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The Columbia River Littoral Cell (CRLC), a high-wave-energy littoral system, 

extends 160 km alongshore, generally north of the large Columbia River, and 10–15 

km in across-shelf distance from paleo-beach backshores to about 50 m present 

water depths. Onshore drill holes (19 in number and 5–35 m in subsurface depth) 

and offshore vibracores (33 in number and 1–5 m in subsurface depth) constrain 

inner-shelf sand grain sizes (sample means 0.13–0.25 mm) and heavy mineral 

source indicators (> 90% Holocene Columbia River sand) of the inner-shelf facies 

(≥90 % fine sand). Stratigraphic correlation of the transgressive ravinement surface 

in onshore drill holes and in offshore seismic reflection profiles provide age 

constraints (0–12 ka) on post-ravinement inner-shelf deposits, using paleo-sea level 

curves and radiocarbon dates. Post-ravinement deposit thickness (1–50 m) and 

long-term sedimentation rates (0.4–4.4 m ka-1) are positively correlated to the 

cross-shelf gradients (0.36-0.63 %) of the transgressive ravinement surface. The 

total post-ravinement fill volume of fine littoral sand (2.48x1010 m3) in the inner-

shelf represents about 2.07x106 m3 yr-1 fine sand accumulation rate during the last 

12 ka, or about one third of the estimated middle- to late-Holocene Columbia River 

bedload or sand discharge (5–6x106 m3 yr-1) to the littoral zone. The fine sand 

accumulation in the inner-shelf represents post-ravinement accommodation space 

resulting from 1) geometry and depth of the transgressive ravinement surface, 2) 

post-ravinement sea-level rise, and 3) fine sand dispersal in the inner-shelf by 

combined high-wave-energy and geostrophic flow/down-welling drift currents 

during major winter storms.  
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1 INTRODUCTION 

 

 Several factors combined to yield unusual depositional conditions in the 

Columbia River littoral cell (CRLC) inner-self (~160 km in length and ~10–15 km in 

width) during the Holocene (Figure 1) (Gelfenbaum and Kaminsky, 2010; Ruggiero 

et al., 2016). Historic dam impoundments on the Columbia River tributary system (< 

125 in number) have altered sediment supply to the lower Columbia River Valley. 

Early-historic (pre-impoundment) sediment supply was estimated to be 14 x106 m3 

yr-1 (Sherwood et al., 1990). High sand supply to the incised Columbia River Valley 

during middle- to late-Holocene time exceeded available accommodation space 

(Gates, 1994; Baker et al., 2010). Throughput of fine-size sand from the Columbia 

River to the littoral zone is estimated to have been ~5–6x106 m3 yr-1 after 8 ka 

(Peterson et al., 2013). High winter-wave-energy in the northeast Pacific Ocean 

(Hs=7–13 m) (Tillotsen and Komar, 1997; Ruggiero et. al., 1997) and extreme storm 

waves (H> 14 m) (Allan and Komar, 2002) precluded development of a delta at the 

mouth of the Columbia River. However, wide barrier spits and beach plains (0.5–4.1 

km in width) occur on either side of the Columbia River mouth (Ballard, 1964; 

Rankin, 1983; Peterson et al., 2010a).  The onset(s) of progradation in the wide 

barrier-spits and beach plains began in late Holocene time (3-5 ka) well after the 

slowing of marine transgression at 7–9 ka in middle Holocene time (Peterson et al., 

2010a; 2010b). In these regards the CRLC inner-shelf differed from some other 

high-wave energy shelf settings (Thom, 1984; Short, 1987) where transgressive 
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submergence of the shelf led to wave ravinement of pre-Holocene shelf deposits and 

shoreward transport of the remobilized pre-Holocene deposits to feed barrier and 

beach development in middle Holocene time. 

Fine sand dominates inner-shelf deposits of the CRLC, as established by 

surface grab samples and box cores (Runge, 1966; Venkatarathnam and McManus, 

1973; Nittrourer, 1978; Twichell et al., 2010). Large storm surf and wind-stress 

currents were predicted to sweep nearshore sand deposits both along the shelf 

(north) and across the shelf (offshore) in the CRLC system (Sternberg and Larsen; 

1976; Sternberg, 1986; Katchel and Smith, 1986). Offshore seismic-reflection 

surveys in the CRLC shelf identified the transgressive ravinement surface that was 

buried by 5–50 m of Holocene deposits in southern one half of the CRLC inner-shelf 

(Twichell and Cross, 2001; Twichell et al., 2010). The question arises whether 1) the 

Columbia River mouth and adjacent beaches were the sources of sand for the thick 

Holocene inner-shelf deposits or 2) remobilized pre-Holocene shelf deposits were 

the sources of sand for the wide barriers and beach plains? This study specifically 

addresses the relations between the origins of the onshore and offshore deposits in 

the CRLC system. These interpreted relations challenge previous assumptions about 

accommodation space in some high-wave-energy inner-shelves during marine 

transgressions. Specifically, how might post-transgressive inner-shelf 

accommodation space serve as net sink for littoral deposits that are episodically 

transported offshore? 

 In this study we combine onshore and offshore sediment composition and 

stratigraphic analyses for the first time in our ongoing investigations of Holocene 
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deposition in the CRLC system (Figure 1). Sand grain size and heavy mineral source 

indicators are compared between onshore and offshore deposits. The onshore 

transgressive ravinement surface, as previously radiocarbon dated in onshore drill 

holes (Vanderburgh et al., 2010), is stratigraphically correlated to the offshore 

transgressive ravinement surface, as previously interpreted in across–shelf seismic 

reflection profiles (Twichell and Cross, 2001; Twichell et al., 2010).  Estimated ages 

of the offshore transgressive ravinement surface are estimated from 1) elevations of 

the ravinement surface in offshore seismic reflection profiles and 2) established 

paleo-sea level ages from a local relative sea-level curve (Peterson et al., 2010b). 

Transgressive ravinement surface ages (0–14 ka) are used with radiocarbon ages of 

shallow deposits in onshore drill holes (1–8 ka) and offshore vibracores (0.6–9 ka) 

(Kaminsky, 2006) to bracket sedimentation rates in the inner-shelf during the 

middle- to late-marine transgression (~0–12 ka). Modeled paleo-wind and wave 

stress directions (0–21 ka) are compared to corresponding paleo-shoreline 

orientations to predict changes in net-alongshore transport in the inner-shelf during 

different time intervals of the marine transgression. 

The results from this integrated study of offshore and onshore inner-shelf 

deposits help to constrain the factors that controlled available accommodation 

space and partitioning of fine sand in the CRLC system during the Holocene marine 

transgression (Figure 1). The study results differ substantially from a standard 

model of transgressive stripping of unconsolidated sediments and/or wave 

remobilization and shoreward transport of pre-Holocene shelf sand , as previously 

found in some other USA west-coast shelves (Chin et al., 1997; Peterson et al., 2007). 
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Furthermore, these study results have important implications for high-wave-energy 

shelves responding to potential impacts of predicted global warming and sea level 

rise (Vermeer and Rahmstorf, 2009) by future increases in inner–shelf 

accommodation space. Such increases in inner-shelf accommodation space could 

serve as sinks for available littoral sand resulting in potential widespread beach 

erosion and associated shoreline retreat in some sediment-starved littoral systems. 

 

2   BACKGROUND  

 

The wide beach plains in the CRLC system (Figure 1) are characterized by 

regional episodic events of coseismic beach retreat (estimated 100–400 m retreat) 

and interseismic beach accretion (Meyers et al., 1996; Doyle, 1996; Peterson et al., 

2000). Interseismic accretion surpassed the episodic coseismic erosion, leading to 

net progradation rates of ~0.1–0.5 km ka-1 during late-Holocene time (Woxell, 1998; 

Peterson et al., 2010a). The innermost–shelf deposits (~2–8 ka in age) that underlie 

the prograded beach plains (~1–5 ka in age) do not display any evidence of regional 

catastrophic erosion or accretion, but rather amalgamated plane beds of 

homogenous fine sand (5–30 thickness) with storm shell-hash interbeds (Herb, 

2000; Vanderburgh et al., 2010; Peterson et al., 2010b). The sequential onset of late-

Holocene beach progradation (5 -to- 0 ka) was delayed with increasing distance 

downdrift (20–100 km) from the Columbia River mouth (Peterson et al., 2010a). 

The very-wide beach plains and barrier spits (3.0–5.0 km width) adjacent to the 

Columbia River mouth began to prograde by 4.5–5.0 ka (Rankin, 1983; Meyers et al., 
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1996; Woxell, 1998). By comparison, the narrow beaches (< 500 m width) in the 

northernmost CRLC (>100 km from the Columbia River mouth) are less than 0.5 ka 

in age (Peterson et al., 2010a) and they pinch-out seaward towards an eroded 

bedrock surface in the inner-shelf (Twichell et al., 2010). Seismic-reflection surveys 

of the central and southern CRLC shelf areas identified the transgressive ravinement 

surface that was buried by 1–50 m of interpreted Holocene fill (Twichell et al., 

2010).  

The relations outlined above suggest that littoral sand was supplied to the 

prograding beaches from the Columbia River mouth, by along-coast net littoral drift 

in the nearshore and inner-shelf (Peterson et al., 2010b), but not from the 

trasnsgressive remobilization of pre–Holocene shelf deposits. A deeply-buried 

transgressive ravinenment surface (> 30 m depth subsurface) is interpreted from 

some across-shelf seismic reflection surveys in the CRLC system (Twichell and 

Cross, 2001). Unlike the pre-Holocene deposits in the south-central Oregon shelf 

(Figure 1) that served as the primary source of sand to adjacent beaches and dune 

fields during the middle- to late-Holocene transgression (Scheidegger et al., 1971; 

Peterson et al., 2007), the CRLC shelf served as a major sink of littoral sediment 

(~79 km3) during the marine isotope stage 1 (MIS1) transgression (Twichell et al., 

2010). What, therefore, were the factors that permitted the CRLC inner-shelf to 

serve as a major sink of littoral sand during the middle- to late-Holocene 

transgression?  

 Modern bathymetric profiles reported for the inner-shelf by Buijsman et al. 

(2003) and Kaminsky (2006) show relatively little variation between the four 
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subcells, including NOS1 (North Beaches), NOS04 (Grayland Plains), NOS5 (Long 

Beach Peninsula) and SL23 (Clatsop Plains) (Figure 2 Part A).  Though the 

appropriate use of ‘equilibrium’ inner-shelf profiles can be debated (Brunn, 1962; 

Dean 1991; Pilkey et al., 1993) the apparent similarities in the four profiles suggest 

a relatively uniform dispersal of recent deposits in much of the CRLC system. The 

high-wave energy (up to 15 m wave height) (Ruggiero et al., 1997; Allan and Komar, 

2002), accounts for modern sand deposits (>75% fine sand) extending to 40–60 m 

water depth in most of the CRLC system (Figure 2 Part B).  This sand deposit grades 

texturally seaward to a mid-shelf mud lens that extends north of the Columbia River 

mouth (Nittrouer, 1978). Seasonally reversing wind and wave directions (from 

northwest in summer and southwest in winter) are important in influencing 

nearshore sediment dispersal in the region (Peterson et al., 2009; Ruggiero et al., 

2916). However, major winter storms are reported to be the dominant factors in 

sand transport in the inner-shelf (net northward transport) and across-shelf (net 

offshore transport) due to combined wave oscillatory currents, geostrophic flow 

and offshore downwelling (Smith and Hopkins, 1972; Sternberg, and Larsen, 1976; 

Sternberg, 1986; Kachel and Smith, 1986). Relative to the latest-Holocene ‘high-

stand’ conditions, little is known about CRLC shelf sedimentation during the early-

to-middle Holocene time (10 to 5 ka) when the inner-shelf area was transgressed by 

rapid sea level rise (Figure 2 Part C). In this article we address the sources, 

sedimentation rates, and transport mechanisms that deposited sand in the CRLC 

inner-shelf during the last ~12 ka.    
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3   METHODS 

 

 Data from several studies were used to assemble the alongshore and across-

shelf transects of inner-shelf sediment composition used in this research 

(Supplemental Table 1). These transects are used to constrain the length, width, 

depth and ages of the Holocene inner-shelf deposits in the CRLC system. Seventeen 

modern beach sites between the Nehalem and Quillayute Rivers (Figure 1) are 

characterized by their beach/barrier width, slope, and sand composition (Peterson 

et al., 1994). Samples from the modern beach faces were analyzed for mean and 

standard deviation of sand grain size on the basis of mechanical sieving at 0.25 phi 

intervals. In this study the beach sand samples were further analyzed for their 

relative abundances of two pyroxene minerals of similar shape and density: 

hypersthene and augite. The ratios of the pyroxene minerals in heavy mineral sand 

fractions discriminate between sources of sand to the CRLC system, including the 

local coastal drainages, which are augite rich, and the Holocene Columbia River 

sediments, containing both hypersthene and augite (Scheidegger et al., 1971; 

Scheidegger and Phipps, 1976). The heavy mineral separates (≥3.0 g cm-3 density) 

were analyzed for pyroxene minerals (~300 grains total) under polarizing 

microscopy at 250x. Across inner-shelf transects are based on 1) shelf facies under 

prograded barrier and beach plains, as sampled in onshore drill holes (Herb, 2000; 

Vanderburgh et al., 2010; Peterson et al., 2010b), 2) selected surf zone vibracore 

samples, as first published here, 3) selected offshore vibracore core samples 

(Kaminsky, 2006), and 4) offshore surface grab sample data as reported by 
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Scheidegger et al. (1971), Venkatarathnam, and McManus (1973) and Twichell and 

Cross (2001) (Figure 3).  

Data from five of the across-shelf transects (L11, L41, L36, L33, L23) and two 

drill holes (DHwest1 and DHoyst) are compiled to establish downcore (onshore) 

and across-shelf trends in inner-shelf sand grain size and sediment provenance 

(Figure 3). Sediment size fractions in onshore and offshore shelf samples were 

measured by sieving at the 2.0 mm and 0.062 mm screen sizes to discriminate the 

gravel, sand and silt/clay (mud) size fractions. Sand size fractions were analyzed for 

mean and standard deviation of sand grain size at 0.25 phi intervals (Peterson et al., 

2010b; Kaminsky, 2006). Onshore shelf deposit sequences were previously 

analyzed for sand source provenance using augite and hypersthene mineral ratios 

(Peterson et al., 2010b). Across-shelf indicators of sand provenance in the CRLC 

shelf are based on factor loadings for augite-rich and hypersthene-rich end-member 

factors, as reported for shelf surface grab samples (Scheidegger et al., 1971; 

Venkatarathnam, and McManus, 1973). In this study the ratios of the factor loadings 

for the augite-rich and hypersthene-rich factors in the shelf grab samples, as 

reported by Scheidegger et al. (1971) and  Venkatarathnam, and McManus (1973), 

are used to represent sediment provenance in the nearest shelf vibracore sites, 

sampled by Kaminsky (2006).  

Twelve transects, spaced at about 10 km distances along the shelf (north to 

south), include onshore drill holes, offshore seismic profiles, and offshore 

vibracores. The 12 transects are utilized for stratigraphic correlation of the 

transgressive ravinement surface and estimates of sedimentation rates in the CRLC 
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inner-shelf (Figure 3). Stratigraphic correlations of the dated onshore transgressive 

ravinement surface (Vanderburgh et al., 2010) and interpreted offshore ravinement 

surface (Twichell and Cross, 2001; Twichell et al., 2010) are based on similarity of 

depth, slope, and continuity of the reported ravinement surface. Details about the 

identification of the transgressive ravinement surface are presented in Herb (2000), 

Vanderburgh et al. (2010), and Twichell and Cross (2001). Offshore deposit surface 

depths and transgressive ravinement surface depths were taken from seismic 

profile stations (S), spaced at about two kilometer intervals across the inner-shelf 

(east to west) to at least the 50 m water depth. Two-way travel times of 750 and 800 

m/s, respectively, were used to estimate the modern water depth and the Holocene 

deposit subsurface depths above the transgressive ravinement surface in the 

offshore seismic profiles at the vibracore sites (V) and the seismic profile stations 

(S) . Assuming a lowest frequency of 500 Hz and a 1600m s-1 seismic velocity, then a 

one half wave length (~1.5 m) depth resolution is estimated for the offshore 

transgressive ravinement surface.  Subsurface depths, relative to sea level, are 

adjusted to elevation (m) NAVD88 for both the offshore and onshore shelf deposit 

records. The 0 m NAVD88 datum is about one meter below mean sea level in the 

study area. The onshore borehole elevation control using LIDAR was estimated to be 

± 0.5 m NAVD88 at the time of the study (Daniels, 2001).   

 

4   RESULTS 

 

4.1   Distribution and composition of beach and inner-shelf deposits 
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 The widths of late Holocene beach, barrier and beach plain deposits vary 

greatly from 30 m to at least 4100 m in across-shore distance in the study region 

(Supplemental Table 3; Figure 4). Wide beach deposits (>300 m width) only occur 

between Point Grenville, WA and Seaside, OR. The largest barriers and beach plains 

(>1500 m in width) in the study area are asymmetrically distributed on either side 

of the mouth of the Columbia River in the Long Beach and Clatsop subcells. Mean 

grain sizes of the modern beach samples are generally in the fine sand size (<0.25 

mm). Mean grain size values of modern beach samples increase substantially (0.50–

1.73 mm) north of Kalaloch, WA. The abrupt increase in grain size coincides with the 

locations of several large coastal river mouths, including those of the Queets, Hoh, 

and Quillayute Rivers.  

The ratios of pyroxene minerals, hypersthene and augite, in modern beach 

deposits are used to distinguish between Holocene sand supply from the Columbia 

River (hypersthene-rich) and the local coastal rivers (hypersthene-poor) 

(Scheidegger et al., 1971; Scheidegger and Phipps, 1976; Peterson et al., 2010b). 

High hypersthene:augite ratios (0.65–0.9) occur between Whale Cove, WA and 

Seaside, OR, establishing dominant sand supply from the Columbia River during late 

Holocene time (Supplemental Table 2; Figure 4). The correlative relations of 1) wide 

beaches, beach plains and barrier spits, 2) fine sand grain size, and 3) high 

hypersthene:augite ratios, establish the alongshore extent of the CRLC system (CRLC 

study area) in onshore deposits, between Seaside, OR, and Point Grenville, WA. 

Some Holocene Columbia River sand has been transported north, around Point 
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Grenville, WA, reaching at least Kalaloch, WA, located 160 km north of the Columbia 

River mouth.  

 Shelf deposit textural data from onshore drill holes in the barrier and beach 

plains (Figure 3) are summarized from representative intervals of the shelf facies 

(6–30.5 m subsurface depth) that underlie the shallow beach facies (Supplemental 

Table 3). One drill hole DHwest1 is located adjacent to the Grays Harbor tidal inlet, 

which has gravelly-sand interbeds, such as at 14 m depth (32 percent gravel and 63 

percent sand) (Peterson and Phipps, 1992). One drill hole DHoyhu1 from the 

opposite (north) side of the Grays Harbor tidal inlet contains minor gravel (1–5 

percent gravel) at depths of 6.4 and 10 m. Samples located above the Holocene 

ravinement surface in drill holes located south of DHwest1 contain only sand and 

mud.  

The relative abundances of sand (84–98 percent sand total range) and the 

mean grain size of the sand fractions (0.16–1.14 mm total range) in onshore shelf-

facies samples (Supplemental Table 3) slightly decrease in the middle-shelf facies 

intervals relative to the lower- and upper-shelf facies intervals. The small changes in 

textural compositions downhole are interpreted to reflect changing water depths 

between post-ravinement transgression and upper shoreface progradation in the 

innermost-shelf (Peterson et al., 2010b). The mean size and standard deviation of 

mean grain size for 20 samples with ≥ 84 percent sand in the drill hole shelf facies 

are 0.22±0.6 mm. Mineral tracer data for the innermost-shelf deposits are 

summarized for upper, middle and bottom samples from three drill holes DHwest1, 

DHoyst, and DHsuns, respectively in the Grayland, Long Beach, and Clatsop subcells 
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(Figure 3). Hypersthene:augite ratios in samples from the three onshore drill holes 

range from 0.6 to 0.8 for nine samples, demonstrating a dominant sand source from 

Holocene Columbia River sand supply. The average and standard deviation of 

hypersthene:augite ratios for the 9 drill hole samples (6.3–30.5 subsurface depth) 

are 0.75±08. Mineral source analyses in one drill hole DHwest1, at the mouth of 

Grays Harbor, extended well below the ravinement surface to -51.1 m elevation in 

estuarine deposits. A radiocarbon date on an adjacent drill hole (GH02) located 2.3 

km east of DHwest1, provided a date of 10,600±460 cal yr BP (Beta#20282) at a 

depth of -51.5 m elevation (Peterson and Phipps, 1992). Hypersthene:augite ratios 

of 0.8–0.9 in DHwest1 occurred between -34.5 m and -51.1m elevation in the tidal 

inlet/flood tide delta deposits of Grays Harbor, demonstrating dominant sand 

supply from the Columbia River to the Grays Harbor embayment since ~10 ka.  

Representative offshore vibracore samples from 2-4 m depth subsurface are 

compared for relative sand and mud abundances and mean grain-sizes (total 

sample) in five across-shore transects (Supplemental Table 3; Figure 5). Twenty-

five of the 27 samples from ≤50 m water depth contain >90 percent sand. Two 

samples from ≥60 m water depth (V901 and V902) encountered the mid-shelf mud 

lens (>25 percent mud) north of the Columbia River mouth, as mapped by Nittrouer 

(1978). In this paper we define the modern inner-shelf facies on the basis of >90 

percent sand, which extends to the 40–50 m modern water depth, or about 10 km 

distance seaward of the shoreline in the across-shelf transects. Mean sediment grain 

size in the offshore vibracore samples generally decreases with increasing water 

depth from the surf zone (0.20–0.25 mm) to the 40–50 m water depth intervals 
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(0.13–0.17 mm). The average and standard deviation values of mean grain size for 

24 vibracore samples in the inner-shelf (≤50 m water depth) are 0.18±0.04 mm and 

for 17 samples from the innermost-shelf (≤25 m water depth) they are 0.19±0.03 

mm. Because grain size analyses of the inner-shelf vibracores (Kaminsky, 2006)  

were based on total samples, i.e. sand and small abundances of mud, the total 

sample mean grain size slightly underestimates the mean size of the sand fraction in 

some of the shelf vibracore samples.  

 Mineral tracer proxies for sand source supply to shelf surface deposits are 

based on multivariate factor loadings for hypersthene-rich factors and augite-rich 

factors, as previously reported for heavy mineral assemblages in shelf grab samples 

(Supplemental Table 3). The hypersthene rich-factors correspond to Holocene sand 

supply from the Columbia River (Scheidegger et al., 1971; Baker et al., 2010).  The 

augite-rich factors are associated with sand supply from 1) pre-Holocene Columbia 

River bedload (Baker et al., 2010) and 2) coastal rivers and/or glacial outwash 

deposits located north of Grays Harbor (Figure 4) (Venkatarathnam and McManus, 

1973; Scheidegger and Phipps, 1976). Normalized ratios of the hypersthene and 

augite factor loadings in the nearest grab samples that are located along the five 

transects (Figure 5) range from 0.3 to 0.8. The inner-shelf samples (≤50 m water 

depth) from the three central transects (L41, L36, L33) are dominated by Holocene 

Columbia River sand supply (factor loading ratios 0.8). 

 

4.2   Stratigraphic correlation between onshore and offshore ravinement surface 
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 Correlations of the onshore and offshore parts of the transgressive 

ravinement surface are established from the depth, slope and continuity of the 

ravinement surface in both onshore drill hole logs and offshore seismic reflection 

profiles. One representative cross-section L33 from the middle of the study area 

(Figure 3) is presented to show the correlation between onshore and offshore 

records of the transgressive ravinement surface (Figure 6 ).  Two additional cross-

sections, L41  AND L23, respectively from the north and south parts of the study 

area, are included in Supplemental Materials (Supplemental Figures 1, 2). Those 

cross-sections include reflections from low-stand or latest Pleistocene erosional 

surfaces that predate the Holocene transgressive sequences (Twichell and Cross, 

2001; Twichell et al., 2010; Herb, 2000; Vanderburgh et al., 2010). 

 The onshore transgressive  ravinement surface in DHoyst (dated at ~8.3 ka) 

is correlated to the offshore ravinement surface that substantially deepens to at 

least -50 m elevation within 5.0 km distance offshore of the present shoreline in 

seismic profile L37 (Figure 6). The vertical seismic profile stations (S) represent 

locations on the seismic profile (line) that are chosen arbitrarily at about a two 

kilometer spacing, starting at the easternmost end of the profile at S1. The overlying 

(post-transgressive) sediment deposit at S3 (5.7 km offshore distance in L37) is 

estimated to be 22 m in thickness. The onshore post-ravinement shelf deposit in 

DHoyst (-6.3 to -21.6 m elevation) contains relatively uniform fine sand 

(Supplemental Table 3) and fine sand is assumed for the inner-shelf facies in the 

offshore profile stations S1, S2 and S3 along the seismic profile L37. The 

compositions of the prograded beach and dune ridge sand deposits in the onshore 
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drill holes are not distinguishable from the underlying shelf facies, except by ground 

penetrating radar reflections, which do occur in the beach and dune facies but not in 

the shelf facies (Jol et al., 1996; Peterson et al., 2010a,b). In this article the beach and 

dune sand are not differentiated from shelf sand in onshore drill hole stratigraphic 

sections, but the 0 m elevation datum generally separates the overlying beach facies 

from the underlying shelf facies in the onshore cross-section areas (Peterson et al., 

2010b). 

 

4.3    Inner-shelf cross-sections from twelve transects in the CRLC system 

  

 Twelve inner-shelf cross-sections are constructed from combinations of 

onshore drill hole records, offshore seismic profiles and shallow vibracores (Figure 

3). The four northernmost cross-sections (L3, L5, L7, L11) are characterized by little 

to no offshore deposition above the transgressive ravinement surface 

(Supplemental Figure 3). Three cross-sections from the north-central area of the 

CRLC system (L41, L46, L37) show a southward deepening of the transgressive 

ravinement surface and correspondingly thicker overlying inner-shelf deposits (5-

30 m thickness) relative to the northern cross-sections (Figure 7 and Supplemental 

Figure 4). The northernmost and shallowest part of the transgressive ravinement 

surface in the three north-central transects occurs in cross-section L41, where basal 

deposit radiocarbon ages of 6.8, 8.0 and 5.1 ka, respectively, were obtained in 

vibracore sites V502 (-14.5 m elevation), V503 (-35 m elevation), and V504 (-43.6m 

elevation) (Supplemental Table 4). Sea level estimated ages for the corresponding 
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transgressive surface are 1–5 ka older than the reported basal deposit radiocarbon 

ages, suggesting time lags in net sedimentation after ravinement by the marine 

transgression.  

Two cross-sections from the south-central area of the CRLC system (L36 and 

L33) show a further southward deepening of the transgressive ravinement surface 

and thickening of overlying inner-shelf deposits with increasing proximity to the 

ancestral Columbia River valley (Figure7 and Supplemental Figure 5). The inner-

shelf deposits reach ~50 m thickness above the transgressive ravinement surface at 

V306 and V307, respectively, at distances of 8.7 and 11.1 from the present shoreline 

in cross-section L33. The most landward drill hole in cross-section L33, DHmchu, 

terminated in well-sorted fine sand at -9 m elevation, which occurs below a bay mud 

(6.0 ka in radiocarbon age). The basal fine sand (39.3 ka in age) (Smith et al., 1999) 

was deposited well above the low-stand paleo-sea level, about -50 m elevation at 40 

ka (Pirazzoli, 1993). The late Pleistocene fine sand deposit in DHmchu is interpreted 

to be an eolian dune deposit that originated from eolian transport across the 

emerged inner-shelf during latest Pleistocene time, as found for similar late-

Pleistocene dunes in the central Oregon coast (Figure 1) (Peterson et al., 2007). 

However, the thickness/elevation of the dune sand in DHmchu is trivial by 

comparison to the very-large late-Pleistocene dunes in the central Oregon coast. 

 Three cross-sections from the southernmost area of the CRLC system (L24, 

L23, L19) show shallowing depths of the transgressive ravinement surface and 

thinning of overlying inner-shelf deposits with distance south of the ancestral 

Columbia River valley (Figure 7 and Supplemental Figures 6 and 7 ). The inner-shelf 
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deposits overlying the transgressive ravinement surface in the southernmost cross-

section (L19) thin substantially seaward the inner-most shelf even though 

ravinement surface depths deepen from -36.5 m elevation to -56.3 m elevation over 

the  intervening 7.0 km distance. In this regard the southernmost cross-section 

(L19), located south of the ancestral Columbia River valley (Figure 3) differs from 

cross-section L33, located north of the Columbia River valley, where thick inner-

shelf deposits overlie a deep part of the transgressive ravinement surface. Samples 

in vibracores (~ 5 m depth subsurface) at sites V104 and V105, respectively, in 

cross-section L23 provided radiocarbon dates of 5.4 and 5.7 ka (Supplemental Table 

4). The onshore drill hole DHsuns demonstrates a vertical accumulation of about 10 

m of inner-shelf sand facies during the time interval 2.6–4.3 ka.  

  

5   DISCUSSION 

 

Analyses of sand grain size and heavy mineral source indicators in modern 

beach samples and shelf vibracore samples (1–5 m depth subsurface) from the CRLC 

inner-shelf (Figures 4 and 5) establish the longshore extent (~160 km) and across-

shelf extent (~10 km) of the active Columbia River littoral system, between Point 

Grenville to the north and Tillamook Head to the south. The substantial overlaps 

between mean sand grain sizes in modern beach deposits (sample means 0.15–0.27 

mm) and in offshore vibracore samples from the inner-shelf (sample means 0.13–

0.25 mm) demonstrate a broad interconnected littoral zone (0–50 m water depth) 

in the high-wave-energy CRLC system (Supplemental Tables 2 and 3). Onshore drill 
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hole sections in inner-shelf facies (1–30 m in thickness and 0–8 ka in age) serve as 

proxies for offshore post-ravinement inner-shelf deposits (1–50 m in thickness and 

1–12 ka in estimated age) (Figure 7) in terms of sand source (Columbia River 

bedload or fine sand discharge) and textural composition (≥90 weight percent fine 

sand). In this section we address the conditions of inner-shelf geometry, post-

ravinement sea level rise, fluvial sand discharge, and changing wind/wave stress 

climates that permitted such substantial thicknesses of littoral sand to have been 

deposited in the high-wave-energy CRLC inner-shelf during the last ~12 ka. 

 

5.1   Onshore and offshore geology of the CRLC system 

 

 The coastline of the CRLC study area is embayed at the mouths of the 

Columbia River, Willapa Bay, and Grays Harbor estuaries (Figure 8). The incised 

valleys of the Columbia River and Chehalis River originate east of the Coast Range 

and connect with the Astoria and Grays Canyon heads at the shelf break. The low-

stand surface indicates that the Columbia River traversed the shelf to the head of the 

Astoria Canyon (Figure 9) (Twichell et al., 2010). The small Willapa River occurs in 

an ‘over-fit’ valley that might have sourced east of the Coast Range in latest Tertiary 

time and might have connected with either the Willapa or Guide Canyon during past 

Quaternary low-stands. Across-shelf river valley incisions locally lowered the low-

stand surfaces in the inner-shelf, particularly in the vicinity of the ancestral 

Columbia River valley (see further discussion about downcut inner-shelf 

topography below). 
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The three inland river valleys formed by the Columbia, Willapa and Chehalis 

rivers are associated with recessed inland surface exposures of late Tertiary 

formations (Figure 8) between transects L11 and L19 (Walsh et al., 1987; Dragovich 

et al., 1987). Indurated bedrock of possible Miocene age (Logan, 2003) is exposed in 

the modern sea cliff at 5-8 m elevation in transect L5. Bedrock is exposed offshore in 

the sea floor of the innermost-shelf in transects L3, L5 and L7, as imaged by sidescan 

sonar (Twichell and Cross, 2001). The only bedrock exposed in sea and bay cliffs in 

the central area of the CRLC is from a small erosional remnant of resistant basalt at 

North Head, located north of the of the Columbia River mouth. The exposures of 

bedrock in sea cliffs at the north and and south bounding headlands, respectively 

Point Grenville and Tillamook Head, are not due to differential Quaternary tectonic 

uplift, which is relatively uniform (~1.0 m/10,000 yr) along the CRLC coastline 

(Peterson and Cruikshank, 2014). Pleistocene estuarine terraces of locally 

anomalous height (~40 m elevation) are mapped 1.5-2.5 km landward of the 

present shoreline in transects L41 and L46 (Walsh et al., 1987). They are possibly 

associated with a localized fault zone (McCrory et al., 2002). Even these highest 

Quaternary terraces do not show any evidence of late Miocene/Pliocene ‘bedrock’ 

units at the base of the abandoned sea cliffs or in shallow drill holes (reaching -10 to 

-20 m elevation) in the prograded beach plains that front the uplifted terraces 

(Herb, 2000; Vanderburgh et al., 2010).  

In summary, Quaternary fluvial downcutting of resistant bedrock in the 

central and southern areas of the CRLC inner-shelf contrasts with shallow bedrock 

surfaces in the northern area of the CRLC system. It is not known to what extent the 
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river valleys might have been guided by pre-existing structural controls. At the 

regional scale it is apparent that the three river valleys occur in the lowest part of 

the uplifted North Coast Range (300–500 m ridge crest elevations) between the 

Olympic Mountains (1000–1500 m ridge crest elevations) located ~ 75 km north of 

Grays Harbor and the Tillamook Mountains (700–900 m ridge crest elevations) 

located ~ 75 km south of the Columbia River (Figure 1). The geometric complexity 

of the CRLC inner-shelf is not unique in the study region, as onshore incised river 

valleys and offshore bedrock banks, bights and pinnacles are present along the coast 

and in inner-shelf settings located north and south of the CRLC study area 

(McManus, 1964; Runge, 1966).  

Evidence of latest Pleistocene alluvial/outwash deposits (Walsh et al., 1987) 

crossing the non-incised northernmost inner-shelf during low-stand conditions are 

shown by 1) onshore gravelly sand deposits in sea cliff exposures (5–20 m 

elevation) at DHmocl (transect L3) and DHroos (trasnsect L5) (Supplemental Figure 

3) and 2) offshore re-worked gravelly sand deposits in the inner- and mid-shelf, 

located north of transect L11 (Twichell and Cross, 2001). No surface gravel deposits 

are reported for the inner- and mid-shelf areas south of transect L11, likely due to 

burial by post-transgressive mid- to late-Holocene deposits. 

Outer-shelf gravelly sand deposits (-150 to -200 m elevation) are reported for much 

of the CRLC shelf study area (Twichell et al., 2010). The age(s) and depositional 

settings(s) of the relict outer-shelf gravels are not reported. 

 

5.2   Geometries of low-stand surfaces and the transgressive ravinement surface  
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 Reconstructed contours of the late-Pleistocene low-stand surfaces and the 

Holocene transgressive ravinement surface are shown for the CRLC inner-shelf 

(Figure 9) (Twichell et al., 2010; Vanderburgh et al., 2010). Offshore transgressive 

ravinement surface contours generally coincide with the low-stand surface 

contours, except in deeply incised valleys of the Columbia and Chehalis Rivers. Pre-

ravinement sediment accumulation in the inner-shelf was largely restricted to the 

deeply incised river valleys (Peterson and Phipps, 1992; Twichell et al., 2010; 

Peterson et al., 2013). Here we focus on post-ravinement accommodation space in 

the inner-shelf.  

The deeper contours of the transgressive ravinement surface (-30 to -80 m 

elevation) show paleo-shoreline orientations that generally trend slightly west of 

north in the CRLC inner-shelf (Figure 9). The -40 m elevation ravinement surface 

contour in the northernmost area of the inner-shelf has an average trend of 350°. 

The trend of the -40 m contour changes to 335° in the north-central area of the 

inner-shelf, between Willapa Bay and Grays Harbor and to 345° in the northernmost 

area, located between Grays Harbor and Point Grenville. Such paleo-shoreline and 

inner-shelf orientations could have reduced northward littoral drift by paleo-storm 

wind stress and surf that arrived from the southwest during lower sea level stands. 

The paleo-shoreline orientation in the southernmost area of the CRLC inner-shelf is 

much less oblique to true north, averaging about 355°.  

The transgressive ravinement surface and the modern depositional surface 

in the CRLC inner-shelf are plotted for the 12 transect cross-sections (Figure 10). 
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The transgressive ravinement surface in the northernmost area of the inner-shelf 

(transects L3, L5, L7 and L11) is relatively shallow in across-shelf gradient, reaching 

only -25 m elevation at 5.0 km distance from the present shoreline. It is to be noted 

that the shallowest parts of the transgressive ravinement surface, in transects L3, L5 

and L7, are associated with seafloor bedrock exposures in the northernmost inner-

shelf (Supplemental Figure 3). The transgressive ravinement surface from the 

central and southern transects (L37, L36, L33, L24, L23 and L19) is steeper in 

across-shelf gradients, ranging from -45 m to -60 m elevation at 5.0 km distance 

from the present shorelines (Table 1). The transect (L33) displays the deepest 

transgressive ravinement surface, located just north of the ancestral Columbia River 

Valley.  

The modern depositional surface in the 12 inner-shelf transects is relatively 

uniform in across-shelf gradients, ranging from -20 to -30 m in elevation at 

distances of 5.0 km from the present shoreline (Figure 10). The two exceptions are 

1) transect L19, which shows a deeper modern surface depth of -40 m elevation at 

5.0 km distance from the present shoreline, and 2) transect L24, which shows a 

shallower modern surface at -15 m elevation at 5.0 km distance from the modern 

shoreline. Regarding the anomalous deepening of the modern surface in transect 

L19, either recent sediments are not reaching the seaward part of transect L19 or 

recent deposits are being eroded and transported north of the southernmost 

transect in the CLRC inner-shelf. In contrast, the anomalous shallowing in transect 

L24 likely reflects abundant sand supply to the inner-shelf that is located offshore of 

the Columbia River mouth (Figure 3). The northernmost transects L3, L5 and L7 are 
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not included in this surface deposit analysis, due to the lack of deposition above the 

bedrock and/or gravel transgressive surface in the northernmost area of the CRLC 

inner-shelf (Figure 8).  

 

5.3   Accommodation space in the CRLC inner-shelf 

 

The differences in elevation between the transgressive ravinement surface 

and the overlying depositional surface in the transect cross-sections (Figure 7) 

represent the post-ravinement accumulation of fine sand, derived from Holocene 

Columbia River sand discharge to the CRLC system. Plots of transgressive 

ravinement surface elevations and corresponding inner-shelf deposit thicknesses 

are shown for representative offshore distances (0±1 km, 5±1 km, 10±1 km) from 

the present shoreline (Figure 11). At the intermediate distances of 5±1 km offshore 

of the present shorelines the deepest part of the transgressive ravinement surface (-

41 to -55 m elevation) accumulated 21–39 meters of sand, whereas the shallowest 

part of the ravinement surface (-17 to -22 m elevation) yielded only 0–4 m of 

vertical sand accumulation. Wave and current energies in the middle inner-shelf of 

the northernmost transects (L3, L5, L7 and L11), with a shallow transgressive 

ravinement surface of > -23 m elevation, were too high (shallow) to permit long-

term sand deposition. As previously noted, transect L19 accumulated thinner post-

ravinement deposits (~10 m thickness) in the middle area of the inner-shelf, 

relative to nearby transects (L23, L24, L33) that accumulated ≥ 20 m deposit 

thicknesses near the ancestral Columbia River valley. 
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The post-ravinement deposition in the CRLC transects (Figure 7) represents 

the accommodation space that was filled by fine sand in the inner-shelf.  The filled 

accommodation space, as measured for transect cross-section areas (combined 

onshore and offshore), normalized to 1.0 m alongshore distance and 1.0 km across-

shelf distance, are plotted against corresponding mean gradient (slope %) of the 

transect transgressive ravinement surface (Table 1; Figure 12). Whereas shallow 

gradients of 0.36–0.41 % yielded ~0–3400 m3 m-1 km-1 of normalized 

accommodation space the steeper gradients of 0.44–0.63 % yielded 13,800–33,000 

m3 m-1 km-1 of sand-filled accommodation space. The greater inner-shelf 

accommodation space in the central and southern transects resulted from their 

steeper transgressive ravinement surface gradients. The gradient(s) of the modern 

depositional surface in the CRLC inner-shelf (~0.38 %) (Figure 2 Part A) likely 

represent the depositional gradient limit for available accommodation space of fine 

sand under recent conditions of available sand grain size, sea level, and wave/wind-

stress in the CRLC system.  Smaller gradients would likely 1) export sand onshore, 

leading to upper-shoreface progradation, 2) export sand along-shelf and out of the 

local littoral system, and/or 3) aggrade the local inner-shelf vertically with 

increasing sea level rise. 

 

5.4   Post-ravinement sedimentation rates in the CRLC inner-shelf 

 

 Long-term post-ravinement sedimentation rates in the CRLC inner-shelf are 

based on age and elevation differences between the transgressive ravinement 
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surface and radiocarbon dated samples in deposits that are at or just above the 

ravinement surface (Figure 7; Supplemental Table 4). We compare estimated ages of 

the transgressive ravinement surface using 1) relative sea level ages for 

corresponding ravinement surface elevations and 2) radiocarbon dates of basal 

deposits within ± 1.5 m of the ravinement surface (Figure 13). It was found that the 

ravinement surface radiocarbon ages substantially post-date the sea level curve 

ages of transgressive ravinement in the northern transects (L3, L7 and L11), where 

the post-ravinement deposits are very thin. In the central and southern transects 

the transgressive ravinement deposit ages are closer to the sea level curve ages of 

ravinement, however discrepancies between the two methods are still on the order 

of 1–4 ka. Radiocarbon dates from deposits that were truncated by the transgressive 

ravinement surface are expected to pre-date the truncating ravinement ages. 

Deposits that immediately overlie the transgressive ravinement surface could 

include remobilized materials that would also pre-date ravinement ages. However, 

the time lags between transgressive ravinement and net deposition, as shown by the 

northern transects, could represent the greatest errors in dating the transgressive 

ravinement surface by nearest sample radiocarbon dates. In this article we follow 

Twichell et al. (2010) in using paleo-sea level curve ages for ravinement surface 

ages of corresponding elevations. Potential errors associated with continued 

ravinement surface erosion 1-2 m below mean sea level (MSL) are small relative to 

rates of sea level rise in early and middle Holocene time (Figure 2 C). 

In this research we use corresponding sea level ages of the bounding 

transgressive ravinement surface and much younger radiocarbon dated samples 
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from overlying deposits in corresponding sites to estimate long-term sedimentation 

rates in the central and southern inner-shelf transects. The sea level curve age 

estimates of the corresponding ravinement surfaces represent maximum ages of the 

onset of sedimentation, due to potential delayed deposition, and are therefore 

conservative for calculating sedimentation rates. Estimated long-term 

sedimentation rates for sections spanning 4–13 ka in age from the central and 

southern transects of the CRLC inner-shelf are compiled in Table 2. The long-term 

sedimentation rates range from 0.4 to 4.4 m ka-1 in offshore transects that contain a 

continuous cover of post-ravinement deposits. The lowest offshore sedimentation 

rates presented here (0.4-0.9 m ka-1) occur in the northern transect (L41) which 

contained a thin cover (~5 m thickness) of Holocene sand deposits (Figure 7). The 

highest offshore sedimentation rates (3.0–4.4 m ka-1) occur in transects L33, L24, 

and L23 were post-transgressive deposits are the thickest (25–50 m thick) (Figure 

7). These transects contain the deepest areas of the transgressive ravinement 

surface, relative to across-shelf position, due to their locations on either side of the 

deeply-incised ancestral Columbia River valley. Long-term sedimentation rates in 

the onshore shelf facies (1.0–4.1 m ka-1) that were sampled in drill holes are similar 

to their offshore counterparts in corresponding across-shelf transects. Due to the 

long time span sections that were dated above the offshore transgressive 

ravinement surface it is not possible to discriminate between factors other than 

ravinement surface gradient that might have influenced long-term sediment rates in 

the inner-shelf.  Such additional factors might include changing rates of 1) sea level 
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rise, 2) landward transgression of the shoreline, and 3) changing rates of river sand 

supply to the littoral zone, among others. 

Recent short-term sedimentation rates in the CRLC inner-shelf are available 

from offshore vibracores that span the latest Holocene (Kaminsky, 2006). These 

short-term records are associated with conditions of 1) a low rate of net-sea level 

rise (~0.75 m ka-1) (Figure 2 Part C), 2) stable or  net-prograding shorelines 

(Woxell, 1998), and 3) substantial sand discharge from the Columbia River (5–6 

x106 m3 yr-1) (Peterson et al., 2013). The latest Holocene interval spans multiple 

cycles of coseismic subsidence and interseismic uplift (5 cycles in 2.5 ka) in the 

study region (Peterson et al., 2010a). In this article we select sedimentation 

intervals (≥ 1.0 ka) that include at least two interseismic-uplift cycles. Short-term 

sedimentation rates from latest Holocene sections (0–3.0 ka) in offshore transects 

are shown in Table 3. Recent short term sedimentation rates in the inner-shelf range 

from 0.1 to 4.1 m ka-1. The mean short-term sedimentation rate (1.9±1.5 m ka-1, 

N=14) in the selected core sites is significantly higher then the rate of net-sea level 

rise, during the last 2.5 ka.  

The locally high rates of recent vertical accumulation in some shallow sites in 

the innermost-shelf are thought to reflect relatively rapid sedimentation from 

upper-shoreface progradation in latest-Holocene time (Peterson et al, 2010a,b). 

However, the high recent short-term rates demonstrated in some deeper sites (≥ 15 

m water depth) are apparently the result of recent sand deposition in offshore areas 

that are located down-drift of the ebb-tide deltas at the mouths of the Columbia 

River and Grays harbor (Figure 14). For example, maximum recent short-term 
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sedimentation rates (2.3–4.1 m ka-1) occur in the northern transect L11, located 

north of the Grays Harbor ebb-tide delta, and in transects 33 and 36, located north 

of the Columbia River ebb-tide delta (Figure 3). Near-surface prehistoric 

radiocarbon dates in sites L36V302 (0.7 ka at -33.2 m elevation) and L33V306 (0.5 

ka at -33.2 m elevation) (Supplemental Table 4) indicate that the recent high rates of 

sedimentation in transects L36 and L33, located north of the Columbia River mouth, 

are prehistoric in age. Those high rates of prehistoric sedimentation are not the 

result of jetty construction, offshore dredge disposal and/or other historic impacts 

to the CRLC system (Gelfenbaum and Kaminsky, 2010).  

It is not known whether the anomalous low-rate of recent sedimentation in 

L23V105 at -25 m elevation (0.1 m ka-1) reflects very-low sediment input or recent 

erosion and northward transport of the deeper inner-shelf deposits at the southern 

end of the CRLC system (Kaminsky, 2006; Peterson et al., 2010b). In either case, the 

generally low rates of recent vertical accumulations in the deeper water depths of 

transects L24 and L23, appear to reflect diminished sediment supply to those 

offshore areas, due to their positions located south of the Columbia River mouth and 

ebb tide delta. 

 

5.5   Paleo-wind stress and wave climates in the CRLC inner-shelf 

 

In this project we use modeled paleo-wind stress and deep water wave 

directions in the CRLC inner-shelf to help constrain interpretations of sand 

transport directions during the MIS1 marine transgression (0-18 ka). We assume 
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that fine sand transport in the inner-shelf is dominated by major winter storm wind 

and storm wave conditions (Sternberg, 1986; Kachel and Smith, 1986). Paleo-wind 

stress and assumed corresponding wave directions for winter months (Dec., Jan., 

Feb.) during the last 21 ka are modeled at 3 ka time steps for the study region from 

global climate models (Figure 15) (Alder and Hostetler, 2015). The wind stress 

vectors (bearing and velocity) are based on estimated paleo-sea level pressure 

gradients that are down sampled from the GENMOM model which combines the 

GENESISv3 atmospheric model  (Alder et al., 2011) and MOMv2 oceanic model 

(Pacanowski, 1996). The coupled atmospheric and oceanic model outputs are 

verified at 0 ka, 6 ka , and 21 ka (LGM) time intervals, using terrestrial and marine 

climate reconstructions (Alder and Hostetler, 2015). The GENMOM model is used to 

simulate eight equilibrium time slices at 3000-year intervals for the last 21,000 

years.   

We assume that maximum along-shelf geostrophic currents and associated 

across-shelf downwelling in the study area are forced by coastal winds, whereas the 

winter storm surf directions could be the products of both coastal winds and more 

seaward storm centers in the NE Pacific Ocean. Under pre-industrial (PI=modern) 

conditions the dominant coastal winter wind stress and surf directions are from the 

southwest. These modeled winter wind directions show little variation until about 6 

ka, but they become increasingly south-southwesterly by 9 ka, and become nearly 

due south by 12 ka. The roles that changing paleo-wind stress and wave directions 

play in 1) diverting the remobilized pre-Holocene shelf deposits north of the CRLC 

system (12–9 ka) and then 2) largely trapping Holocene Columbia River sand in the 
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CRLC system (6–0 ka) are discussed in terms of marine transgression and paleo-

shoreline orientations below.  

  

5.6   Geologic history of CRLC inner-shelf sand deposition 

 

 In this section we summarize the geologic history of sand transport and 

deposition in the CRLC inner-shelf during the marine isotope stage 1 (MIS1) marine 

transgression. During latest Pleistocene time the Columbia River exported fine sand 

to the continental slope via the Astoria Canyon (Figure 1) (Griggs and Kulm, 1969; 

Brunner et al., 1999; Normark and Reid, 2003; Lopes and Mix, 2009). Negligible 

dune sand was available for eolian transport across the emerged continental shelf 

during low-stand conditions in the CRLC system. The only late-Pleistocene dune 

deposits that were identified in onshore drill holes were from a very-short section (-

9 to -10.5 m elevation) dated at 39 ka in DHmchu (Figure 7), located just north of 

the Columbia River mouth (Herb, 2000). Onshore summer winds did occur during 

low-stand conditions in the study area, as evidenced by late-Pleistocene coastal 

loess deposits in the region (Figure 15). The lack of late-Pleistocene coastal dune 

development in the central and southern areas of the CRLC system reflects a lack of 

available sand in the inner-shelf during low-stand conditions. The lack of inner-shelf 

sand deposits is attributed to the downcutting and off-shelf transport of fine sand by 

the Columbia River and its lateral tributaries during low-stand conditions. In 

contrast, the northern area of the CRLC inner-shelf was covered by pro-glacial 

fluvial outwash deposits. The coarse-grained outwash deposits reach 10–15 m in 
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thickness in sea cliff exposures at transects L3 and L5 (Supplemental Figure 3), but 

are assumed to have thinned with increasing distance across the inner-shelf. Post-

transgressive remnants of the outwash deposits are evident in inner-shelf gravels in 

transects L3, L5 and L7 in the northernmost area of CRLC inner-shelf (Figure 8). 

 During the early part of the MIS1 transgression (9–15 ka), when sea level 

was between -100 m and -30 m elevation, the southerly storm surf (Figure 15) 

eroded unconsolidated outwash deposits during transgressive ravinement and 

transported the late-Pleistocene sand northward, out of the CRLC system (Figure 16 

Part A). The lack of pre-Holocene outwash sand mineralogy in 1) the CRLC inner-

shelf surface deposits (Figure 5), 2) the modern beach deposits (Figure 4) and 3) the 

onshore shelf facies (0-8 ka) (Supplemental Table 4), attests to the effective 

northward transport of pre-Holocene sand deposits out of the CRLC system during 

the early- to mid-Holocene transgression. The same net-northward littoral drift 

transported some Holocene Columbia River sand northward along paleo-shorelines 

and the paleo- inner-shelf (-80 to -50 m elevation) to the paleo-Grays Harbor 

embayment at DHwest1 by ~10 ka (Figures 3 and 15).  

 During middle- to late-Holocene time (after 9 ka) sea level rise and in-filling 

of the Columbia River ancestral valley had terminated off-shelf transport of sand in 

the Astoria Canyon. The Holocene Columbia River sand discharged to the marine 

side was contained in the middle- and inner-shelf areas. During this same time the 

orientations of the winter storm wind stress and waves became less oblique to the 

northwest trending paleo-shorelines (Figures 15 and 21), thereby more effectively 

trapping Columbia River sand in the CRLC system (Figure 16 Part B). Gravel, eroded 
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from retreating sea cliffs in the northernmost CRLC shorelines, was transported 

south by traction transport along paleo-beaches to the Grays Harbor tidal inlet/shelf 

facies in DHoyst1 and DHwest1 (Supplemental Table 4) while fine sand was being 

transported northward in the inner-shelf by combined oscillatory-wave 

resuspension and northward-geostrophic flow (Figure 2 Part B) (Sternberg, 1986; 

Katchel and Smith, 1986). Differing slightly from the Katchel and Smith (1986) 

model the Holocene Columbia River sand was largely trapped in the inner-shelf (≤ 

50 m water depth) where surface sand deposits are hypersthene-rich (Figure 5) 

(Scheidegger, et al., 1971; Venkatarathnam and McManus, 1973). The long term 

rates of post-ravinement shelf sedimentation in the central and southern inner-shelf 

areas (1.3–4.4 m ka-1) average 3.2 m ka-1 (n=14). The mean rate of long-term 

sedimentation is about one quarter (~ 25%) of the mean rate of sea level rise (12.2 

m ka-1 ) (n=14) for the same time intervals (Table 2). Sea level rose faster in the 

early and middle Holocene time than the rate of Columbia River sand supply to the 

CRLC inner-shelf. 

 By late-Holocene time (~5 ka)  the rate of sea level rise had substantially 

decreased (~ 1 m ka-1) (Figure 2 Part C). Discharge of Columbia River sand 

exceeded the slow rates of sea level rise, leading to the filling of available 

accommodation space in the central and southern areas of the CRLC inner-shelf. The 

orientations of winter storm wind stress and waves became less oblique to the 

northwest trending shorelines (Figure 15). Though a net-northward drift prevailed 

in the inner-shelf, the ongoing supply of Holocene Columbia River sand to the 

littoral zone was effectively trapped in the nearshore and barrier/beach system 
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(Figure 16 Part C). The filling of available inner-shelf accommodation space in late 

Holocene time led to 1) the reduction of the inner-shelf depositional gradient and 2) 

the net onshore wave transport of littoral sand to prograding beach plains and 

barrier spits during the last 3-5 ka. The shallow bedrock surfaces and net-

northward littoral drift in the northernmost area of the CRLC system prohibited 

significant deposition in the northern transects L3, L5, and L7. However, recent 

short-term sedimentation rates in the central and southern transects (mean rate 1.9 

m ka-1) demonstrate that the inner-shelf was continuing to fill at, or locally-faster, 

than the recent rates of relative sea level rise (~ 1 m ka-1) during late Holocene time 

(Table 3, Figure 14). The relatively high rates of recent vertical accumulation in the 

CRLC inner-shelf are attributed to a prograding upper-shoreface and localized 

deposition at and/or downdrift of ebb tide deltas at the mouths of the Columbia 

River and Grays Harbor. 

 

5.7   Post-ravinement sediment budget in the CRLC inner-shelf 

 

Post-ravinement sand deposits in the CRLC inner-shelf (offshore and onshore 

transect cross-sections as defined in Figure 7 and Supplemental Figures 3-7) total 

2.48x1010 m3 (Table 4). Twichell et al. (2010) estimate 79 km3 (7.9x1010 m3) for the 

entire Holocene fill volume in the middle- and inner-shelf, including the offshore 

incised River valleys. The smaller volume reported in this article (2.48x1010 m3) is 

limited to the post-ravinement deposition in the CRLC inner-shelf. The accumulation 

rate of inner-shelf facies deposited above the ravinement surface for the last ~12 ka 
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is about 2.07x106 m3 yr-1. We do not further resolve this long-term total volume rate 

either spatially or temporally in this paper due to a lack of deep radiocarbon dates 

from the offshore sections. The CRLC inner-shelf fill rate is about one third of the 

sand discharge estimated for the Columbia River (5–6 x106 m3 yr-1) for the last 8 ka 

(Peterson et al., 2013) or just slightly lower than the modern sand throughput rate 

of 2.7 x106 m3 yr-1 as modeled by Kaminsky et al., (2001) and reported by 

Gelfenbam and Kaminsky (2010). Apparent early-historic inner-shelf erosion to 

supply sand to the adjacent beaches (Ruggerio et al., 2016) is a temporary effect of 

post-subsidence rebound, and interseismic uplift following the AD1700 coseismic 

subsidence (Peterson et al., 2010a). The long-term response of the inner-shelf to 

abundant sand supply from the Columbia River has been net vertical accretion. 

 The CRLC inner-shelf accumulation rate is expected to be conservative for 

total shelf fill rates because it does not include 1) early-and middle-Holocene fill 

rates for the mid-shelf and 2) pre-ravinement fill deposits in incised valleys that 

were preserved below the inner-shelf transgressive ravinement surface (Twichell 

and Cross, 2001; Twichell et al., 2010). The CRLC inner-shelf accumulation rate does 

not account for sand transported north of Point Grenville during early- to middle-

Holocene time (Figure 16), nor does it account for the abrasion of weak lithic sand 

grains to form very-fine size sand and silt grains that were transported seaward to 

the mid-shelf. Nevertheless, the post-ravinement fill accumulation rate in the inner-

shelf during the last ~12 ka is substantially greater than the accumulation rate of 

the beach plains and barrier spit facies in the CRLC system (~0.34x106 m3 yr-1) 

during the last ~5 ka (Linde, 2014). The fill rates of the two tidally-dominated 
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estuaries, Willapa Bay and Grays Harbor (Figure 1), are currently under 

investigation by some of these authors, however, it is clear that the Columbia River 

sand source and the inner-shelf sand sink are likely to be the dominant regional 

drivers of littoral sand dynamics in the CRLC system during the Holocene marine 

transgression. 

The potential role(s) of inner-shelf sand sinks in impacting beach erosion 

from predicted future global sea level rise (Vermeer and Rahmstorf, 2009) have 

likely been under-appreciated in some high-wave-energy littoral systems. Assuming 

a complete filling of additional inner-shelf accommodation space from a net sea 

level rise of 1.0 m in the CRLC system, the increased inner-shelf accommodation 

space (1.0 m depth, 10.0 km across-shelf width and 126.5 km along-shelf length) 

(Table 4) could provide a net-sink for a volume of 1,265x106 m3 of fine littoral sand. 

This is equivalent to at least 200 years of prehistoric sand discharge from the 

Columbia River. Without the Columbia River input of  sand, the potential inner-shelf 

sand sink could result in 10,000 m3 of beach sand erosion per alongshore meter of 

shoreline or about 1.0 km of net beach retreat (10 m average vertical profile) in the 

CRLC system following a net sea level rise of 1.0 m. This a substantial increase (> 

100%) relative to the traditional equilibrium profile methods (Bruun, 1962) and 

assumed inter-decadal depths of closure (20 m) that were used by Doyle (1996) and 

Peterson et al. (2000) for the study area.  

 

6   CONCLUSIONS  
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The transgressive ravinement surface in onshore drill hole sections and 

adjacent offshore seismic reflection profiles in the CRLC inner-shelf can be 

stratigraphically correlated based on elevation, slope, continuity and radiocarbon 

dating. The relative thicknesses of onshore post-ravinement shelf facies (1–30 m 

thick) under prograded beach plains and barrier spits are proportionally similar to 

adjacent offshore post-ravinement shelf deposits (1–50 m thick) as imaged in the 

seismic reflection profiles. The bounding ages of 1) the transgressive ravinement 

surface, based on corresponding sea level ages and 2) overlying near-surface 

deposits, based on radiocarbon dates, provide long-term sedimentation rates for 

both onshore and offshore inner-shelf facies. The inner-shelf deposit thicknesses 

and estimated long-term sedimentation rates are positively correlated to 

transgressive ravinement surface depths. The post-ravinement deposits represent 

available accommodation spaces filled primarily by fine sand in the high-wave-

energy inner-shelf setting. Recent short-term sedimentation rates (1.9±1.5 m ka-1) 

are locally higher than recent rates of net-sea level rise (~1 m ka-1), indicating 1) 

upper shoreface progradation in some innermost-shelf sites and 2) localized 

accumulation of sand deposits located downdrift (northward) of large ebb tide 

deltas at the mouths of the Columbia River and Grays Harbor.  

 The lack of significant shoreward pre-Holocene shelf sand transport to the 

accreting barriers and beach plains in the CRLC resulted from four conditions. These 

conditions were a general lack of Columbia River sand accumulation in the pre-

Holocene shelf, presumably due to off-shelf transport through the Astoria Canyon. A 

strong net-northward export of outwash sand deposits in the northern inner-shelf 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 39 

was due to a northward directed wind and wave stress in early Holocene time. Post-

ravinement accommodation space in the inner-shelf resulted from post-ravinement 

sea level rise during middle to late Holocene time. Abundant sand supply to the 

littoral zone, from throughput of Columbia River sand, combined with high wave 

energy, geostrophic flow, and under-welling flow resulted in the dispersal of littoral 

sand along the CRLC inner-shelf. The inner-shelf could not supply pre-Holocene 

sand to the accreting CRLC barriers and beach plains in latest Holocene time 

because the inner-shelf was itself a large net sink for littoral sand during middle- to 

late-Holocene time. 

 Two factors contributed to the substantial sand accommodation space that 

persisted in the inner-shelf of the CRLC system during the middle- to-late Holocene 

marine transgression. They include 1) possible structural controls on the positions 

of large antecedent river valleys in the CRLC study area and the incised and/or 

embayed low-stand surfaces that lead to relatively steep ravinement surface 

gradients associated with the ancestral river valleys and 2) 10–50 m of post-

ravinement relative sea level rise in most of the inner-shelf sites. The available 

accommodation space was largely in-filled within the CRLC inner-shelf area by 

seaward transport of sand across the inner-shelf and by limited alongshore 

dispersal of sand in the inner-shelf. The availability of post-ravinement 

accommodation space in the CRLC inner-shelf was made apparent because of the 

large volume of fine sand that was discharged from the Columbia River throughout 

the marine transgression. Such increases in inner-shelf accommodation space 

following post-ravinement sea level rise likely occurred in other high-wave-energy 
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inner-shelves. However, a lack of fluvial sand input to the littoral zone in some other 

shelf settings left the available accommodation space unfilled during the 

transgression, and therefore, not recognized or measured. The CRLC system, which 

does have a large sand input from the Columbia River, demonstrates that such post-

ravinement increases in sand accommodation space can occur in high-energy inner-

shelf settings following post-ravinement sea level rise.  

 The significance of available accommodation space in the present CRLC 

inner-shelf, and possibly in other high-wave-energy inner-shelves, is relevant to 

potential impacts from 1) regional sand management practices and 2) future sea 

level rises resulting from predicted global warming. The volumes of inner-shelf 

accommodation space that are increased by modest rates of sea level rise can 

potentially dwarf the small onshore reservoirs of sand in some beach and barrier 

systems. With sufficient wind and wave stress energy in some coastal settings the 

onshore beach sand reservoirs could be displaced to fill increasing accommodation 

space in the inner-shelf, following future sea level rises. Unlike the CRLC system that 

has substantial river sand discharge to help replace the potential loss of onshore 

sand reservoirs to future offshore sand sinks, some sand-limited littoral systems 

could experience substantial shoreline retreat following future sea level rises and 

net-offshore sand transport to fill inner-shelf sand sinks.  
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Figure Captions 

 

Figure 1: Regional map showing the Columbia River Littoral Cell (boxed), located 

between Point Grenville in Washington (WA) and Tillamook Head in Oregon (OR). 

The Columbia and Chehalis Rivers are antecedent through the Coast Range 

(triangles). The Columbia River is antecedent through the Cascade volcanic arc 

(triangles). The Columbia River littoral cell (CRLC) is divided into four subcells, 

which are separated by tidal inlets at the Columbia River mouth, Willapa Bay and 

Grays Harbor. Smaller coastal rivers, including the Queets, Hoh, and Quillayute 

Rivers occur north of the CRLC. The shelf break (dotted line) at -200 m elevation 

NAVD88 shows indentations at several submarine canyons, including the Astoria 

Canyon, located near the south end of the study area.  The Strait of Juan De Fuca 

(JDF) dissects the inner-shelf north of the study area. Map coordinates are in 

latitude and longitude (degrees) and UTM-10T (kilometers). 
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Figure 2: Part A.  Across-shelf surface profiles (west-east) were redrafted from 

Kaminsky (2006), as compiled by Buijsman (2003). Three profiles (NS01, NS04 and 

NS05) are averaged across several kilometer-wide bathymetric swaths, which were 

selected from recent surveys (1990-2000). One profile is taken from sesismic line 

(SL23) as completed in 1997 and reported by Twichell and Cross (2001). See Part B 

for location of cross-shelf profiles in the four subcells of the CRLC. Part B. 

Bathymetric map of the CRLC shelf (0 to -140 m elevation at 20 m contour depth 

spacing) showing extent of surface deposits dominated by fine sand (stippled 

pattern >75% sand), as redrafted from Nittrouer (1978). Predicted directions of 

sand transport (arrows) are based on modeled wave oscillatory currents, 

geostrophic flow and down-welling, resulting from winter storm waves and wind 

shear stress, as redrafted from Kachel and Smith (1986). Part C. Relative sea level 

curve (0–16 ka) reported for the CRLC study area (Peterson et al., 2010b). 

 

Figure 3: CRLC study area with selected beach plain/barrier spit drill holes 

(lettered), selected ravinement depth profiles (solid circles) along seismic reflection 

lines (L), selected vibracore sites (open circles) and surface grab samples (open 

boxes). Modern shelf bottom contours are in 20 m intervals of elevation NAVD88. 

Ebb tide deltas (ETD) are shown offshore of the tidal inlets of the Columbia River, 

Willapa Bay and Grays Harbor estuaries. Position coordinates and data sources for 

the onshore drill holes, surf zone vibracore sites and offshore vibracore sites are 

provided in Supplemental Table 1. Seismic profile line (L) positions are provided in 
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Twichell and Cross (2001). Map coordinates are in longitude and latitude (°) and 

UTM-10N kilometer northings (N) and eastings (E). 

 

Figure 4: Regional map of beach sample sites (solid circles) and corresponding plots 

of beach width (km), mean sand grain size (mm) and sand provenance indicators, 

hypersthene to  augite (ratio). The CRLC system (CRLC study area) extends on either 

side of the Columbia River mouth to the dashed lines at Point Grenville to the north 

and Tillamook Head to the south. Map coordinates are UTM (10TN) in km intervals 

northing (N) and easting (E). Data are from Supplemental Table 2. 

 

Figure 5: Textural and sand source compositional data for subsurface samples in 

offshore vibracores (one sample per vibracore) are plotted for five across-shelf 

transects. Four variables, including bottom water depth, percent sand, sand grain 

size and sand heavy mineralogy are plotted against across-shelf distanced (km on 

the X axis) for each of the 5 transects (L11, L41, L36, L33, L23). Modern shelf 

bottoms (deposit water depths) are in m elevation NAVD88 ranging from 0 m (top 

of Y axis) to – 100 m depth (bottom of Y axis). Deposit percentages of sand (%) are 

plotted from 0.0 percent (bottom of Y axis) to 100 percent (top of Y axis). Deposit 

sand grain sizes (means) are plotted from 0.4 mm (top of Y axis) to 0.0 m (bottom of 

Y axis). Columbia River sand source mineralogy (hyp/aug ratio) is plotted from 1.0 

(top of Y axis) to 0.0 (bottom of Y-axis). Data are from Supplemental Table 3. 
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Figure 6: Correlations of transgressive ravinement surface (red bold line) in 

onshore drill holes (DHoyst and DHbayr) with dated deposits (arrows) 

(Vanderburgh et al., 2010) and offshore seismic reflection profile (L37) (Twichell 

and Cross, 2001). The vertical datum is in elevation (m) NAVD88. Onshore distances 

are in negative kilometers and offshore distances are in positive kilometers relative 

to the modern shoreline (Shore) at 0 km distance. Locations of offshore seismic 

profile stations (S1, S2, S3) in profile L37 and onshore drill holes (DHoyst, DHbayr) 

are shown in Figure 3. 

 

Figure 7: Inner-shelf cross-sections from three CRLC cross-sections (L41, L33, L23) 

(Figure 3) show the shallow transgressive ravinement surface (dotted line) and 

modern depositional surface (bold line). The vertical datum is elevation (m) 

NAVD88. Representative elevation/age data are shown for paleo-sea levels (0–10 

ka) in the CRCL system, as selected from Figure 2 Part C. Drill hole (DH) and 

vibracore (V) site position data are in Supplemental Table 1. Position and elevation 

data for modern- and paleo-sea cliffs (solid circle) and for seismic profile stations 

(S) are in Supplemental Table 4. 

 

Figure 8: Onshore/offshore geology map for the CRLC system showing relations 

between onshore major river valleys (Columbia, Willapa, Chehalis) and offshore 

submarine canyon heads (Astoria, Willapa, Guide, Grays)(McManus, 1964). Modern 

shelf bottom contours are in m elevation NAVD88. Onshore drill holes (solid 

squares) and offshore seismic profiles (numbered lines) are shown relative to 1) 
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Tertiary (T) bedrock exposures (east of dashed line), 2) Quaternary (Q) deposits 

(west of dashed line) and 3) inner-shelf fine sand (>75%) east of dotted line to the 

shoreline. Bedrock is exposed in the northernmost inner-shelf area (dashed line). 

Relict gravelly-sand patches (stippled) are shown at the northern end of the CRLC 

inner-shelf and in the outer-shelf, located seaward of the mid-shelf mud belt. Major 

river valleys are redrafted from modern DEM maps (USGS, 2015). Submarine 

canyons are named (McManus, 1964). Tertiary bedrock exposures are redrafted 

from Walsh et al. (1987) and Dragovich et al. (1987). Offshore exposures of Tertiary 

bedrock and relict Pleistocene gravels are redrafted from Twichell et al. (2010).  

 

Figure 9. Overlay maps of low-stand surface elevations (dotted line contours) and 

transgressive ravinement surface elevations (solid line contours). Ravinement 

surface contours (20 m intervals elevation NAVD88) generally overlie low-stand 

surface contours, except in deeply incised river valleys. Paleo-shoreline orientations 

(black bars) are based on local parallels to the -40 m ravinement surface contour 

and range from 335° to 355° north. 

 

Figure 10: Profiles of the transgressive ravinement surface and the modern 

depositional surface are shown for transects (L) in the CRLC inner-shelf and 

prograded barriers and beach plains, relative to the modern shoreline (0 km 

distance). Elevations (m) are shown relative to the NAVD88 datum. Data are from 

cross-sections shown in Supplemental Figures 3–7. Transects L3, L5, and L7 are not 
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shown under modern depositional surfaces due to bedrock and/or relict-gravel at 

the modern sea floor in those offshore transects. 

 

Figure 11: Plot of inner-shelf deposit thickness versus transgressive ravinement 

surface elevation in across-shelf transects at 0±1 km, 5±1 km and 10±1 km interval 

distances offshore of the present shoreline. Onshore inner-shelf deposits are 

measured for thickness below 0 m elevation NAVD88 (Peterson et al., 2010b). Data 

are compiled from Supplemental Figures 3–7 and Supplemental Table 4. Transects 

that extend less than 9.0 km in offshore distance (L3, L5, L7, L19) are not included in 

the 10±1 km distance plot.  

 

Figure 12: Plot of transgressive ravinement surface gradient (slope %) versus filled 

post-ravinement mean accommodation space (x1000 m3 m-1 km-3) normalized to 1.0 

m distance alongshore and 1.0 km distance across-shelf in transects in the CRLC 

inner-shelf. One anomalous data point representing the maximum filled 

accommodation space is from cross-section L24 (Figure 3), which is located both 

offshore of the ancestral Columbia River valley and in the Columbia River ebb tide 

delta. Data are from Table 1. 

 

Figure 13: Plot of transgressive ravinement surface ages based on 1) relative paleo-

sea level ages (ka) for the corresponding ravinement surfae elevations and 2) 

radiocarbon dating (ka) of nearest deposits (within ±1.5 m of the ravinement 

surface elevations). The dashed line represents a hypothetical direct age 
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correspondence between ravinement surface ages measured by relative sea level 

and radiocarbon dating. Such a relation did not occur in the data set from the CRLC 

inner-shelf deposits. Data are from Supplemental Table 4. 

 

Figure 14: Plots of long-term sedimentation rates (squares) and recent short-term 

sedimentation rates (circles) in onshore sites (open) and offshore sites (solid) in the 

CRLC inner-shelf relative to distance north and south of the ancestral Columbia 

River valley (dashed line at 0 km distance). Data are from Tables 2 and 3. 

 

Figure 15: Modeled paleo-sea level pressure and wind/wave stress during winter 

months (DJF) for the CRLC region (0-21 ka) at 3 ka time step intervals, starting with 

modern (pre-industrial) time step of 0 ka (Alder and Hostetler, 2015). Modeled sea 

level pressures 995–1025 hPa are used to estimate the dominant directions and 

velocities (m s-1) of wind vectors (arrows) along the coast and to offshore distances 

of 1000-2000 km in the NE Pacific Ocean. The study area is centered in the solid 

black rectangle in the pre-industrial time slice (PI) in upper left panel. See Alder and 

Hostetler (2015) for details about model components and verification. 

 

Figure 16: Summary figure of geologic history of shelf erosion, transport and 

deposition.  Marine transgression (shaded) is shown for three time intervals, 

including Part A (12-15 ka), Part B (6-9 ka), and Part C (0-3 ka) relative to 

ravinement surface contours (20 m intervals elevation NAVD88). Wind/wave stress 

vectors (sharp arrows) are shown for the three time intervals. Net sand transport 
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directions and relative magnitudes (blunt arrows) are shown for corresponding 

time intervals. Geographic features (Part A) include from north to south, Point 

Grenville (PG), Grays Harbor (GH), Willapa Bay (WB), Columbia River (CR) and 

Tillamook Head (TH). Inner-shelf transects (L) are numbered in Part C. 
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Table 1. Post-ravinement accommodation spaces filled in the offshore inner-shelf 
transects. 
Transect Distance 

(m) 
Ravinement 
surface 
gradient 
 (%) 

Mean  
deposit 
thickness  
(m) 

Deposit 
cross-section 
 (x1000m2) 

Normalized 
filled 
accommodation 
space  
(m3 m-1 km-1) 

L3 5700 0.41 0 0 0 

L5 7500 0.36 0 0 0 
L7 6400 0.39 0.4 2.5 390 

L11 11900 0.37 3.4 40.5 3400 
L41 11400 0.44 6.8 77.5 6800 

L46 13200 0.45 8.7 114.8 8700 
L37 12700 0.53 13.9 176.5 13900 
L36 12800 0.55 18.4 235.5 18400 
L33 14800 0.63 27.2 402.5 29900 
L24 16200 0.44 33.0 534.6 33000 
L23 12800 0.50 21.4 273.9 21400 
L19 11300 0.50 13.8 155.9 13800 
Notes: Distance is east-to- west length (m) of the measured transect. Gradient is 
slope (%) of the ravinement surface over the measured distance of the cross-
setions. Mean deposit thickness is the average thickness of post-ravinement inner-
shelf deposits (below 0 m NAVD88) in the onshore drill holes (DH) and offshore 
vibracore (V) and seismic profile (S) sites (Supplmental Figures 3–7). The L24 cross-
section is extended to L24-S4 at 10.1 km distance from the present shoreline. 
Neither the ebb tide delta nor the tidal inlet are included in the L24 cross-section, 
likely canceling out their localized impacts on filled accommodation space at the 
mouth of the Columbia River. Deposit thickness data are from Supplemental Table 4. 
Post-ravinement deposit cross-section area (x1000m2) is taken from the mean 
deposit thickness multiplied by transect length. Normalized accommodation space 
(m3 m-1 km-1) is taken from the mean deposit thickness in each transect multiplied 
by 1.0 meter width (alongshore) and 1.0 kilometer distance (across-shelf) along the 
transect. 
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Table 2: Long-term (0.3–13 ka) sedimentation rates in the CRLC inner-shelf. 

Line/site Section midpoint 
and range of 
elevations (m) 

Section midpoint 
and range of 
ages (ka) 

Section sedi- 
mentation rate 
 (m ka-1) 

Sea level 
rise rate  
(m ka-1) 

L41DHgreb1 -6.6±2.3 4.3±2.3 1.0 2 
L41V508 -12.5±-3.1 3.9±3.6 0.9 4.7 
L41V502 -19.1±1.9 5.5±2.5 0.7 12.3 
L41V501 -28.0±1.7 4.6±4.4 0.4 6.6 
L41503 -39.4±1.5 6±-3.5 0.4 15.5 
L41V504 -47.4±2.6 5.6±4.5 0.6 17.3 
L37DHoyst -11.8±4.7 6.5±2.1 2.3 3.1 
L36V302 -26.0±5.1 5.0±4.0 1.3 11.2 
L36V301 -46.6±12.1 6.4±4.5 2.7 14.2 
L33V305 -26.1±9.8 5.4±4.1 2.4 9.3 
L33V303 -34.6±14.9 5.1±4.9 3.0 14.9 
L33V306 -57.5±22.3 7.1±5.3 4.2 13.5 
L33V307 -68.4±24.1 7.3±6.7 3.6 11.5 
L24V903 -66.7±15.3 8.6±4.5 3.4 10.5 
L23DHsuns -23.3±6.7 6.7±2.3 2.9 13.4 
L23V103 -24.4±9.2 5.7±3.9 2.4 8.7 
L23V104 -30.8±9.1 7.5±2.1 4.4 13.9 
L23V105 -36.3±7.0 7.6±1.9 3.7 28 
L23V106 -51.8±11.5 8.5±2.9 3.9 11.5 
L19Dhdelr -19.6±13.3 5.8±3.3 4.1 7.2 
Notes: Section elevation intervals (m) and corresponding section ages (ka) of lower 
ravinement surfaces and overlying deposits are used to calculate section 
sedimentation rates (m ka-1). Elevations and ages of lower bounding ravinement 
surfaces and overlying deposit C14 samples are from Table 4. Rates of sea level rise 
(m ka-1) that correspond to the dated sections are estimated from the CRLC sea level 
curve shown in Figure 2 Part C. 
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Table 3: Short-term (0–3.8 ka) sedimentation rates in the CRLC inner-shelf. 

Line/site Section midpoint 
and range of 
elevations (m) 

Section midpoint 
and range of 
ages (ka) 

Section sedi- 
mentation rate 
 (m ka-1) 

L11V707 -9.9+/-2.1 0.9+/-0.9 2.3 
L11V701 -14.0+/-2.3 0.5+/-0.5 4.1 
L41V502 -15.9+/-1.4 1.5+/-1.5 0.9 
L41V503 -36.5+/-1.5 1.3+/-1.3 1.1 
L41V504 -44.2+/-0.6 0.5+/-0.5 1.1 
L36V302 -18.6+/-2.3 0.5+/-0.5 4.6 
L36V301 -32.7+/-1.9 0.9+/-0.9 1.9 
L33V305 -13.7+/-2.5 0.7+/-0.7 3.9 
L33V306 -32.7+/-2.3 0.9+/-0.9 2.6 
L24V102 -14.1+/-0.5 1.5+/-1.5 0.7 
L24V903 -49.1+/-0.7 0.8+/-0.8 0.8 
L23V103 -12.5+/-2.7 0.9+/-0.9 3.1 
L23V104 -16.8+/-0.5 1.1+/-1.1 0.4 
L23V105* -24.7+/-0.1 1.9+-1.9 0.1 
Notes: Section elevation intervals (m) and corresponding section ages (ka) of 
radiocarbon deposits and modern surfaces are used to calculate recent short-term 
sedimentation rates (m ka-1). Elevations and ages of the deposit C14 samples, 
ravinement surfaces and modern surfaces are from Supplemental Table 4.  
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Table 4: Post-ravinement sediment volumes for the CRLC inner-shelf transect 
segments. 
Transect Along-shelf  

segment (m) 
Cross-section 
area (m2) 

Shelf segment 
volume (x106 m3) 

L7 8080 2500 20 
L11 16570 40500 671 
L41 15330 77500 1188 
L46 14930 114800 1714 
L37 16430 176500 2900 
L36 10550 235500 2485 
L33 13900 402500 5595 
L24 11600 534600 6201 
L23 8960 273900 2454 
L19 10110 155900 1576 
Notes: Along-shelf segment lengths (m) for each across-shelf transect were 
calculated from mid-points between 1) transects, 2) the south bounding Tillamook 
Headland, and 3) the northern bound of shelf sand accumulation between transects 
L7 and L5. Transect cross-section areas are taken from Table 1. Shelf segment 
volumes (x106 m3) are derived from the products of along-shelf segment length and 
corresponding transect cross-section areas. 
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Table 5. Post-ravinement accommodation spaces filled in the offshore inner-shelf 
transects. 
Transect Distance 

(m) 
Ravinement 
surface 
gradient 
 (%) 

Mean  
deposit 
thickness  
(m) 

Deposit 
cross-section 
 (x1000m2) 

Normalized 
accommodation 
space  
(m3 m-1 km-1) 

L3 5700 0.41 0 0 0 

L5 7500 0.36 0 0 0 
L7 6400 0.39 0.4 2.5 390 

L11 11900 0.37 3.4 40.5 3400 
L41 11400 0.44 6.8 77.5 6800 

L46 13200 0.45 8.7 114.8 8700 
L37 12700 0.53 13.9 176.5 13900 
L36 12800 0.55 18.4 235.5 18400 
L33 14800 0.63 27.2 402.5 29900 
L24 16200 0.44 33.0 534.6 33000 
L23 12800 0.50 21.4 273.9 21400 
L19 11300 0.50 13.8 155.9 13800 
Notes: Distance is east-to- west length (m) of the measured transect. Gradient is 
slope (%) of the ravinement surface over the measured distance. Mean deposit 
thickness is the average thickness of post-ravinement inner-shelf deposits (below 0 
m NAVD88) in the onshore drill holes (DH) and offshore vibracore (V) and seismic 
profile (S) sites (Figures 9–13). The L24 cross-section is extended to L24-S4 at 10.1 
km distance from the present shoreline. Neither the ebb tide delta nor the tidal inlet 
are included in the L24 cross-section, likely canceling out their localized impacts on 
filled accommodation space at the mouth of the Columbia River. Deposit thickness 
data are from Table 4. Post-ravinement deposit cross-section area (x1000m2) is 
taken from the mean deposit thickness multiplied by transect length. Normalized 
accommodation space (m3 m-1 km-1) is taken from the mean deposit thickness in 
each transect multiplied by 1.0 meter width (alongshore) and 1.0 kilometer distance 
(across-shelf) along the transect. 
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Table 6: Long-term sedimentation rates in the CRLC inner-shelf. 
Line/site Section midpoint 

and range of 
elevations (m) 

Section midpoint 
and range of 
ages (ka) 

Section sedi- 
mentation rate 
 (m ka-1) 

Sea level 
rise rate  
(m ka-1) 

L41DHgreb1 -6.6±2.3 4.3±2.3 1.0 2 
L41V508 -12.5±-3.1 3.9±3.6 0.9 4.7 
L41V502 -19.1±1.9 5.5±2.5 0.7 12.3 
L41V501 -28.0±1.7 4.6±4.4 0.4 6.6 
L41503 -39.4±1.5 6±-3.5 0.4 15.5 
L41V504 -47.4±2.6 5.6±4.5 0.6 17.3 
L37DHoyst -11.8±4.7 6.5±2.1 2.3 3.1 
L36V302 -26.0±5.1 5.0±4.0 1.3 11.2 
L36V301 -46.6±12.1 6.4±4.5 2.7 14.2 
L33V305 -26.1±9.8 5.4±4.1 2.4 9.3 
L33V303 -34.6±14.9 5.1±4.9 3.0 14.9 
L33V306 -57.5±22.3 7.1±5.3 4.2 13.5 
L33V307 -68.4±24.1 7.3±6.7 3.6 11.5 
L24V903 -66.7±15.3 8.6±4.5 3.4 10.5 
L23DHsuns -23.3±6.7 6.7±2.3 2.9 13.4 
L23V103 -24.4±9.2 5.7±3.9 2.4 8.7 
L23V104 -30.8±9.1 7.5±2.1 4.4 13.9 
L23V105 -36.3±7.0 7.6±1.9 3.7 28 
L23V106 -51.8±11.5 8.5±2.9 3.9 11.5 
L19Dhdelr -19.6±13.3 5.8±3.3 4.1 7.2 
Notes: Section elevation intervals (m) and corresponding section ages (ka) of lower 
ravinement surfaces and overlying deposits are used to calculate section 
sedimentation rates (m ka-1). Elevations and ages of lower bounding ravinement 
surfaces and overlying deposit C14 samples are from Table 4. Rates of sea level rise 
(m ka-1) that correspond to the dated sections are estimated from the CRLC sea level 
curve shown in Figure 2 Part C. 
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Table 7: Short-term sedimentation rates in the CRLC inner-shelf. 
Line/site Section midpoint 

and range of 
elevations (m) 

Section midpoint 
and range of 
ages (ka) 

Section sedi- 
mentation rate 
 (m ka-1) 

L11V707 -9.9+/-2.1 0.9+/-0.9 2.3 
L11V701 -14.0+/-2.3 0.5+/-0.5 4.1 
L41V502 -15.9+/-1.4 1.5+/-1.5 0.9 
L41V503 -36.5+/-1.5 1.3+/-1.3 1.1 
L41V504 -44.2+/-0.6 0.5+/-0.5 1.1 
L36V302 -18.6+/-2.3 0.5+/-0.5 4.6 
L36V301 -32.7+/-1.9 0.9+/-0.9 1.9 
L33V305 -13.7+/-2.5 0.7+/-0.7 3.9 
L33V306 -32.7+/-2.3 0.9+/-0.9 2.6 
L24V102 -14.1+/-0.5 1.5+/-1.5 0.7 
L24V903 -49.1+/-0.7 0.8+/-0.8 0.8 
L23V103 -12.5+/-2.7 0.9+/-0.9 3.1 
L23V104 -16.8+/-0.5 1.1+/-1.1 0.4 
L23V105* -24.7+/-0.1 1.9+-1.9 0.1 
Notes: Section elevation intervals (m) and corresponding section ages (ka) of 
radiocarbon deposits and modern surfaces are used to calculate recent short-term 
sedimentation rates (m ka-1). Elevations and ages of the deposit C14 samples, 
ravinement surfaces and modern surfaces are from Table 4.  
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Table 8: Post-ravinement sediment volumes for the CRLC inner-shelf transect 
segments. 
Transect Along-shelf  

segment (m) 
Cross-section 
area (m2) 

Shelf segment 
volume (x106 m3) 

L7 8080 2500 20 
L11 16570 40500 671 
L41 15330 77500 1188 
L46 14930 114800 1714 
L37 16430 176500 2900 
L36 10550 235500 2485 
L33 13900 402500 5595 
L24 11600 534600 6201 
L23 8960 273900 2454 
L19 10110 155900 1576 
Notes: Along-shelf segment lengths (m) for each across-shelf transect were 
calculated from mid-points between 1) transects, 2) the south bounding Tillamook 
Headland, and 3) the northern bound of shelf sand accumulation between transects 
L7 and L5 (Table 5). Transect cross-section areas are taken from Table 5. Shelf 
segment volumes (x106 m3) are derived from the products of along-shelf segment 
length and corresponding transect cross-section areas. 
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Revision 5_01_16 

Highlights 

This article combines onshore and offshore data on inner-shelf sedimentation in a high-

wave-energy inner-shelf setting of the NE Pacific Ocean. These data compilations test, 

possibly for the fist time, some fundamental relations between post-ravinement 

accommodation space and net sediment accumulation in a high-wave-energy inner-shelf 

that is abundantly supplied by fluvial sand discharged to the littoral zone. This article also 

points out the potential impacts of increasing inner-shelf accommodation space on long-

term beach erosion following predicted increases in sea level rise from future global 

warming. 
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