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Beam modes in complex lenslike media and resonators

Lee W. Casperson
School of Engineering and Applied Science, University of California, Los Angeles, California 90024

(Received 30 December 1975; revision received 5 April 1976)

General sets of higher-order beam modes are derived for light propagation in media having spatial variations
of the gain or loss. The resulting expressions are also valid for propagation through conventional optical
elements and graded transmission filters. The four basic mode sets obtained include off-axis Hermite-Gaussian
and Laguerre-Gaussian modes of both real and complex argument. A procedure is developed for finding the
resonant modes of laser oscillators containing arbitrary complex lens elements, and the mode stability
properties of lasers can be interpreted physically by means of these formulas.

One of the most basic problems in laser theory is the
determination of the propagation modes of electromag-
netic radiation in various types of optical media. The
simplest limit of propagation in free space has been
well understood for many years, and the modes in that
case can be most easily described in terms of
Laguerre-Gaussian 1 or Hermite-Gaussian 2 functions.
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However, for media with spatial variations of the gain
or loss most previous investigations have emphasized
the spot size, phase-front curvature, and displacement
of only the fundamental mode.3 '4 Some higher-order
effects have been obtained as superpositions of the
waveguide eigenmodes,5' 6 and a complex Hermite-
Gaussian mode set has been derived by a Green's-func-
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tion method. 7 8 It has been shown that the beam param-
eters may exhibit damped or growing spatial oscilla-
tions depending on whether the gain maximum or min-
imum occurs in the vicinity of the beam center, and if
no gain variations are present the oscillations are un-
damped. 4-8

One purpose of the present work is to derive directly
from the wave equation several sets of three-dimen-
sional higher-order beam modes that are valid in media
having general spatial variations of the gain and index
of refraction. The only restriction on the analysis is
that constant, linear, and quadratic functions must be
sufficient to characterize the transverse gain and index
of refraction variations in the vicinity of the beam.
With these results it becomes possible for the first
time to trace all of the higher-order beam modes
through arbitrary systems of lens elements including
lenses, complex lenslike media, spherical mirrors,
and Gaussian transmission filters. One can also readi-
ly calculate the higher-order modes of laser resonators
which include complex lens elements. An understanding
of such modes is helpful for studies of mode stability
in laser oscillators and waveguides.

Media with spatial gain or loss variations occur very
commonly in practice. Typical laser amplifiers often
exhibit a radial profile of the gain, and such variations
are also inevitable when saturation occurs. Gain fo-
cusing and gain deflection of laser beams have been
demonstrated experimentally in xenon and CO2 laser
systems.4 ' 9 At the same time that such gain effects are
occurring, the index of refraction may also have a ra-
dial profile due to thermal gradients, free electrons,
or dispersion associated with the optical transitions.
Also, complex transmission filters often provide an ex-
cellent model for aperture effects in laser systems. 10

In Sec. I the wave equation is reduced to a set of or-
dinary differential equations governing the basic Gauss-
ian beam parameters together with a partial differential
equation governing all of the possible polynomial fac-
tors. The polynomial equation is solved for the four
most important polynomial mode sets in Sec. II. These
include the Hermite-Gaussian and Laguerre-Gaussian
functions of complex and real arguments. It turns out
that the polynomial functions of complex argument cor-
respond to beam modes in which the phase fronts may
be nonspherical and the intensity distribution may lack
well-defined node lines. In the special case that trans-
verse variations of the gain or loss are negligible much
simpler alternate sets of off-axis modes can be found
involving polynomial functions of real arguments. Then
the intensity distribution can be readily obtained and
the phase fronts of the beam modes are spherical. An
important application of these results is in light guiding
structures of the SELFOC variety where the index of
refraction exhibits quadratic radial variations. The
formalism developed here can be used to trace the
propagation of spatially distinct higher-order beam
modes in SELFOC devices.

The procedure for applying the beam-mode formalism
to laser resonators is discussed in Sec. III. The re-
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suits apply to resonators containing an arbitrary as-
sortment of lenses, complex lenslike elements, and
Gaussian apertures. In a specific example it is shown
that the mode stability properties of laser amplifiers
and oscillators can be interpreted in terms of mode
discrimination within the amplifying medium.

I. DERIVATION OF BEAM EQUATIONS

For any investigation of light propagation the proper
starting point is Maxwell's equations. These equations
can be combined to yield coupled-wave equations which
govern the various field components of a propagating
electromagnetic beam. For the usual case of nearly
plane waves the dominant transverse Cartesian field
components are governed by the much simpler wave
equation 4

V2 E+k2 E=O, (1)

where V2 is the ordinary scalar Laplacian operator act-
ing on the x or y components of the electric field E, and
k is the complex spatially dependent wave number
k= w(g.E)'1 2 . The wave number may have an imaginary
part due to nonzero conductivity or out-of-phase com-
ponents of the polarization or magnetization. A simi-
lar equation holds for the transverse cylindrical field
components except that the r and ¢ variations are cou-
pled. If needed, the weak z components of the fields
may be found from the transverse components by
means of Maxwell's equations.

In many practical situations the gain (or loss) and
index of refraction have at most quadratic variations in
the vicinity of the propagating beam, and one can write

k'(x, y, z) = ko(z) [k,(z) - k1x(z)x - k,,(z) y

- k2X(z)x8 - k2,(z) ya] - (2)

For an x-polarized wave propagating in the z direction
a useful substitution is

(3)E,(x, y, z) =A(x, y, z) exrp(- i f ko(,z) dz) 2

and Eq. (1) reduces to

82A 82A _ A d
+ v -2ikoa- - i dz A

- ko(kjx+ kjyy+ k2,x 2 +k 2vy 2)A=O. (4)

where A is assumed to vary so slowly with z that its
second derivative can be neglected.

A useful form for an astigmatic off-axis Gaussian
beam is

A(x, y, z) = B(x, y, z) exp - i (Qx(Z )X2 +

+ S,(Z)X + S,(Z) (5)

With this substitution Eq. (4) may be separated into the
set

Qx + ko dQ- + kok2O = °,X dz (6)
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Q2 + ko dQy + k0 k2 , = 0 (7)

dS. kok1 .
Q.S. + ko dzS 2 (8)

Q Sy+ko dS, + kokl,= 0 (9)
QS+0 dz 2

ax2 _ 2i(S,, + Qxx) -B + -v- -2i(S, + Q y) -B

aB dk 0  _ (0
-(S2 + S?) B-i(Q,+ Qy) B-2ikoya -i dz B=0 . (10)

This separation is accomplished by setting equal to zero
the various terms in x2 , y2 , x, and y. The significance
of the Q parameters is contained in the relation

Qx(Z) = R. 20z -)v 1h (z)- ia a e to
where R,; and u~ are, respectively, the radius of curva-

ture of the phase fronts and the l/e amplitude spot size
in the x direction. The ratio dxa = - Sil/Qi is the dis-
placement in the x direction of the amplitude center of
the beam, and the ratio dxp - Sxr/Qxr is the displace-
ment in the x direction of the phase center of the beam.
Here the subscripts i and r denote, respectively, the
imaginary and real parts of the parameters Q. and S.,
and similar relations apply to the functions Q, and S..

The next step is to reduce Eq. (10), and one is led to
try the changes of variables

x' = ax(z)x+ bx(z),

y' = a,(z)y + by(z) ,

z'=z ,

(12)

(13)

(14)

where ax(z), bx(z), a,(z), and by(z) are as yet unspeci-
fied functions of z. With these substitutions, Eq. (10)
becomes

2 a2B . (x'-bx) dax dbx\ aB 2 a2Bax ' - 2 IiaxS,+z(x' -b)Q,+iko ax _ + iko dz) 2X7 + a. 2

\Xiko( ab) da' + 0ko d') aJ -(S + S2)B -yi(Qx'+Q) B-2ik, aB -'dko B=0.-ltoansotisYe-uQa+o a, dz' erve) Dy Sec d'

Solutions of this equation are derived in Sec. IL.

I1. THE POLYNOMIAL-GAUSSIAN MODES

We have obtained so far a general set of off-axis
Gaussian modesgoverned by Eqs. (6)-(9), and the solu-
tions of these equations are known for z-independent
media.4 Additional amplitude and phase variations can
be found as solutions of Eq. (15). In the special case
that B is independent of x' and y' the solutions corre-
spond to the fundamental Gaussian mode. If B is not
independent of x' and y' Eq. (15) can still be solved ex-
actly, and the most important solutions are derived in

the following paragraphs. These include the off-axis
Hermite-Gaussian modes of complex and real argument
and the off-axis Laguerre-Gaussian modes of complex
and real argument.

A. Hermite-Gaussian modes of complex argument

The substitution

B(x', y', z') = C(x', y', z') exp[- iP(z')] (16)

in Eq. (15) makes possible the arbitrary separation

dP S?+ S2  Q ma2 + na2  i dko
_ _ x _ _ _ - ....... 2-

dz' 2ko 2ko ko 2ko dz' '

2 a2c a/C. . Dc 2 a2c
axT -2 axS,+i(x -b)Q, a+ dz I+iko d' / a +a, y'2

(y' -by)da. d4,.2(iaYSY+ i(y- bY) QY+ iko a( dz' +iko dz'

where P(z') is a phase parameter. Equation (18) may
be made to resemble the Hermite differential equation
if the quantities in brackets are, respectively, set
equal to a2x' and a2y'. Then this equation becomes

2 ( 2 C DC \ 2 c DC2 2x' + 2 -2--- +2nC)

-2ikoa t =0§ (19)

The corresponding constraints on ax(z') and bx(z') may
be written

1375 J. Opt. Soc. Am., Vol. 66, No. 12, December 1976

a - 2iko a C + 2(ma + nat) C = 0 , (18)

Raoi da. ,2
Qx ax dz Ux ,

dbaxSx + ia~xbx + ko db, = ° ,

with similar equations for a,(z') and by(z').

The product function

C(x', y', z') = Hm(x')Hn( y')

(20)

(21)

(22)

satisfies Eq. (19) provided that Hm and Hi are solutions
of the Hermite differential equations1l
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d 2H dHi
d. 2x' dxd, +2f1HmO ° (23)

d -H Wy dH + 2nH,, = ° (24)dy' (24)

Thus the general solution for the propagation of optical
beams in complex z-dependent lenslike media has been
expressed in terms of Hermite-Gaussian functions of
complex argument. It is only necessary to solve the
coupled ordinary differential Eqs. (17), (20), and (21),
and for brevity a discussion of such solutions is
omitted.

B. Hermite-Gaussian modes of real argument

In the previous paragraphs a general formalism has
been developed for the propagation of higher-order
beam modes in media with spatial variations of the gain
and index of refraction. A complicating feature of the

resulting formulas has been the complexity of the argu-
ments of the Hermite polynomial functions. In many
practical laser systems and transmission media the
spatial variations of the gain do not have a significant
effect on the propagation characteristics. When this
occurs, a much simpler set of beam modes can be
found in which the arguments of the polynomial func-
tions are purely real. The purpose of this section is to
derive exactly the general off-axis beam-mode solu-
tions for a lenslike medium having spatial variations of
only the refractive index.

Since we are still interested in polynomial-Gaussian
solutions, the initial separation of the wave equation is
the same as before. The difference is that real poly-
nomial solutions of Eq. (15) must be found rather than
complex solutions. Instead of Eqs. (17) and (18) the
substitution of Eq. (16) may be used to obtain the sepa-
ration

dP = _ i Qxr+ QVr + (m + 2-)Qxj + (n + )Q-; _ + y i dk,
dz' 2k, ko 2k0  2ko dz

820 / (x- bx)da dbx~ 8C 2 a~c
ax8 i, -2(iaxSx+i(x'-bx)Qx+iko a' dz,+iko d-z) ax,+ay

(bY) day dblY) IC 82nQYC=0,2(iaYSy +i( y' - by)Q +iko d. 7 ik z'T - 2y' 0 8'C -nQmQiC0

(25)

(26)

where again the subscripts r and i denote, respectively, the real and imaginary parts of the corresponding func-
tions.

The requirement that ax, bx, ay, by, and C(x', y', z') all be real separates Eq. (26) into the two equations

a 2 ac a P.8aC
a -2 [ - axSxi - (x' - bx)Qxi] IC + ay s -2 [- aSi - (y' - b,)Qji]a, - 2mQxjC - 2nQyjC= 0,

x-b (x a + da )ay / (-d ) +k. ko =0(axSxr+ (x' -bx)Qxr+ Nx -b) a I+ ko dz,, )yaC+(\aS,+ (y'- b,)Qvr+ ko YI- .)day + k Ay %Z'ka =

If one imposes the conditions

a2x- = - Qxi v (29)

axSxi = bQ , (30

with similar conditions on the y' variables, Eq. (27)
reduces to

ax/2 - 2 ax + 2mC)+ Qyi(a 2aC +2n =0

(31;
This equation is satisfied by a Hermite polynomial
function like that in Eq. (22). Thus a tentative set of
Hermite-Gaussian beam modes has been obtained in
which the arguments of the Hermite polynomials are
real. It only remains to be shown that these solutions
also satisfy Eq. (28).

For the mode functions given in Eq. (22) the deriva-
tive 8C/az' vanishes. Therefore Eq. (28) will be sat-
isfied if the quantities in brackets and large paren-
theses are individually set equal to zero. This leads
to constraints on ax and bx in the form

Qxr+ koda. = 0 3

ax dz (32

1376 J. Opt. Soc. Am., Vol. 66, No. 12, December 1976

S kx db+ =
axra dz

(27)

(28)

(33)

But these equations are equivalent to Eqs. (29) and (30).
This equivalence can be demonstrated by direct substi-
tutions involving the imaginary parts of Eqs. (6) and (8)
together with the condition that klx and k2x are real.
Thus the propagation of off-axis light beams can be
characterized by real Hermite functions as long as
there are no spatial variations of the gain. These re-
sults are similar to previously obtained expressions 12

except that here the amplitude center of the beam may
be away from the z axis. In particular, the amplitude
center may be shown to propagate according to the par-
axial ray equation. 4 It should be emphasized that these
mode solutions are not a special case of the modes with
complex arguments. Thus a mode from one set can
only be expressed as a summation of modes in the other
set.

C. Laguerre-Gaussian modes of complex argument

The Hermite-Gaussian modes found previously are a
complete set which can be used for following the prop-
agation of optical beams in complex or real media.

Lee W. Casperson 1376



However, many laser systems of practical interest have
a basic cylindrical symmetry, and the Cartesian
Hermite-Gaussian functions are an awkward choice for
the governing mode sets. In particular it is not uncom-
mon for the output modes of practical laser oscillators
to have a basic Laguerre-Gaussian form. The purpose

- - - -I

of this section is to develop a new mode set governing
the propagation of off-axis Laguerre-Gaussian modes
of complex argument in complex lenslike media.

It is helpful to assume at the outset Qx= Qw = Q and
a,=ay,=a. Then Eqs. (17) and (18) may be replaced by

dP S'÷S2  iQ 22p+ I i dko
dz' 2k0  k, ko 2ko dz''

2 a2c (.S.(,) .( b• ) da . dbx) C a2 D2c
a tXT 2 (iaSx + i(x' - b.)Q + iko (XI a +x i0 d dz ax' D a DC

-2 (iaS,+i(y'-b,)Q+ik0 -b) d + iko d--, a C _ 2ik, a-C + 2a2 (2p+ 1)C = 0.
\ YU a dz' dz'/ y z

(34)

(35)

Equation (35) can be simplified by setting the quantities
in large parentheses, respectively, equal to a2x' and
a2y' and by requiring that C be independent of z'. The
result is

xax+ I a2 2x x - 2y Dy + 2(2p + 1)C = O. (36)

The constraining equations are the same as Eqs. (20)
and (21) if the subscript x (or y) is everywhere removed
from the functions Q and a.

Equation (36) can be expressed in cylindrical coordi-
nates by means of the substitutions

x' =r' cosq', y' =r' sinp',

and one obtains

(37)

D2C a1~ C 2C
ar' 2 + (a- 2r') Dr +r D2+2(2I +1)C=O. (3E

It is evident from the derivation that both of the vari-
ables Ir' and '' may be complex. If C varies sinusoi-
dally according to

(cosl0'1

C(r3,8p')=D(r') inlol (3b

then Eq. (38) becomes

d2+ y( - 2r ') d _ 2- D + 2(2p + 1)D = O.

The change of variables p=r' 2 leads to

d2D (1 p)dD- D+ 2P 1 D=O,
Pdp2±P/,dp 4p 2

(40)

(41)

and the substitution D(p)=p'/2L(p) yields the Laguerre
differential equational

d2  1 dL
P pi_+(1+ I - P) d+PI= 0. (42)

When the preceding substitutions are collected, one has
a general set of off-axis Laguerre-Gaussian modes of
complex argument.

D. Laguerre-Gaussian modes of real argument
1)

It was shown previously that in media having no trans-
verse variations of the gain it is possible to obtain a
Hermite-Gaussian mode set in which the arguments of
the Hermite polynomials are real. The purpose of this
section is to show that it is also possible to express the

9) beam propagation in such media in terms of Laguerre-
Gaussian functions of real argument. Instead of Eqs.
(34) and (35) we start with the separation

dp =Qr 2p+1+1)Qi S2x+S_ i d4L
dz ' k0  ko 2ko 2kOdz'

a2D2C b(-)da *kd db,) a C D2 C a'. , (y'-b) )da *k db aC

The requirement that a, bx, by, and C(x', y', z') all be real separates Eq. (44) into the two equations

am--2[-aSi- (x' -+b)Qjax+a2,-2[-aSyi- (a' .- b)Q. k--2(2p +l)QC=O.

(TSX ('b)r+ ('b a)d+ db DCb
a a SX?+x-bXQQ a a + a 2~ (-aSv+-(y' - b,)Qrjk a 2p + 1 dz = ,/D~oz

(43)

(44)

(45)

(46)

1377 J. Opt. Soc. Am., Vol. 66, No. 12, December 1976 L
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FIG. 1. Intensity distribution of low-order beam modes for an
amplifier with a radial gain profile. The modes are normal-
ized to a maximum intensity of unity.

cording to k = 0 + ic', Eq. (47) becomes

QX = + [ 0(: 2 x+ io 2x)] 2
= PO/Rx - i2/W , (48)

provided that the gain per wavelength is small (ho >> a,).
Equation (11) has been employed in expressing the right-
hand side of Eq. (48). The arbitrary sign may always
be chosen in such a way that a confined beam results
(wx> 0).'3 For example, if there is a gain maximum at
the axis of the laser ( 2 1x> 0) and no refraction profile
(02x= 0), Eq. (48) reduces to

(49)

which is an explicit expression for the steady-state
spot size and phase-front curvature. From Eq. (20)
one obtains

If one imposes the conditions given in Eqs. (29) and (30)
with the subscripts x and y removed from a and Q, then
Eq. (45) reduces to the same form as Eq. (36). There-
fore the solution techniques of Sec. TIC all apply, and
the resulting modes are again described in terms of
off-axis Laguerre-Gaussian functions. The difference
here is that the arguments of the Laguerre polynomials
are now real. As in Sec. II B these modes may readily
be shown to be consistent with Eq. (46).

III. RESONATOR MODES

The beam equations developed in Secs. I and II govern
the propagation of Gaussian beams through very general
types of lenslike media. If the media are z independent
the basic Q and S parameters evolve according to simple
matrix formulas. 13 These formulas also apply to other
lens elements including lenses, mirrors, and Gaussian
transmission filters, and a table of matrices has been
given. 10 It now becomes a straightforward matter to
apply this formalism to the determination of the modes
of resonators containing an arbitrary assortment of lens
elements. The general resonance condition is that the
electromagnetic field must repeat itself after one round
trip through the resonator. In the present context this
means that all of the parameters Q,, S,, ax, b., etc.,
must repeat, and the phase shift must be an integral
multiple of 2ir. The application of these conditions
yields the values of the beam parameters themselves.
This procedure can be applied directly to obtain the
modes of resonators with Gaussian mirror reflectivity
profiles, and the resulting Hermite-Gaussian modes
agree with those obtained previously using integral
equation14 or eikonal equation techniques. 15

Our principal example here concerns the influence of
the laser medium on the stability of the amplifier and
oscillator modes. Attention is first restricted to the
special case of steady-state on-axis beam propagation
(Sx = S, = bx = by = 0) in a symmetric medium (k?, = kj, = 0).
This limit is sufficient to illustrate the mode discrim-
ination properties of lasers in which the amplifier has
radial gain variations. From Eq. (6) the steady-state
beam parameter is

Q.,= k ~1ok~x)l 1.(47)

If k is separated into its real and imaginary parts ac-

1378 J. Opt. Soc. Am., Vol. 66, No. 12, December 1976

2 = iQ.,

and with Eq. (17) the phase is governed by

(50)

(51)
dP- .(m+"2)Q,+(n+ )Q -
dz go

The x dependence of some low-order Hermite-Gauss-
ian mode intensity profiles are plotted in Fig. 1 using
the relationship I-EE* together with the beam param-
eters of Eqs. (49) and (50). For the m = 0 and m = 1
modes the intensity profiles are similar to those of
conventional Hermite-Gaussian beams. With the higher-
order modes, however, the intensity distribution is dif-
ferent, and some of the usual node lines may be absent.
This situation is illustrated with the m = 2 mode shown
in the figure. The phase-front curvature of the higher-
order modes may also be more complicated than the
familiar spherical shape.

The axial phase variations are especially significant
in connection with mode discrimination. From Eqs.
(49) and (51) the phase is

P(Z) = - (1 +i)[ (m + 2)(2/;o2 +( +2 )(a2,/2:0,)l 2]

(52)

Since the field amplitude includes the factor exp(- iP),
it follows from Eq. (52) that the higher-order modes
are amplified more weakly due to the gain profile than
is the fundamental mode (m =n=0). Thus a laser ampli-
fier having a gain maximum at the axis tends to dis-
criminate against higher-order modes.

On the other hand, if the gain minimum is at the laser
axis (a 2, °<, a 2 < 0) Eq. (49) must be replaced by

Q"=- (1 + i) (- 2,o2,/2)1 A= Rx- i2/wX.

The corresponding expression for the phase is

P(z) = - (1 - i)[(m + 2) (- a2 J/2po)' /2

+ (n+ 2) (- 92 y/23 0)"/2 ]Z.

(53)

(54)

The amplifier now discriminates against the fundamen-
tal mode. While this is a straightforward analytic
demonstration of mode selection in laser amplifiers
having radial gain variations, the basic conclusions can
also be inferred from previous investigations of mode
stability in laser amplifiers and oscillators. 13,16 In
mode stability analyses it has been shown that a positive

Lee W. Casperson 1378
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value of a2X implies that perturbations of the fundamen-
tal mode will damp out while a negative value of a 21 im-
plies that perturbations will grow. If the perturbations
are expanded in terms of higher-order beam modes, the
stability conclusions are consistent with the mode dis-
crimination properties found here.

The importance of the mode discrimination effects
can best be illustrated by means of a practical example.
The 3.51 Am xenon laser typically has an amplitude gain
coefficient of about a(x= 10 ml, which corresponds to an
intensity gain of 87 dB/m. If the gain decreases
quadratically to zero at the discharge wall at a radius
of 21/2 mm, it follows from the relation a' = a0 - aa2xx2/2
- a20y2/2 that the quadratic gain coefficients are C12x

=a 2Y=ae2=107 m-3. From Eqs. (3) and (52) the intensity
of the steady-state beam grows according to

Imnl IoIexp{[2a, - (m + 2)(Xa2 J/7r)112 
- (m + I )(Xy 2Y/) /2]z}

=I0 exp{[2a 0 - (m +n+ 1)(Xaa/7r)i/2]Z}. (55)

With the previously given numbers this is

Imno = 1 exp{ [ 20 - 3. 34 (m + n + 1) ]z}. (56)

Thus the fundamental mode Io has a gain of about 17 m-1

while the Ill mode has a much smaller gain of about 10
mi.

On the other hand if the gain profile were reversed
so that there is zero gain at the tube axis (a = 0) and
maximum gain at the tube walls (a 2 = - 107 m 3), then
Eq. (54) implies that the intensity is governed by

Imn = Io exp{ [ 2a 0 + (m + n + 1) (Xa 2/ff) /2 2]Z}
(57)

=I 0 exp[ 3. 34(m + n + 1)z].

The fundamental mode 100 has a gain of about 3 m-1 while
the I,, mode has a much larger gain of about 10 m'1.
This kind of negative gain profile occurs in many types
of practical lasers due to gain saturation, heating at
the laser axis, or various types of wall interactions.
When such effects are present the higher-order modes
will always dominate over the fundamental mode. This
situation can usually be reversed by intentionally in-
troducing stabilizing apertures in the system. 17

IV. CONCLUSION

A general formalism has been developed for tracing
the evolution of high-order off-axis Gaussian modes in
media having spatial variations of the gain (or loss) and
index of refraction. The resulting modes are described
in terms of Hermite-Gaussian or Laguerre-Gaussian
functions in which the arguments of the polynomials are
complex. With these results it becomes possible to
employ familiar Gaussian beam techniques in analyzing
higher-order mode propagation through arbitrary se-
quences of lens elements and lenslike media. Requir-
ing that the beam parameters repeat after one round
trip leads directly to the resonator modes of laser
oscillators. The mode stability characteristics are
interpreted physically in terms of the selection proper-
ties of laser media with radial gain variations. In
media with no radial variations of the gain or loss,
simpler alternate mode sets are possible in which the
arguments of the polynomial functions are real.
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