711 snails/m2 was collected at the 20 

foot depth. The lack of correlation with depth indicates that NZMS populations are 

consuming benthic detritus in addition to algae. The observation that NZMS are not 

limited to the shallow inter-tidal increases the potential impact of this invasive species on 

the benthic food web.  

    Individually, pH, salinity, temperature, conductivity, and TDS had virtually no influence 

on NZMS densities.  We can also view this information from the perspective that the 

NZMS is so well suited for a wide range of physical environments that they can proliferate 

unhindered across a wide range of environments. That is to say that the density of NZMS 

in Youngs Bay does not appear to be limited by the range of the abiotic parameters we 

measured.  

     We can conclude from this investigation that the mudsnail has indeed been 

incorporated into the food web of the benthic community in Youngs Bay.  Clearly, sample 

depth or transect site had no influence on NZMS density.  Also, we found that all the 

abiotic parameters measured had absolutely no effect on mudsnail density.  Further study 

will include constructing a food web of this community using stable isotope analysis and 

comparing the results with that of our reference site, Cathlamet Bay. SIA laboratory 
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analysis includes the carbon and nitrogen isotope values of these samples will be used in 

conjunction with gut content data and previously collected invertebrate and primary 

producer data to compile an integrated description of food web structure (Peterson and 

Fry 1987; Ilken, Brey et al. 2001).  Armed with this information, we will be able to better 

describe the effect of the invasive New Zealand mudsnail on this estuarine food web.          
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