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EXECUTIVE SUMMARY 

Congestion is a common phenomenon in medium and large cities worldwide. Reliability of 
freight movement in urban areas is an important issue for manufacturing or service companies 
whose operation is based on just-in-time approaches. These companies tend to provide high-
value or time-sensitive products/services. As congestion increases, carriers face increasing 
challenges to satisfy their time-sensitive customers in an economical way. 

In urban areas, congestion creates a substantial variation in travel speeds during peak morning 
and evening hours. Route designs or schedules which require long computation times or ignore 
travel-time variations will result in inefficient and suboptimal solutions. Poorly designed routes 
that lead freight vehicles into congested arteries and streets not only increase supply chain and 
logistics costs but also exacerbate externalities associated with freight traffic in urban areas, such 
as greenhouse gases, air pollution, noise and accidents. Better scheduling can be effectively 
supported by the advent of inexpensive and ubiquitous Information and Communication 
Technologies (ICT). However, without fast-routing methods that can take advantage of real-time 
congestion information, carriers cannot reap the benefits of real-time information.  

This research presents a new approach, an iterative route construction and improvement 
algorithm (IRCI), for the time-dependent vehicle routing problem (TDVRP) with hard or soft 
time windows. Improvements are obtained at a route level; hence the proposed approach does 
not rely on any type of local improvement procedure.   

Firstly, the IRCI algorithm is proposed to sequentially solve vehicle routing problems with soft 
time windows (VRPSTW) and hard time windows (VRPHTW). Secondly, the solution algorithm 
is adapted to tackle time-dependent speed problems without any alteration in their structure. A 
new formulation for the TDVRP with soft and hard time windows is presented. Leveraging on 
the well-known Solomon instances, new test problems that capture the typical speed variations of 
congested urban settings are proposed. Results in terms of solution quality as well as 
computational time are presented and discussed.  
 
Due to its modular and hierarchical design, the IRCI algorithm is intuitive, easy to code, and able 
to accommodate general cost and penalty functions. The solution quality and computational time 
of the new algorithm is compared against existing results on benchmark problems for the 
VRPHTW and VRPSTW. Furthermore, the algorithm can be used to obtain faster simultaneous 
solutions for both VRPHTW and VRPSTW problems using the soft time-windows solution as a 
lower bound for hard time-window problems. Despite its simplicity and flexibility, the algorithm 
performs well in terms of solution quality and speed in instances with soft and hard time 
windows.  
 
The computational complexity of the IRCI is analyzed and experimental results indicate that 
average computational time increases proportionally to the square of the number of customers. 
Furthermore, the proposed algorithm is remarkably faster than local search heuristics in terms of 
running time and computational complexity.  
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1.0 INTRODUCTION 

Congestion is a common phenomenon in most urban areas worldwide. Congestion creates a 
substantial variation in travel speeds during peak morning and evening hours.  This is 
problematic for all vehicle routing models that rely on a constant value to represent vehicle 
speeds. Urban route designs that ignore these significant speed variations result in inefficient and 
suboptimal solutions. Poorly designed routes that lead freight vehicles into congested arteries 
and streets not only increase supply chain and logistics costs but also exacerbate externalities 
associated with freight traffic in urban areas, such as greenhouse gases, air pollution, noise and 
accidents. Travel time between customers and depots is found to be a crucial factor that 
exacerbates the negative impacts of congestion; congestion also affects carriers’ cost structure 
and the  relative weight of wages and overtime expenses (Figliozzi, 2009). 

Routing models with time-varying travel times are gaining greater attention in vehicle routing 
literature and industry.  However, research on the time-dependent vehicle routing problem 
(TDVRP) is still comparatively meager in relation to the body of literature accumulated for the 
classical vehicle routing problem (VRP) and vehicle routing problem with time windows 
(VRPTW). In addition, published algorithms and related results can neither be readily 
benchmarked nor do they cover all practical and relevant objective functions or time-window 
constraint types.  

The goals of this research are to (a) formulate a time-dependent vehicle routing problem with a 
general cost function and time-window constraints, (b) present an intuitive and efficient solution 
methodology for time-dependent problems, (c) introduce readily replicable time-dependent 
instances and analyze the computational results, and (d) analyze the computational complexity of 
the solution approach.  

This report is organized as follows: Section 2.0Error! Reference source not found. provides a 
literature review for the problems with constant speed and soft/hard time windows; Section 3.0 
introduces the mathematical notation and describes the new iterative route construction and 
improvement (IRCI) algorithm; Section 4.0 compares IRCI computation time and solution 
quality against existing solutions available in the literature for instances with constant speed and 
soft/hard time windows; Section 5.0 discusses IRCI algorithmic properties; Section 6.0  
introduces a literature review for the TDVRP; Section 7.0  introduces notation for the TDVRP 
and formulates the problem for congested environments; Section 8.0 presents the additional 
elements of IRCI to solve time-dependent routing problems and minimize fleet size; Section 9.0 
presents benchmark problems for the TDVRP; and Section 10.0 discusses computational results. 
Section 11.0 analyses the worst-case and average computational complexity of the TDVRP 
algorithm, and Section 12.0 concludes the report. 
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2.0 LITERATURE REVIEW FOR THE VRPHTW AND 
VRPSTW 

Heuristics to solve the VRPHTW can be classified – in increasing order of solution quality – as 
construction heuristics, local search heuristics, and metaheuristics. Although metaheuristics 
generally produce solutions of higher quality, this is usually at the expense of significantly 
longer computation times. There is a clear tradeoff between computation time and solution 
quality.  

Route construction algorithms work by inserting customers one at a time into partial routes until 
a feasible solution is obtained.  Construction heuristics include the work of Solomon (1987), 
Potvin and Rousseau (1993), and Ioannou et al. (2001).  Local search methods improve on 
feasible solutions performing exchanges within a neighborhood while maintaining the feasibility 
of the solutions. Some of the most successful local improvement methods include the algorithms 
proposed by Russel (1995),  Caseau and Laburthe  (1999), Cordone and Calvo (2001), and 
Braysy (2002).  

Metaheuristics include a diverse set of methods such as simulated annealing, genetic algorithms, 
tabu search, ant-colony, and constraint programming. Some of the most successful 
methaheuristics include the algorithms proposed by  Taillard et al. (1997), Liu and Shen (1999), 
Homberger and Gehring (1999), Berger et al. (2003), and Braysy (2003). For additional 
references and a review of the large body of VRPHTW research, the reader is referred to a recent 
comprehensive survey by Braysy and Gendreau (2005a,b).  

The body of work related to the VRPSTW is relatively scant. Early work on the topic includes 
the work of Sexton and Choi (1986) using Benders decomposition to solve a single-vehicle 
pickup and delivery routing problem. Ferland and Fortin (1989) solves variations of the 
VRPSTW where customers’ time windows are adjusted to lower service costs. Koskosidis et al. 
(1992) propose a generalized assignment problem of customers to vehicles and a series of 
traveling salesman problems with soft time-window constraints.   

Balakrishnan (1993) proposes construction heuristics for the VRPSTW based on the nearest 
neighbor, Clarke and Wright savings, and space–time rules algorithms. The heuristics are tested 
on a subset of the Solomon set problems for hard time windows using linear penalty functions. 
Taillard et al. (1997) propose a tabu search heuristic to solve a VRPSTW  as proposed by 
Balakrishnan (i.e., with linear penalty functions). The tabu search algorithm produced very good 
results on the Solomon set with hard time windows; however, no results are reported for the 
VRPSTW.  

Ioannou et al. (2003) solves Solomon problems and extended Solomon problems of up to 400 
customers with a nearest neighbor that generate and modify customer time windows to find 
lower cost solutions; no computation times are reported. Chiang and Russell (2004) uses a tabu 
search approach with a mixed neighborhood structure and advance recovery to find some of the 
best solutions ever reported for Solomon VRPSTW instances. The algorithm designed by Ibaraki 
et al. (2005) is another metaheuristic that could handle soft time-window constraints and 
penalties  using a local search based on a cyclic-exchange neighborhood to assign and sequence 
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customers; only results for instances with hard time windows are reported . Calvete et al. (2007) 
propose a goal programming approach to the vehicle routing and solve medium-size problems 
(less than 70 customers) with soft and hard time windows, a heterogeneous fleet of vehicles, and 
multiple objectives.  

As indicated by Braysy and Gendreau (2005a,b),  fair and meaningful comparisons of vehicle 
routing heuristics require standard benchmark problems and the full reporting of (a) solution 
quality, (b) number of runs needed and computation time per run, and (c) computing power or 
processor speed. From the survey of the VRPSTW, only two journal publications comply with 
these prerequisites: Balakrishnan (1993) and Chiang and Russell (2004). Regarding VRPHTW, 
only Taillard et al. (1997) and Ibaraki et al. (2005) present algorithms that are designed to handle 
soft and hard time windows and also comply with the reporting of solution quality, computation 
time and processor speed.  
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3.0 SOLUTION ALGORITHM FOR VRPHTW AND VRPSTW 

This section first introduces a precise mathematical definition of the VRPHTW and VRPSTW 
studied in this research. The remainder of this section is to describe the solution algorithm. 

3.1 PROBLEM DEFINITION 

The vehicle routing problem with hard time windows (VRPHTW) studied in this research can be 
described as follows.  Let ( , )G V A  be a graph where 0( ,...., )nV v v is a vertex set and

{( , ) : , }i jA v v i j i j V     is an arc set.  Vertex 0v denotes a depot at which the routes of m  

identical vehicles of capacity maxq  start and end.  The set of vertices 1{ ,...., )nC v v  specify the 

location of a set of n  customers. Each vertex in V  has an associated demand 0iq   , a service 

time 0is  , and a service time window [ , ]i ie l . Each arc ( , )i jv v  has an associated constant 

distance 0i jd   and travel time 0i jt  . The arrival time of a vehicle at customer ,i i C  is 

denoted ia and its departure time ib ; the beginning of the service time is denoted iy . The primary 

objective function for the VRPHTW is the minimization of the number of routes. A secondary 
objective is the minimization of total time or distance. The solution to the VRPHTW must satisfy 
the following: 

(a) the value of m  is not specified initially, it is an output of the solution algorithm; 

(b) a route cannot start before 0e  and cannot end after 0l ;  

(c) service to customer i cannot start before ie  and cannot start after il ; 

(d) every route starts and ends at the depot 0v ; 

(e) every customer is visited exactly once by one vehicle; and, 

(f) the total demand of any vehicle route does not exceed the vehicle capacity. 

The VRPSTW is a relaxation of the VRPHTW. With soft time windows, there is an allowable 
violation of time windows denoted max 0P  . The time window of each customer ,i i C can be 

enlarged to # #
max max[ , ] [ , ]i i i ie P l P e l   . In addition, an early penalty ( )e i ip e y  is applied if 

service time starts early (i.e., #[ , ]i i iy e e ). Similarly, a late penalty ( )l i ip y l  is applied if 

service starts late (i.e., #[ , ]i i iy l l ). The primary objective function for the VRPSTW is the 

minimization of the number of routes. A secondary objective is the minimization of the number 
of time-window violations. A third objective is the minimization of total time or distance plus 
penalties for early or late deliveries. It is important to notice that the depot time windows as well 
as the maximum route duration are not changed as a result of the customers’ time-window 
relaxation.  
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It is commonly assumed in the literature that fixed costs associated with each additional route 
(vehicle) outweigh travel time or distance-related costs. As discussed in Section 5, the presented 
IRCI algorithm can be applied to any hard or soft time-window problem with an objective 
function that is a combination of positive functions of fleet size, travel time, travel distance, and 
early/late penalties. 

3.2 SOLUTION ALGORITHMS 

The solution method is divided into two phases: route construction and route improvement. The 
route-construction phase utilizes two algorithms: (a) an auxiliary route-building algorithm and 
(b) a route-construction algorithm. The route-improvement phase also utilizes two algorithms: 
(c) a route-improvement algorithm and (d) a service-time improvement algorithm. Using a 
bottom-up approach, the algorithms are introduced in the following order: (a) the auxiliary 
algorithm, (b) the construction algorithm, and (c) the route-improvement algorithm.   

3.2.1 The Auxiliary Algorithm  

The auxiliary routing algorithm rH can be any heuristic that given a starting vertex, a set of 

customers and a depot location returns a set of routes that satisfy the constraints of the VRPHTW 
or VRPSTW.  

In this research rH is a generalized nearest neighbor heuristics (GNNH). The GNNH has four 

inputs: (a) the weights or parameters for “generalized cost” function denoted by

0 1{ , ,...., }i    , (b) an initial vertex denoted by iv , (c) a set of customers to route denoted by

C , and (d) a depot location denoted by 0v . The GNNH starts every route by finding the 

unrouted customer with the least appending “generalized cost.” At every subsequent iteration, 
the heuristics searches for the remaining unrouted customer with the least appending cost.  

The “generalized cost” function used in this research accounts for geographical and temporal 
closeness among customers, the remaining capacity in the vehicle, and the cost of adding a new 
vehicle if the next customer is infeasible. Let i  denote the initial vertex and let j  denote the 

customer to append next. Let iq  denote the remaining capacity of the vehicle after serving 

customer i . The service at a customer ,i i V  begins at time max( , )i i iy a e . The generalized 

cost of going from customer i  to customer j  is estimated as: 

1 2 3 4g( , , ) ( ( )) ( ( )) ( )ij j i i j i i ij i ji j d a a s l a s t q d               

The parameter 2  takes into account the “slack” between the completion of service at i  and 

earliest feasible beginning of service at j , i.e. max( , )j i i ij ja y s t e   . Following Solomon’s 

approach (1987), the parameter 3  takes into account the “urgency” of serving customer j  

expressed as the time remaining until the vehicle’s last possible start. The parameter 4  is 

introduced in this research and takes into account the capacity slack (vehicle capacity that is still 
unused) of the vehicle after serving customer j .  
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If customer j  is infeasible (i.e., it cannot be visited after serving customer i ), the cost of ending 
customer 'i s route and starting a new one to serve customer j  is estimated as:  

0 1 0 2 3 0 4 maxg( , , ) ( ) ( )j j j j ji j d a l t q d             

The parameter 0  is the cost of adding a new vehicle. The same GNNH can be applied to 

VRPSTW with the addition of two terms. For feasible customers: 

1 2 3 4

5 6

g( , , ) ( ( )) ( ( )) ( )

[ ] [ ]

ij j i i j i i ij i j

j j j j

i j d a a s l a s t q d

e a a l

   

  

           

   
 

The parameters 5  and 6  are added to account for possible early or late service penalties, 

respectively; for infeasible customers 0 is added. With soft time windows, the service at a 

customer ,i i V  begins at time #max( , )i i iy a e . For problems with general time windows (i.e., 

two or more time window intervals), the generalized cost is calculated for each time interval and 
the least expensive interval provides the generalized cost for that particular customer.  

The auxiliary route heuristic is defined as r 0( , , , )iv C vH where 0 1 6{ , ,...., }     are the 

parameters of the generalized cost function, iv  is the vertex where the first route starts, C  is the 

set of customers to route, and 0v is the depot where all routes end and all additional routes start – 

with the exception of the first route that starts at iv .  In all cases, the deltas are positive weights 

that satisfy: 1 2 3 1      and 0 {0,1,..., 6}i i   .  

3.2.2 The Route Construction Algorithm 

In this algorithm, denoted cH , routes are constructed sequentially. Given a partial solution and a 

set of unrouted customers, the algorithm uses the auxiliary heuristic rH to search for the feasible 

least-cost set of routes. The algorithm also uses an auxiliary function w( , ,g, )iv C W that given a 

set of unrouted customers C , a vertex iv C , and a generalized cost function g( , , )i jv v  returns 

a set of vertexes with the lowest generalized costs g( , , )i jv v  for all jv C .  

Functions or Algorithms: 

rH : Route building heuristic. 

w( , ,g, )iv C W : returns set of vertexes with the lowest generalized costs 

Data:  
C : Set of customers to route (not including the depot 0v ) 

 LLimit = initial number of routes or best-known lower bound 
W : Width of the search determined by the user, number of solutions to be built and 

compared before adding a customer to a route 
Δ  :  space of the route heuristic generalized cost-function parameters 
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START cH  
0start v  
0start v  

0bestSequence v  
# #vehicles min veh lowestCost    
Ccopy C  

for each Δ  
   while C   AND #LLimit vehicles  AND # #vehicles min veh do 

   min( ,| |)W W C  

   
* w( , ,g, )C start C W  

    for each *
iv C  

 if r 0c( ) c( ( , , , ))i ibestSequence v v C v  H < lowestCost  then 

   r 0c( ) c( ( , , , ))i ilowestCost bestSequence v v C v   H   

ilowestNext v  

   end if  
 end for  
start lowestNext  

\C C lowestNext  
bestSequence bestSequence lowestNext   

r 0( , , , )R bestSequence lowestNext C v  H  

#vehicles cardinality of the set of routes R  
   end while 
  C Ccopy  
   if # #min veh vehicles  
   # #min veh vehicles  
   end if 
end for 
 
Output:   

Best set of routes R  that serve all C  customers 

END cH  

The conditions in the while-loop that starts in line 7 (i.e., while C   AND …) reduce the 
number of unnecessary computations after a lower bound has been reached or when a particular 
instance of the cost parameters Δ are producing a solution with a larger number of routes. 

The generalized cost function g  that is used in rH  must not be confused with the objective cost 

function c  that is used in cH  or the improvement heuristic iH ; the latter cost function is the 

sum of the accrued vehicle, distance, time or penalty costs, as indicated in the objective function.  
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3.2.3 The Route-Improvement Algorithm 

After the construction is finished, routing costs can be reduced using a route-improvement 
algorithm. The improvement algorithm works on a subset of routes S . In this algorithm two 
functions are introduced. The function k ( , , )p ir S p  returns a set of p  routes that belong to S  

and are located in the proximity of route ir . In this research, the distance between routes’ centers 

of gravity was used as a measure of geographic proximity. By definition, the distance of route ir  

to itself is zero. Hence, the route ir  is always included in the output of the set function

k ( , , )p ir S p . The function k ( , )s R s  orders the set of routes R  from smallest to largest based on 

the number of customers per route and then returns a set of 1s   routes with the least number of 

customers (e.g., k ( ,1)s R  will return the route with the least number of customers). If two or 

more routes have the same number of customers, ties are solved drawing random numbers. To 
simplify notation the term ( )C S  is the set of customers served by the set of routes S .  

Functions or Algorithms: 

cH : Route building heuristic, k s  and k g : route selection functions 

Data:  
W : Number of solutions to be built and compared in the construction heuristic 
 :  Generalized cost parameters of the auxiliary route heuristic  
s :  Number of routes potentially considered for improvement 

p : Number of neighboring routes to ir  that are reconstructed 

R : Set of routes 

LLimit = lowest number of vehicles or stop condition for the cH heuristic 

 START iH  
min( ,| | 1)s s R   
min( , )p s p  

k ( , )sS R s R   

' \S R S  
while | | 1S   do 

* k ( ,1)sr S  
*k ( , , )pG r S p  

c r' ( , , , , , ( ), )G W s p C G LLimit H H  

if c( ')G < c( )G  then 
 \R R G  
 'R R G   

\S S G  
 'S S G   
 end if 

k ( ,1)sr S  
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\S S r  
if | ' | 0S  then 

 ' k ( ',1)sr S  
'S S r   

' '/ 'S S r  
  min( ,| |)s s S  

 min( , )p s p  
end while 

Output:   
R  set of improved routes 

END iH  
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4.0 EXPERIMENTAL SETTING 

As seen in the previous section, at its core the IRCI algorithm is a construction algorithm where 
routes are sequentially built and improved. This section compares the results of the IRCI 
algorithm against other solution methods that report solution quality and computation time on 
Salomon benchmark problems for the VRPHTW and VRPSTW. The comparison only includes 
other construction algorithms or solution approaches that were designed for both hard and soft 
time windows.  

The well-known 56 Solomon benchmark problems for the VRPHTW are based on six groups of 
problem instances with 100 customers. The six problem classes are named C1, C2, R1, R2, RC1, 
and RC2. Customer locations were randomly generated (problem sets R1 and R2),   clustered 
(problem sets C1 and C2), or mixed with randomly generated and clustered customers (problem 
sets RC1 and RC2). Problem sets R1, C1, and RC1 have a shorter scheduling horizon, tighter 
time windows, and fewer customers per route than problem sets R2, C2, and RC2, respectively.  

Table 1. VRPHTW Results for Construction Algorithms vs. IRCI 
Average Number of Vehicles by Problem Class 

Method  R1  R2  C1  C2  RC1  RC2 

(1) Solomon (1987)  13.58  3.27  10.00  3.13  13.50  3.88 

(2) Potvin et al.  (1993)  13.33  3.09  10.67  3.38  13.38  3.63 

(3) Ioannou et al. (2003)  12.67  3.09  10.00  3.13  12.50  3.50 

(4) IRCI  12.50  3.09  10.00  3.00  12.00  3.38 

Average Distance                   

Method  R1  R2  C1  C2  RC1  RC2 

(1) Solomon (1987)  1,437  1,402  952  693  1,597  1,682 

(2) Potvin et al.  (1993)  1,509  1,387  1,344  798  1,724  1,651 

(3) Ioannou et al. (2003)  1,370  1,310  865  662  1,512  1,483 

(4) IRCI  1,262  1,171  872  656  1,420  1,342 

Computation time for all 56 problems: (1) DEC 10, 1 run, 0.6 min.; (2) IBM PC, 1 run, 19.6 min.; 
(3) Intel Pentium 133 MHz, 1 run, 4.0 min. (4) Intel Pentium M 1.6 Mz, 10.9 min 

 

Table 1 presents the summary of the results when construction heuristics for the VRPHTW are 
compared. Against the three construction heuristics proposed by Solomon, Potvin et al. and 
Ioannou et al., the IRCI algorithm outperforms them all in classes R1, C2, RC1, and RC2 while 
tying with the best in classes R2 and C1. Distance-wise, the performance of the IRCI algorithm 
is superior in all six classes of problems. The IRCI produces results in a relatively short time, 
less than12 seconds per 100 customer problems on average; however, the other simpler 
algorithms have shorter running times. The IRCI results presented in Table 1 and 2 were 
obtained first running a VRPSTW version of the Solomon instances to obtain a set of lower 
bounds and STW results, and then using those bounds to solve the VRPHTW. The reported time 
for the IRCI corresponds to the total time to solve both types of problems for all 56 Solomon 
instances. The other references solve only the VRPHTW type.  
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Table 2. VRPHTW Results for Metaheuristic Algorithms vs. IRCI 
Average Number of Vehicles by Problem Class 

Method  R1  R2  C1  C2  RC1  RC2 

(1) Taillard et al. (1997)  12.64  3.00  10.00  3.00  12.08  3.38 

(2)  Ibaraki et al. (2002)  11.92  2.73  10.00  3.00  11.50  3.25 

(3) IRCI  12.50  3.09  10.00  3.00  12.00  3.38 

Average Distance by Problem Class    

Method  R1  R2  C1  C2  RC1  RC2 

(1) Taillard et al. (1997)  1,220.4  1,013.4  828.5  590.9  1,381.3  1,198.6 

(2)  Ibaraki et al. (2002)  1,217.4  959.1  828.4  589.9  1,391.0  1,122.8 

(3) IRCI  1,261.6  1,170.8  871.8  655.6  1,419.8  1,342.4 

Computation time for all 56 problems: (1) Sun Sparc 10, 261  min.;  (2) Pentium III 1 GHz, 250 
min.; (3) Intel Pentium‐M 1.6 Mhz 10.9 min 

 

Table 2 presents the summary of the results when the IRCI algorithm is compared against two 
metaheuristics presented in the literature review that were explicitly designed to solve both soft 
and hard time windows: the tabu search heuristics of Taillard et al. (1997) and the composite 
metaheuristic of Ibaraki et al. (2005). As in Table 1, the reported time for the IRCI corresponds 
to the total time to solve both types of problems for all 56 Solomon instances. The other 
references solve only the VRPHTW type. 

When compared to the Tabu heuristic of Taillard et al., with its 20 iterations, the results are 
similar, though the IRCI is faster in computation time even accounting for the different 
processing speed. The solution method proposed by Ibaraki et al. has a very good solution 
quality, but at the expense of lengthy computation times.  

In the soft time-window benchmark problems, the results of the IRCI are compared against the 
results of prerequisites: Balakrishnan (1993) – denoted BAL in Tables 3 and 4 – and  Chiang and 
Russell (2004). The latter has two solution methods: tabu search and advance recovery, which 
are denoted Tables 3 and 4 by the initials TB and AR, respectively.   

Balakrishnan (1993) and Chiang and Russell (2004), the only references with time and cost 
results for a standardized set of problems, solve a subset of Solomon problems setting a maxP   

that can be either 10, 5, or 0 % of the total route duration 0 0( )l e . Balakrishnan (1993) and 

Chiang and Russell (2004) also set a maximum vehicle waiting time limit maxW . The maximum 

waiting time limits the amount of time that a vehicle can wait at a customer location before 
starting service (i.e., a vehicle can arrive to customer i  only after max max( )ie P W  ). Since the 

VRPSTW is a relaxation of the VRPHTW, a maximum waiting time constraint maxW  is clearly 

opposed to the spirit of the VRPSTW since a new constraint completely unrelated to time 
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windows is added2. Despite these shortfalls, a max 10%W   constraint is added, mainly to 

facilitate comparisons in a level playing field. 

 

Table 3. VRPSTW Results for R1 Problems. 
Wmax 10% 10% 

Pmax 0% 10% 

Method 
(1) 
BAL 

(2) 
TS 

(3) 
AR 

(4) 
IRCI 

(1) 
BAL 

(2) 
TS 

(3) 
AR 

(4) 
IRCI 

R
10

1 

# Veh. 19 19 19 19 15 14 12 13 

Distance 1,915 1,710 1,692 1,639 1,832 1,388 1,212 1,493 

% HTW 100 100 100 100 62 49 8 39 

R
10

2 

# Veh. 19 17 17 17 14 13 10 12 

Distance 1,890 1,520 1,511 1,481 1,569 1,266 1,173 1,463 

% HTW 100 100 100 100 81 59 33 60 

R
10

3 

# Veh. 14 13 13 13 11 10 11 

Distance 1,225 1,304 1,284 1,657 1,063 1,013 1,274 

% HTW 100 100 100 83 65 58 73 

R
10

9 

# Veh. 13 13 12 12 12 11 10 11 

Distance 1,492 1,280 1,165 1,240 1,431 1,102 1,005 1,280 

% HTW 100 100 100 100 90 72 47 82 

A
V

E
R

A
G

E
 

# Veh. 17.0 15.8 15.3 15.3 13.5 12.3 10.5 12.3 

Distance 1,766 1,434 1,418 1,411 1,622 1,205 1,101 1,467 

% HTW 100 100 100 100 79.0 61.2 36.5 66.3 

Computation time for each STW problem: (1) 25Mhz 80386, 17 to 73 seconds; (2) 
2.25 Ghz Athlon, 52 to 82 seconds; (3) 2.25 Ghz Athlon, 448 to 692 seconds; (4) 1.6 
Ghz Pentium-M, 4.5 to 4.9 seconds

 

Table 3 shows the results for the R1 benchmark problems with soft time windows; results for 

max 10%P   and max 0%P   are shown. The latter is equivalent to the VRPHTW problem, but 

with the addition of the max 10%W   constraint. In addition to the number of vehicles and 

distance, Tables 3 and 4 also show the number of customers where the time windows have NOT 
been relaxed (%HTW); a higher %HTW indicates a better solution quality. As expected, when 

max 0%P   the corresponding % HTW are all equal to 100 because there is no room to relax the 

customers' time windows.  

                                                 
2 Further, if there are carrier’s costs associated with waiting time (parking), these costs can be incorporated into the 
routing cost function c  rather than imposing a hard-time waiting constraint, which is not usually found in practical 

problems.  
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It can be observed that the IRCI algorithms perform very well against Balakrishnan’s heuristic. 
Against tabu search (TS) the IRCI is almost tied, but it performs better in terms of customers that 
do not have time-window violations. The IRCI solutions are not as good as the advance recovery 
(AR) method. However, regarding computation times, the IRCI is undoubtedly faster than the TS 
and without a doubt much faster than the AR method.  

 Table 4. VRPSTW Results for RC1 Problems. 
Wmax 10% 10% 

Pmax 0% 10% 

Method 
(1) 
BAL 

(2) 
TS 

(3) 
AR 

(4) 
IRCI 

(1) 
BAL 

(2) 
TS 

(3) 
AR 

(4) IRCI 

R
C

10
1 # Veh. 16 15 15 15 14 15 11 14 

Distance 2,012 1,719 1,651 1,644 1,795 1,569 1,275 1,839 

% HTW 100 100 100 100 61 62 27 73 

R
C

10
2 # Veh. 14 13 13 13 13 12 11 13 

Distance 1,808 1,519 1,530 1,575 1,719 1,307 1,222 1,632 

% HTW 100 100 100 100 83 68 56 81 

R
C

10
3 # Veh. 12 11 11 11 12 10 10 11 

Distance 1,679 1,293 1,284 1,318 1,530 1,228 1,119 1,400 

% HTW 100 100 100 100 92 85 65 92 

R
C

10
6 # Veh. 12 12 12 13 12 10 12 

Distance 1,445 1,409 1,412 1,620 1,262 1,160 1,487 

% HTW 100 100 100 100 97 77 49 92 

                    

A
V

E
R

A
G

E
 

# Veh. 14.0 12.8 12.8 12.8 13.0 12.3 10.5 12.5 

Distance 1,833 1,494 1,469 1,488 1,666 1,342 1,194 1,590 

% HTW 100 100 100 100 83.3 73.0 49.2 84.5 

Computation time for each STW problem: (1) 25Mhz 80386, 17 to 73 seconds; (2) 2.25 
Ghz Athlon, 52 to 82 seconds; (3) 2.25 Ghz Athlon, 448 to 692 seconds; (4) Intel Pentium-M 
1.6 Mhz 4.5 to 4.9 seconds 

 

The same trends are repeated in the RC1 benchmark problems with soft time windows. The IRCI 
outperforms Balakrishnan’s and is competitive with the tabu search (TS) and advance recovery 
(AR) approach, but at significantly faster running times.  

It can be observed that, on average, the IRCI performs well in benchmark instances against 
simpler and more complex algorithms for hard and soft time windows. The average CPU times 
are more than reasonable given the relatively modest processing capabilities of a 1.6 Mhz 
Pentium M laptop. In general, computation times are difficult to compare due to the differences 
in processing power. Readers who are interested in learning more are referred to Dongarra’s 
work (2007), which includes the results of a set of standard programs to measure processing 
power and to compare the processing power of different machines. However, comparisons are 
not straightforward because not all of the processors are included, and there are always 
differences in codes, compilers, and implementation computational efficiency.  
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5.0 DISCUSSION 

The relative simplicity of the IRCI allows for a straightforward algorithmic analysis. The 
auxiliary heuristic rH is called by the construction algorithm no more than | |nW Δ  times; 

where n  is the number of customers. Hence, the asymptotic number of operations of the 

construction algorithm is of order r( | | ( ( ) ) )nW O nΔ H  where r( ( ) )O nH  denotes the 

computational complexity of the auxiliary algorithm to route n customers.  

The improvement procedure calls the construction procedure a finite number of times. The 
number of calls is bounded by the number of routes | |R . Further, the called computational time 

of the construction algorithm is r( | | ( ( ) ) )mW O mΔ H  where m n  because only a subset of 

routes is iteratively improved.  

It is clear that the complexity and running time of the auxiliary heuristic rH will have a 

substantial impact on the overall running time. Hence, a generalized nearest neighbor heuristics 
of (GNNH) is used due to its reduced number of operations and computation time.  In particular, 
if the GNNH has 2( )O n  and W n , then the worst-case complexity for the IRCI algorithm is of 

order 3( )O n .   

To test the average complexity, instances with different numbers of customers are run. Firstly, 
the first 25 and 50 customers of each Solomon problem are taken to create instances with n  25 
and n  50, respectively. Secondly, to create an instance with n  200 customer, for each 
customer in the original Solomon problem a “clone” is created but with new coordinates. In 
addition, problem characteristics as clustered, random or random-clustered are retained.  

The summary results for the 56 Solomon problems are shown in Table 10. The results are 
expressed as the ratio between each average running time and the running time for n  25. To 

facilitate comparisons, the corresponding increases in running time ratios for 2( )O n  and 3( )O n  
are also presented. The results indicate that the average running time is increasing by a factor of

2( )O n  as expected from the complexity analysis and the last column of Table 10. 

Table 5. VRPTW Average Run Time Ratios – VRPHTW 
(1) 

 
n  
 

(2) 
 

2( )O n  

(3) 
 

3( )O n  

(4) 
Run 
Time 

Ratio* 

(5)= (4)/(3)*100 
 

% 3( )O n  

25  1  1  1.0  100% 

50  4  8  2.9  36% 

100  16  64  15.0  23% 

200  64  512  86.3  17% 

* The ratio of running times is taking the run time for n=25 as a base. 
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The proposed IRCI approach can accommodate cost functions that cover most practical 
applications. The cost functions must be positive functions of fleet size, distance, time or 
penalties.  Cost functions can be asymmetrical (e.g., p ( ) p ( )e lt t  where t accounts for the early 

or late time). Additionally, cost functions are not required to be linear or identical. Similarly, 
symmetry is not required and dij≠ dji  or  tij≠ tji does not affect the complexity of the algorithm. 
That is, the corresponding penalty function can be non-convex and discontinuous as long as it is 
piecewise linear. In addition, customers with two or more time windows can be easily included 
in the auxiliary route construction algorithm. In addition, the number of routes m  is not specified 
initially and it is an output of the solution algorithm. The bounds for the VRPHTW can be 
generated endogenously solving a relaxed VRPSTW beforehand.  

The relatively simplicity and generality of the IRCI are important factors in real-world 
applications. Although solution quality and computation times are two key factors to evaluate 
vehicle routing heuristics, for practical implementations it is also crucial that algorithms are 
relatively simple and flexible (Cordeau et al., 2002). According to Cordeau et al (2002) the 
majority of the commercial software and in-house routing programs are still based on somewhat 
simple and unsophisticated methodologies dating back to the 1960s.  

Some of the reasons that explain this status quo are (a) dispatchers’ preference for 
algorithms/programs that are highly interactive and allow for manual improvements and the 
manipulation of constraints and customer priorities; (b) better results on benchmark problems are 
usually obtained at the expense of too many parameters or complicated coding that lacks 
flexibility to accommodate real-life constraints; (c) dispatchers may find algorithms with too 
many parameters difficult to calibrate or even understand; and (d) solution approaches that are 
markedly tailored to perform well on the benchmark problems may lack generality and 
robustness in real-life problems. As indicated by Golden et al. (1998), algorithms should also be 
compared not only by the number of parameters but also by how intuitive and reasonable these 
parameters are from a user’s perspective.  
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6.0 LITERATURE REVIEW FOR THE TDVRP 

Unlike widely studied versions of the VRP (i.e., capacitated VRP or time windows VRP), time-
dependent problems have received considerably less attention. The time-dependent VRP was 
first formulated by Malandraki and Daskin (1989, 1992) using a mixed-integer, linear 
programming formulation. A greedy nearest-neighbor heuristic based on travel time between 
customers was proposed, as well as a branch-and-cut algorithm to solve TDVRP without time 
windows. Hill and Benton (1992) considered a node-based, time-dependent vehicle routing 
problem (without time windows). Computational results for one vehicle and five customers were 
reported. Ahn and Shin (1991) discussed modifications to the savings, insertion, and local-
improvement algorithms to better deal with TDVRP. In randomly generated instances, they 
reported computation time reductions as a percentage of “unmodified” savings, insertion, and 
local-improvement algorithms. Malandraki and Dial (1996) proposed a “restricted” dynamic 
programming algorithm for the time-dependent traveling salesman problem (i.e., for a fleet of 
just one vehicle). A nearest-neighbor type heuristic was used to solve randomly generated 
problems.  

An important property for time-dependent problems is the First In - First Out (FIFO) property 
(Ahn and Shin, 1991, Ichoua et al., 2003). A model with a FIFO property guarantees that if a 
vehicle leaves customer i to go to customer j at any time t, any identical vehicle with the same 
destination leaving customer i at a time t+, where  >0, will always arrive later. This is an 
intuitive and desirable property, though it is not present in all models. Earlier formulations and 
solutions methods, Malandraki and Daskin (1989, 1992), Hill and Benton (1992), and 
Malandraki and Dial (1996), do not guarantee the FIFO property as reported by Ichoua et al. 
(2003). Later research efforts have modeled travel-time variability using “constant speed” time 
periods which guarantees the FIFO property, as shown by Ichoua et al. (2003). 

Ichoua et al. (2003) proposed a tabu search-solution method, based on the work of Taillard et al. 
(1997),  in order to solve time-dependent vehicle routing problems with soft time windows. 
Ichoua et al. showed that ignoring time dependency (i.e., using VRP models with constant speed) 
can lead to poor solutions. Ichoua et al. tested their method using the Solomon problem set, soft 
time windows, three time periods, and three types of time-dependent arcs. The objective was to 
minimize the sum of total travel time plus penalties associated with time-window violations. 

Fleischmann et al. (2004) utilized route-construction methods already proposed in the literature, 
savings and insertion to solve uncapacitated time-dependent VRP with and without time 
windows. Fleischmann et al. tested their algorithms in instances created from Berlin travel-time 
data. Jung and Haghani proposed a genetic algorithm to solve time-dependent problems (Jung 
and Haghani, 2001, Haghani and Jung, 2005). Using randomly generated test problems, the 
performance of the genetic algorithm was evaluated by comparing its results with exact solutions 
(up to nine customers and 15 time periods) and a lower bound (up to 25 customers and 10 time 
periods). 

More recently Van Woensel et al. (2008) used a tabu search to solve the capacitated vehicle 
routing problem with time-dependent travel times. To determine travel speed, approximations 
based on queuing theory and the volumes of vehicles in a link were used. Van Woensel et al.  
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solved capacitated VRP (with no time windows) for between 32 and 80 customers. Donati et al. 
(2008) proposed a solution adapting the ant-colony heuristic approach and a local search 
improvement approach that stores and updates the slack times or feasible delays. The heuristic 
was tested using a real-life network in Padua, Italy, and some variations of the Solomon problem 
set.  

Only two papers use well-known benchmark problems with time windows. Ichoua et al. (2003) 
used the widely known Solomon problems for the VRP with time windows. However, capacity 
constraints were not considered, optimal fleet size was given, and no details were provided 
regarding how links were associated with “categories” that represent differences in the urban 
network (i.e., main arteries, local streets, etc.). Donati et al. (2008) also used Solomon instances; 
however, the results cannot be compared with previous results by Ichoua et al (2003) because a 
different time-speed function was used and capacity constraints were considered. In addition, the 
exact instances used by Donati et al. (2008) cannot be reconstructed because the different travel 
speeds were randomly assigned to arcs. Therefore, no study can be swiftly replicated and 
solution qualities and computation times cannot be compared. 

Comparisons are also problematic because objective functions and routing constraints for time-
dependent problems are often dissimilar, unlike VRPTW research where the objective function is 
hierarchical and usually considers fleet size (primary objective), distance (secondary objective), 
and total route duration. Ichoua et al. (2003) study the TDVRP with soft time windows and 
consider as the objective function total duration plus lateness and assume that the optimal fleet 
size is given a priori. Haghani and Jung (2005) minimize the sum of costs associated with 
number of vehicles, distance, duration and lateness.  Fleischmann et al. (2004) minimize number 
of vehicles and total duration. Donati et al. (2008) optimizes fleet size (primary objective) and 
total route duration (secondary objective).  

Benchmark instances that can be clearly and unmistakably replicated by future researchers are 
detailed in Section 6.0. The next section introduces mathematical notations and defines the 
problem under study. 

  



29 
 

7.0 TDVRP PROBLEM DEFINITION 

Using a traditional flow-arc formulation (Desrochers et al., 1988), the time-dependent vehicle 
routing problem with hard time windows studied in this research can be described as follows. Let 

( , )G V A  be a graph where {( , ) : , }i jA v v i j i j V     is an arc set and the vertex set is

0 1( ,...., )nV v v  . Vertices 0v  and 1nv   denote the depot at which vehicles of capacity maxq  are 

based. Each vertex in V  has an associated demand 0iq   , a service time 0ig  , and a service 

time window [ , ]i ie l ; in particular the depot has 0 0g   and 0 0q  . The set of vertices 

1{ ,...., }nC v v  specifies a set of n  customers. The arrival time of a vehicle at customer ,i i C  is 

denoted ia and its departure time ib . Each arc ( , )i jv v  has an associated constant distance 0i jd   

and a travel time ( ) 0i j it b   
which is a function of the departure time from customer i . The set of 

available vehicles is denoted K . The cost per unit of route duration is denoted tc ; the cost per 

unit distance traveled is denoted dc . 

The primary objective function for the TDVRP is the minimization of the number of routes; the 
optimal number of routes is unknown. A secondary objective is the minimization of total time or 
distance. There are two decision variables in this formulation; k

ijx  is a binary decision variable 

that indicates whether vehicle k travels between customers i  and j . The real decision variable 
k
iy  indicates service start time for customer i served by vehicle k . The TDVRP is formulated as 

follows: 

0
k

j
k K j C

minimize x
 
 ,         (1) 

1 0 0
( , )

( )k k k k k
d ij ij t n j

k K i j A k K j C

minimize c d x c y y x
   

    ,     (2) 

subject to: 

max
k

i ij
i C j V

q x q
 

  , k K          (3) 

1k
ij

k K j V

x
 

 , i C           (4) 

0k k
il lj

i V i V

x x
 

   , ,l C k K           (5) 

0 1,0, 0k k
i n ix x   , ,i V k K           (6) 

0 1k
j

j V

x


 , k K           (7) 
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, 1 1k
j n

j V

x 


 , k K           (8) 

k k
i ij i

j V

e x y


 , ,i V k K            (9) 

k k
i ij i

j V

l x y


 , ,i V k K            (10) 

, ,( ( ))k k k k
i j i i i j i i jx y g t y g y    , ( , ) ,i j A k K        (11) 

{0,1}k
ijx  , ( , ) ,i j A k K           (12) 

k
iy  , ,i V k K            (13) 

The primary and secondary objectives are defined by (1) and (2), respectively. The constraints 
are defined as follows: vehicle capacity cannot be exceeded (3); all customers must be served (4)
; if a vehicle arrives at a customer it must also depart from that customer (5); routes must start 
and end at the depot (6); each vehicle leaves from and returns to the depot exactly once, (7) and 
(8), respectively; service times must satisfy time-window start (9) and ending (10) times; and 
service start time must allow for travel time between customers (11). Decision variables type and 
domain are indicated in (12) and (13).  

In the TDVRP with soft time windows, customer service time windows are defined by two 
intervals [ , ]i ie l  and # #[ , ]i ie l  where # #,i i i ie e l l  . The interval # #[ , ]i ie l  indicates the interval of 

time where service can start without incurring a penalty. The interval [ , ]i ie l  indicates the 

interval of time where service can start, but there are additional costs, ec  or lc , if service starts 

early or late, respectively (i.e., during the early interval #[ , ]i ie e  or during the late interval #[ , ]i il l

). Defining e
ix  and l

ix as auxiliary binary variables that indicate whether a penalty is incurred, the 

objective functions can be expressed as follows: 

l
i

i C

minimize x

 , i C          (14) 

e
i

i C

minimize x

 , i C          (15) 

minimize  

# #
1 0 0

( , )

( ) ( ) ( )k k k k k k k
d ij ij t n j e i i l i l

k K i j A k K j C k K i C k K i C

c d x c y y x c e y c y e 


       

           (16) 

subject to 

#( )l k l
i i l ix y e x           (17) 
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#( )e k e
i i i ix e y x           (18) 

{0,1}e
ix  , {0,1}l

ix           (19) 

The primary objective function for the TDVRP with soft time windows is still the minimization 
of the number of routes. Using a customer-service perspective ranking, a secondary objective is 
the minimization of the number of late penalties3 (14); a tertiary objective is the minimization of 
early penalties (15); and a final objective is the minimization of the combined distance, route 
duration, and soft time-window costs (16). Logical constraints (17) and (18) are used to 
determine if service times must be penalized due to early or late time-window utilization, 
respectively.  

It is important to notice that the depot time windows as well as the maximum route duration are 
not changed as a result of the customers’ time-window relaxation. The TDVRP with hard time 
windows is a special case of the soft time-window formulation. If #

i ie e  and #
i il l , then (14) 

and (15) are redundant and (16) is reduced to (2). The travel-time speed in any arc is a positive 
and continuous function of time, ( ) 0i js t  , which guarantees the FIFO property (Ahn and Shin, 

1991). In addition, in the presented TDVRP travel times may be asymmetrical, i.e. 

, ,( ) ( )k k
i j i j i jt y t y even if k k

i jy y .   

Unlike previous formulations of the TDVRP (Malandraki, 1989, Jung and Haghani, 2001), time 
is not partitioned into discrete intervals. Furthermore, the decision variable k

iy  allows for waiting 

at customer i ; service start time may not necessarily be the same as arrival time. For example, if 
the vehicle arrives too early, it can wait at the customer location to avoid early service penalties. 
However, waiting may have an impact on future travel times. The following two sections 
describe a solution approach to tackle the TDVRP. 

  

                                                 
3 Although the cost of early and late service times is application dependent, in numerous real-life 
problems early services are preferred over late services (e.g., blood transport, just-in-time production 
systems, express mail delivery, etc.). 
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8.0 TDVRP SOLUTION APPROACH 

Time-dependent travel times require significant modifications to local search approaches and 
metaheuristics that have been successfully applied to the traditional constant time VRPTW 
(Braysy and Gendreau, 2005a, Braysy and Gendreau, 2005b). A customer insertion or a local 
improvement not only influences the arrival and departure times of a “local” subset of customers, 
but it may also significantly change travel times among “local” customers. Furthermore, the 
impact of altering a routing sequence is not just “local,” but potentially affects all subsequent 
travel times. Changes in travel times have a subsequent impact on feasibility. To a certain 
degree, introducing soft time windows ameliorates the computational burden and loss of 
efficiency introduced by time-dependent travel times. However, hard time constraints are more 
difficult to accommodate and this is reflected in the literature review. There are no published 
results in a set of standard benchmark problems with hard time windows and time-dependent 
travel times.  

The presented IRCI solution approach for the TDVRP employs algorithms that do not require 
modifications to accommodate constant or time-dependent travel speeds. The construction and 
improvement procedure are sequential and originally designed at the route level (i.e., it is not a 
local improvement). Hence, the presented algorithm produces routes for time-dependent vehicle 
routing problems with hard and soft time windows with similar computation times. This research 
builds upon previous work to solve the VRP with soft and hard time windows presented in 
Section 3.0. 

8.1 SOLUTION ALGORITHMS 

The solution method to minimize fleet size is divided into two phases and algorithms: route 
construction and route improvement like in the constant-speed case. Travel-time calculations are 
necessary to execute construction and improvement algorithms. In addition, due to the nature of 
the TDVRP, advancing or delaying service time may have a favorable impact on future travel 
times and costs. Hence, these two additional algorithms are described in this section to calculate 
travel times and to optimize service times given a set of routes.  

8.1.1 Algorithm Used to Calculate Travel Times   

Unlike the algorithms presented in Section 8.0, the calculation of travel times is dependent on the 
specific data format and speed functions. Travel times from any two given customers i and j are 
calculated using an iterative forward calculation from the arrival time at customer i. The depot 
working time 0 0[ , ]e l  is partitioned into p  time periods 1 2, , ..., pT T TT ; each period kT  has an 

associated constant travel speed ks . The algorithm is adapted from Ichoua et al. (Ichoua et al., 

2003): 

Data:  

1 2, , ..., pT T TT , and corresponding travel speeds 

, ,i j iv v a :  given any two customers and the arrival time to customer i  
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START 

if  ia < ie  then 

 i i ib e g   

else i i ib a g   
end if   
find k, k i k

t b t    
/j i ij ka b d s   

,ij id d t b   
while j k

a t   do 

( ) kk
d d t t s     

k
t t  

1/j ka t d s    

1k k 
 

end while
 
 

Output:   

ja , arrival time at customer j 

END rH  

The algorithm is guaranteed to find the arrival time in no more than p iterations.  

8.1.2  Service Time Improvement 

The previous algorithms deal with the minimization of costs via sequencing of customers and 
their assignment to routes. The yH algorithm aims at reducing costs by improving customer 

service start times for a given set of routes produced by iH .  

For any given route, a dynamic programming approach can be used to determine the optimal 
service start times k

iy  for customer i belonging to route k given the arrival time ia : each 

customer is associated with a stage, the decision variable is the service time k
iy , and the state is 

defined by the arrival time ia .  For any given route k defined by the sequence of customers

(0,1,2,..., , 1)q q   where 0 and 1q   denote the depot. If the cost to minimize is the sum of 
distance traveled, route durations, and soft time-window utilization given by expression (16), the 
cost function, ( , )q qy a , for the last customer is 4: 

# #
, 1 1( , ) ( ) ( ) ( )k k

q q d q q t q q e q q l q ly a c d c a y c e y c y e  
            (20) 

                                                 
4 The distance term can be eliminated from (20) because it is not affected by service time.  
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where 1 , 1( )q q q q q q qa y g t y g      and subject to q q ql y a  . 

Using a backward solution approach, for each customer it is possible to define a stage cost and 
an optimal cost-to-go function. Further, for each customer, it is possible to limit the feasible 
space of customer service time to a closed time interval.  For a customer i  belonging to route k , 

let k
iy and k

iy  denote, respectively, the earliest and latest feasible service times.   

Lemma 1: given any route k , the optimal service times at any customer i  belong to the time 

interval [ , ]k k
i iy y   and can be calculated using a forward and backward algorithm.  

Proof:  starting from the depot, earliest possible arrival at customer 1 is 1 0 01 0( )a e t e  due to 

FIFO property; earliest service time at customer 1 is 1 1 1max( , )ky a e ; earliest departure at 

customer 1 is 1 1
ky g .  Earliest possible arrival at customer 2  is 2 1 1 1,2 1 1( )k ka y g t y g    due 

to FIFO property; earliest service time at customer 2  is 2 2 2max( , )ky a e ; earliest departure at 

customer 2 is 2 2
ky g  and so on until reaching the last customer. 

Starting from the depot, latest possible departure time from customer q  is: 

, 1 1arg max , . .( ( ) )y q q qy s t y t y l    ; due to the continuous speed function and the FIFO property 

this value is unique. The latest possible service time at customer q  is min( , )k
q q qy y g l  . 

Latest possible departure time from customer 1q  is 1,arg max , . .( ( ) )k
y q q qy s t y t y y   ; latest 

possible service time at customer 1q  is 1 1 1min( , )k
q q qy y g l     and so on until reaching the 

first customer. 

Based on the workings of the algorithms , ,r cH H and iH  it is possible to state properties that 

simplify the determination of service start times.  

Property 1:  Given a route k  outputted by iH , the customer service times are the earliest 

feasible times.  

Proof: Due to the workings of the rH algorithm, the service at any customer i  in route k  begins 

at the earliest feasible time, which is max( , )k k
i i i iy y a e  , and the departure time is given by

k
i iy g .  Due to the FIFO property, for the given routes, customers cannot be serviced earlier 

than the provided service start times.  

Property 2: Given a route k  outputted by iH , total route duration cannot be reduced.   

Proof:  Due to Property 1, service times cannot be advanced. Then, the FIFO property 
guarantees that route duration cannot be reduced further unless the set of routes is altered. The 
arrival times at each customer are the earliest possible for the sequence given by route k .  
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Property 3: Given a route k  outputted by iH , a TDVRP with hard time windows requires no 

service time optimization for route k . 

Proof: Due to Property 2, route durations cannot be reduced. Start times do not affect distance 
traveled and there are no soft time-window penalties or costs to be reduced. Hence, altering 
service start time will not reduce any objective function.  

Property 4: Given a route k  outputted by iH , if a customer uses the “late” soft time window, 

no improvement can be made by changing the service time.  

Proof:   Due to property 1, the service time cannot be advanced without losing feasibility. If the 
service time is delayed, there is a greater late penalty. Hence, if a customer in the route outputted 
by iH  uses a late time window, the provided service time for that customer cannot be improved.  

Corollary:  In a route outputted by iH , the service time-optimization problem can be 

decomposed into smaller problems delimited by customers using “late” soft time windows.   

8.1.3 Service Time Improvement Algorithms  

For each customer that uses an early soft time window, the ybH algorithm attempts to reduce 

early soft time-window usage without allowing the introduction of service delays that increase 
late time-window usage. This algorithm operates backwards. For the sake of presentation 
simplicity, periods of constant travel time are assumed. The depot working time 0 0[ , ]e l  is 

partitioned into p  time periods 1 2, , ..., pT T TT ; each period kT  has an associated constant 

travel speed ks  in the time interval [ , ]k k k
T t t .   

Data:  
T and S : time intervals and speeds 

, ,i j jv v y : two customers served in this order in route k , k
jy
 
is the

 
current service time 

at customer j  
START ybH  

 

if  # &k k k
j j j jy l y y   then 

 #min( , )k k
j j jy l y

 
end if  
find k, k

k j k
t y t   

/k
i j ji kb y d s   

, k
ji jd d t y   

while i kb t   do 
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( )k kd d t t s     

kt t  

1/i kb t d s    

1k k   

end while
  

min( , )k
i i i iy b g l   

Output:   

,k k
j iy y  

END ybH  

 
After early time windows have been reduced, a final task is to reduce route duration without 

increasing the number of soft or late time windows. The following forward algorithm, yfH , 

reduces route duration without increasing soft time windows. 
 
Data:  

T and S : time intervals and speeds 

, ,i j jv v y : two customers served in this order in route k , k
iy

 
is the

 
current service time at 

customer j  
 

START yfH

if  # &k k k
i j i iy e y y   then 

 #max( , )k k
i i iy e y

 
end if  
find k, k

k i k
t y t    

/k
j i ij ka y d s   

, k
ij id d t y   

while j k
a t   do 

( ) kk
d d t t s     

kt t  

1/j ka t d s    

1k k   

end while
  

max( , )k
j j jy a e
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Output:   

,k k
i jy y  

END yfH  

Both algorithms try to reduce the interval [ , ]k k
i iy y  where the optimal service start time is found for a 

given a route k .  
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9.0 TDVRP PROPOSED BENCHMARK PROBLEMS 

As mentioned in Section 2.0, results provided in previous research efforts cannot be compared in 
terms of solution quality or computational time. This is revealing of a still incipient body of work 
for the TDVRP. The proposed set of benchmark problems are based on the classical instances of 
the VRP with time windows proposed by Solomon (1987). The Solomon instances include 
distinct spatial customer distributions, vehicles’ capacities, customer demands, and customer time 
windows. These problems have not only been widely studied in the operations research literature, 
but the datasets are readily available5.  

The well-known 56 Solomon benchmark problems for vehicle routing problems with hard time 
windows are based on six groups of problem instances with 100 customers. The six 
problem classes are named C1, C2, R1, R2, RC1, and RC2. Customer locations were randomly 
generated (problem sets R1 and R2), clustered (problem sets C1 and C2), or mixed with 
randomly generated and clustered customer locations (problem sets RC1 and RC2). Problem sets 
R1, C1, and RC1 have a shorter scheduling horizon, tighter time windows, and fewer customers 
per route than problem sets R2, C2, and RC2, respectively.  

This section proposes new test problems that capture the typical speed variations of congested 
urban settings. The problems are divided into three categories of study: (1) constant speed 
Solomon instances, (2) time-dependent problems with hard time windows, and (3) time-
dependent problems with soft time windows. Some previous research efforts may have used 
standard problems, but they allocated travel speed distributions randomly to customer arcs or it is 
ambiguous to the type of time dependency allocated to each arc. In order to provide readily 
replicable instances, the travel speed distributions apply to ALL arcs among customers (i.e., in the 
arc set): 

{( , ) : , }i jA v v i j i j V    .  

Most recent research efforts, as stated in Section 2.0, have used constant speed intervals. The 
same approach is adopted in this research because constant speed intervals guarantee the FIFO 
property and can be readily replicated. The algorithm used to calculate travel times is presented 
in Appendix A. 

9.1.1 Constant Speed Problems with Hard Time Windows 

Constant travel speed is a special case of the general time-dependent problem. These instances 
are the classical Solomon problems that have been widely studied and provide an indication of 
the performance of the algorithm with constant travel speed.    

                                                 
5 Several websites maintain downloadable datasets of the instances, including Solomon’s own website: 
http://web.cba.neu.edu/~msolomon/problems.htm 
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9.1.2 Time-dependent Problems with Hard Time Windows 

These instances introduce fast periods between depot opening and closing times. The depot 
working time 0 0[ , ]e l  is divided into five time periods of equal durations:  

[0, 0.2 0l ); [0.2 0l , 0.4 0l );   [0.4 0l , 0.6 0l );   [0.6 0l , 0.8 0l ); and [0.8 0l , 0l ].    

and the corresponding travel speeds are: 

TD1 = [1.00 , 1.60, 1.05 , 1.60, 1.00], 

TD2=  [1.00 , 2.00, 1.50 , 2.00, 1.00], 

TD3 = [1.00 , 2.50, 1.75 , 2.50, 1.00]. 

If the vehicles were to travel non-stop in the interval 0 0[ , ]e l , the vehicle would travel an extra 

25%, 50% and 75% more for speeds TD1, TD2, and TD3, respectively, than in the original 
Solomon instances.  

9.1.3 Time-dependent Problems with Soft Time Windows 

 These instances introduce two congested periods between depot opening and closing times. The 
depot working time 0 0[ , ]e l  is divided into the same five periods and the corresponding travel 

speeds are: 

TD4 = [1.10 , 0.85, 1.10 , 0.85, 1.10], 

TD5 = [1.20 , 0.80, 1.00 , 0.80, 1.20], 

TD6 = [1.20 , 0.70, 1.20,  0.70, 1.20]. 

If one vehicle were to travel non-stop in the interval 0 0[ , ]e l , this vehicle would travel the same 

distance as in the original Solomon instances but with increasing travel speed variability (i.e., 
same average speed but with increased variability). However, soft time windows are required 
because some Solomon problems would be infeasible otherwise (Ichoua et al., 2003, Donati et 
al., 2008). An allowable time-window violation per customer equal to:

# #
max 0 00.1( ) i i i iP l e e e l l       is allowed. However, the depot working time 0 0[ , ]e l  is not 

relaxed. The penalty cost for an early or late delivery is one unit of cost per unit time, which is 
the same value used in constant speed Solomon instances with soft time windows (Balakrishnan, 
1993, Chiang and Russell, 2004).  
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10.0 TDVRP EXPERIMENTAL RESULTS  

Proper benchmarking of algorithms, solution quality and computation times can be performed 
using standardized instances and computers. However, computation times can be difficult to 
compare if there are significant differences in computer processing power or equipment. Detailed 
information regarding computer equipment (brand, model, processor, RAM) can be used to 
estimate relative computer power using Dongarra (2007) and SPEC6 results. All the results 
presented in this section were obtained with a laptop Dell Latitude D430, with an Intel Core CPU 
1.2 GHz and 1.99 GB of RAM. Even after standardizing problems and equipment there may be 
differences in running time due to different compilers, programming language, or code efficiency 
and implementation. 

As indicated by Cordeau et al. (2002), results presented in the VRP literature usually present 
better results on benchmark problems at the expense of (a) too many parameters or complicated 
coding that lacks flexibility to accommodate real-life constraints, (b) too many parameters that 
are difficult to calibrate or even understand, and (c) solution approaches that are markedly 
tailored to perform well on the benchmark problems but that may lack generality and robustness 
in real-life problems. Golden et al. (1998) indicates that algorithms should be compared not only 
by the number of parameters, but also by how intuitive and reasonable these parameters are from 
a user’s perspective. To avoid excessive “tailoring,” all the results presented in this research use 
the exact same procedure and parameter values in all cases (i.e., the same code, with the 
parameters described in Section 4.0) and the same parameter values. The exact same parameters 
are used not only in different types of problems (soft vs. hard), but also in different types of 
instances (R1 and C2). Travel-time calculations were performed using the algorithm presented in 
Appendix A. It is also assumed that the algorithm does not “know” anything regarding the type 
of problem or its characteristics (e.g., average number of customers per route, binding constraints 
or lower bounds). This type of information can be exploited to reduce computational times (e.g., 
usage of lower bounds) (Figliozzi, 2008), but if new parameters, steps or lines of code are needed 
they have to be explicitly stated to provide a level playing field when it comes to comparisons 
among algorithms.  

10.1.1  Constant Speed Problems with Soft Time Windows 

The first set of results corresponds to the extensively studied Solomon instances with constant 
travel speeds; results are presented in Table 6. In these instances, the primary objective is to 
minimize the number of vehicles and the secondary objective to minimize travel distance. The 
first row presents the combination of the absolute best solutions found to date, which have been 
obtained by different researchers, algorithms, machines and computational times (Donati et al., 
2008, SINTEF, 2008).  

The second row presents the results of Taillard et al. (1997) using the tabu search algorithm for 
soft time-window problems and constant travel speed that was implemented by Ichoua et al 
(2003). Taillard et al. reported better results, but at the expense of significantly longer 

                                                 
6 Comparison among computers can be found at http://www.specbench.org/ 
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computational times. The results reported by Taillard et al. and Donati et al. are average results 
and computation times over independent runs.  
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Table 6. VRPTW Results for Classic Solomon Instances – Constant Speed 
Average Number of Vehicles by Problem Class    

Method  R1  R2  C1  C2  RC1  RC2 

(1) Best  Ever (1987‐…)  11.92  2.73  10.00  3.00  11.50  3.25 

(2) Taillard et al. (1997)  12.64  3.00  10.00  3.00  12.08  3.38 

(3) Donati et al.  (2008)  12.61  3.09  10.00  3.00  12.04  3.38 

(4) IRCI  12.58  3.00  10.00  3.00  12.12  3.38 

Average Distance                   

Method  R1  R2  C1  C2  RC1  RC2 

(1) Best  Ever (1987‐…)  1,210  952  828  590  1,384  1,119 

(2) Taillard et al. (1997)  1,220  1,013  828  591  1,381  1,199 

(2) Donati et al.  (2008)  1,199  967  828  590  1,374  1,156 

(4) IRCI  1,248  1,124  841  626  1,466  1,308 

Computation time for all 56 problems: (1) different authors, machines and computation times; 
(2) Sun Sparc 10, 261 min; (3) Pentium IV 2.66 GHz, 168 min (4) Dell Latitude D430, 1.2 GHz, 
19.0 min 

 

Table 7. VRPTW Results – Hard Time Windows 
Average Number of Vehicles by Problem Class    

Travel time Distribution  R1  R2  C1  C2  RC1  RC2 

(1) TD1  11.67  2.82  10.00  3.00  11.38  3.25 

(2) TD2  10.75  2.55  10.00  3.00  10.50  2.88 

(3) TD3  9.92  2.27  10.00  3.00  10.00  2.75 

Average Distance                   

Travel time Distribution  R1  R2  C1  C2  RC1  RC2 

(1) TD1  1,295  1,216  879  657  1,405  1,444 

(2) TD2  1,258  1,244  864  654  1,395  1,454 

(3) TD3  1,237  1,269  880  697  1,362  1,434 

Average Travel Time             

Travel time Distribution  R1  R2  C1  C2  RC1  RC2 

(1) TD1  1,080  990  729  563  1,164  1,177 

(2) TD2  897  861  644  495  989  993 

(3) TD3  793  774  608  485  860  867 

Computation time for all 56 problems: (1) TD1,  19.1 min; (2) TD2, 17.7 min;  (3) TD3, 17.3 min – 
in all cases using Dell Latitude D430, 1.2 GHz 

 

The performance of the IRCI algorithm, in relation to other approaches that can solve problems 
with both soft and hard time windows that have been used in time-dependent problems, is 
somewhat comparable. The IRCI solutions have relatively low computational times - an average 
of 21.3 seconds for each 100 customer problems - but comparisons in terms of speed with 
Taillard et al. (1997) are difficult. Computers and their architecture have evolved significantly in 
the last 10 years. However, the IRCI is faster than the method presented by Donati et al (2008). In 
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terms of solution quality, the IRCI is outperformed by the best local search approaches (Braysy 
and Gendreau, 2005b).  

The IRCI solutions are, on average, slightly less than 4% from the best results ever obtained for 
the Solomon instances with constant travel times. The IRCI can obtain slightly better 
performances, around 3%, in terms of number of vehicles with longer computational times or by 
tailoring some parameters to each problem type. However, to avoid any kind of “distortion,” the 
same general code is utilized to obtain all the results presented in this section. 

10.1.2  Time-dependent Problems with Hard Time Windows 

The second set of results corresponds to the Solomon instances with time-dependent travel 
speeds and soft time windows. In these instances, the primary objective is to minimize the 
number of vehicles, and the secondary objective is to minimize time and distance traveled.  

To the best of the author’s knowledge, this is the first reporting of Solomon instances with hard 
time windows and time-dependent speeds; results are presented in Table 7. As expected, with 
increased travel speeds the number of vehicles is reduced significantly. However, there is 
relatively minimal change in the distance traveled. Time traveled decreases as average travel 
speed increases, though not at the same rate. Results for problem sets C1 and C2 are largely 
unchanged due to the binding constraint of the vehicle capacity.  

Table 8. VRPTW Results – Soft time windows 
Average Number of Vehicles by Problem Class    

Travel time Distribution  R1  R2  C1  C2  RC1  RC2 

(1) TD4  10.42  2.82  10.00  3.00  10.50  3.00 

(2) TD5  10.42  2.64  10.00  3.00  10.63  3.00 

(3) TD6  10.58  2.73  10.00  3.00  10.75  3.00 

Average Distance                   

Travel time Distribution  R1  R2  C1  C2  RC1  RC2 

(1) TD4  1,142  1,010  856  666  1,241  1,135 

(2) TD5  1,131  1,016  860  665  1,226  1,156 

(3) TD6  1,127  1,016  869  660  1,236  1,149 

Average Travel Time             

Travel time Distribution  R1  R2  C1  C2  RC1  RC2 

(1) TD4  1,139  1,023  871  669  1,237  1,150 

(2) TD5  1,134  1,039  884  672  1,220  1,184 

(3) TD6  1,143  1,061  938  685  1,253  1,213 

Computation time for all 56 problems: (1) TD4,  19.5 min; (2) TD5, 19.6 min;  (3) TD6, 19.4 min – 
in all cases using Dell Latitude D430, 1.2 GHz 

 

10.1.3 Time-dependent Problems with Soft Time Windows 

 The second set of results corresponds to the Solomon instances with time-dependent travel 
speeds and soft time windows; results are presented in Table 8. In these instances, the primary 
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objective is to minimize the number of vehicles: the secondary objective is to minimize time-
window violations; and the tertiary objective is to minimize the soft time-window penalties and 
distance traveled. Table 8 presents the results in terms of fleet size, distance and travel time.  

The travel speed distributions TD4, TD5 and TD6 are listed in increasing order of travel speed 
variability. Without changing overall average speed, travel speed variability worsens the results 
in terms of number of vehicles for R1 and RC1 problems. Results in terms of distance traveled 
have little variation. Travel time slightly increases. Problem sets C1 and C2 are mostly 
unchanged because the binding constraint is vehicle capacity.  

As customary in the VRP with time-windows literature, Table 9 reports the number of soft time 
windows used, broken down into early and late service times as well as the penalty paid for early 
or late services. Usage of early soft time windows is more prevalent than the usage of late time 
windows.  As expected, time-window violations and penalties decrease as the number of vehicles 
used increases.   

 

Table 9. VRPTW Results – Soft time windows 
Average Number of Soft Time Windows (early)    

Travel time Distribution  R1  R2  C1  C2  RC1  RC2 

(1) TD4  20.5  20.1  15.8  18.6  21.1  21.3 

(2) TD5  20.4  19.9  18.6  14.9  22.1  21.1 

(3) TD6  20.4  20.1  16.1  13.9  21.3  21.5 

Average Number of Soft Time Windows (late) 

Travel time Distribution  R1  R2  C1  C2  RC1  RC2 

(1) TD4  18.0  13.6  8.2  17.0  16.3  14.1 

(2) TD5  17.5  12.5  8.7  10.4  14.5  14.8 

(3) TD6  15.8  12.5  6.2  8.4  15.1  15.1 

Soft Time Window Penalties (early)    

Travel time Distribution  R1  R2  C1  C2  RC1  RC2 

(1) TD4  386.6  1,516.3  516.5  3,025.5  381.7  1,718.9 

(2) TD5  425.1  1,609.4  861.5  1,467.7  448.5  1,664.4 

(3) TD6  419.3  1,559.1  657.2  1,697.8  446.2  1,508.2 

Soft Time Window Penalties   (late) 

Travel time Distribution  R1  R2  C1  C2  RC1  RC2 

(1) TD4  210.4  681.2  480.5  3,267.1  197.8  695.9 

(2) TD5  208.2  637.6  547.6  1,797.7  173.2  692.1 

(3) TD6  187.6  629.5  363.2  1,708.8  189.2  787.8 
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11.0 TDVRP COMPUTATIONAL COMPLEXITY 

The relative simplicity of the IRCI allows for a straightforward algorithmic analysis. The 
auxiliary heuristic rH is called by the construction algorithm no more than | |nW Δ  times; where

n  is the number of customers. Hence, the asymptotic number of operations of the construction 

algorithm is of order r( | | ( ( ) ) )nW O nΔ H  where r( ( ) )O nH  denotes the computational 

complexity of the auxiliary algorithm to route n customers. Hence, the complexity and running 

time of the auxiliary heuristic rH will have a substantial impact on the overall running time.  

The improvement procedure calls the construction procedure a finite number of times. The 
number of calls is bounded by the number of routes | |R m . Let in be largest number of 

customers contained a subset of routes u  that is improved in each iteration of iH . The 

computational complexity of a call to the construction algorithm is then r( | | ( ( ) ) )i in W O nΔ H .  

The complexity of the iH  algorithm is then of order r( | | ( ( ) ) )i iO mn W O nΔ H  where in n   if

u m . 

If constant speed intervals are used to represent time-dependent speeds and the depot working 
time 0 0[ , ]e l  is partitioned into p  time periods, the computational complexity of the service start 

time algorithms, ybH  and yfH  is of order ( )O np . Each travel-time calculation between any two 

customers has a computational complexity. 

To test the increase in computational running time, instances with different numbers of customers 
are run. First, the first 25 and 50 customers of each Solomon problem are taken to create 
instances with n  25 and ( )O np =50, respectively. Secondly, to create an instance with n  200 
customer, for each customer in the original Solomon problem a “clone” is created but with new 
coordinates. Problem characteristics as clustered, random or random-clustered are retained.  

The summary results for each problem size are shown in Table 10. The results are expressed as 
the ratio between each average running time and the running time for n  25. To facilitate 

comparisons, the corresponding increases in running time ratios for 2( )O n  and 3( )O n  are also 
presented.  

Table 10. VRPTW Average Run Time Ratios – TD3 
       

n   2( )O n   3( )O n   Ratio  % 3( )O n  

25  1  1  1.0  100% 

50  4  8  3.3  41% 

100  16  64  17.4  27% 

200  64  512  90.5  18% 
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The results indicate that the average running time is increasing by a factor of 2( )O n . This is 

expected from the complexity analysis as the complexity of the nearest neighbor heuristic rH  has 

a worse case of 2( )O n . As customer size n  increases, the ratio as a % of the 3n  growth factor is 
decreasing – see last column of Table 10. 
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12.0 TDVRP CONCLUSIONS 

Readily replicable time-dependent instances with 100 customers were presented and solved with 
a new route-construction and improvement algorithm. This is the first research effort to publish 
solutions to time-dependent problems with hard time windows using standard and replicable 
instances. The computational results indicate that the proposed IRCI algorithms can solve soft 
and hard time-window, time-dependent vehicle routing problems in relatively small computation 
times. Furthermore, the analysis and experimental results of the computational complexity 
indicate that average computational time increases proportionally to the square of the number of 
customers.  

The solution quality of the new algorithm appears to be comparable to other approaches that can 
be used to solve constant speed and soft time-window problems with time-dependent speeds. 
However, the proposed IRCI approach seems to have an advantage in TDVRP with hard time 
windows; problems that cannot be readily tackled by local search heuristics and have not yet been 
studied in the literature.  

The relatively low computational complexity, simplicity and generality of the IRCI are important 
factors in real-world applications with constant and time-dependent travel times. The algorithms 
are relatively simple and flexible and their parameters are intuitive. This is a substantial benefit in 
practical implementations. Two different methods were proposed to group routes and future 
research efforts may explore alternative grouping methodologies as well as route-construction 
approaches.  
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