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EXECUTIVE SUMMARY 

Initial research efforts focus on the development of multicriteria tools for measuring and 
analyzing the impacts of recurring and non-recurring congestion on freight corridors in the 
Portland metropolitan area. Unlike previous studies, this work employs several distinct data 
sources to analyze the impacts of congestion on Interstate 5 (I-5) in the Portland metropolitan 
area: global positioning system (GPS) data from commercial trucks and Oregon Department 
of Transportation (ODOT) corridor travel-time loop data and incident data. 

A new methodology and algorithms are developed to combine these data sources and to 
estimate the impacts of recurrent and non-recurrent congestion on freight movements’ 
reliability and delays, costs and emissions. The results suggest that traditional traffic sensor 
data tend to underestimate the impacts of congestion on commercial vehicle travel times and 
variability. This research also shows that congestion is not only detrimental for carriers’ and 
shippers’ costs, but also for the planet due to major increases in greenhouse gas (GHG) 
emissions and for the local community due to large increases in NOx, PM, and other harmful 
pollutants. 

In addition to studying a pre-defined urban corridor, this research was expanded to investigate 
longer corridors, using programming logic and available GPS data from commercial trucks to 
segment the roadway into manageable, coherent study areas. Long freight corridors are 
comprised of segments with potentially different reliability characteristics. This research has 
developed a programming logic that uses available truck GPS data to: (a) identify corridor 
natural segments or regions (urban centers, interstate junctions, rural areas), and (b) estimate 
corridor-wide impacts of travel-time unreliability. The case study presented here investigates 
the I-5 corridor in Oregon. 

After identifying corridor segments, this research applies statistical techniques to compute 
vehicle travel time and reliability for freight movements within each segment. The proposed 
methodology has been successful in indentifying distinct segments and characteristics of 
travel-time reliability in freight corridors. This travel-time information was used to compute 
cost impacts within rural and urban areas along the I-5 corridor.  

The methodologies developed throughout this work have the potential to provide useful 
freight operation and performance data for transportation decision makers to incorporate 
freight performance measures into the planning process. The development of such tools as 
those presented here are an integral step in the processing of disaggregate truck data to gather 
information necessary for producing performance measures for the freight vehicles. 
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1.0 INTRODUCTION 

Due to its geographic location, Oregon’s economy is highly dependent on reliable freight 
transportation. Recent studies indicate that projected growth in freight and passenger traffic 
will significantly increase congestion and travel-time delays. Further, it is predicted that 
congestion may result in a loss of value-added generation of as much as $1.7 billion per year 
by 2025 in Oregon, and a “loss of 16,000 ongoing jobs” (1, 2). For the freight industry, delay 
and congestion not only negatively impact the businesses that rely on efficient and timely 
deliveries, but also increase emission levels and the cost of transporting goods. In order to 
improve the functionality of transportation networks and make efficient use of funds, it is 
crucial that public agencies develop the proper tools to assess transportation system 
performance. 

Performance measures allow planners and engineers to monitor and evaluate the operation of 
a facility, transportation system or particular project. Performance measures include travel 
time, speed, travel-time reliability and others derived from these basic measures. Early on in 
the adoption of performance-based metrics, passenger vehicles were the main focus, while 
freight traffic was not incorporated independently (3). Therefore, freight-specific performance 
measures (FPMs) are not in wide use by public agencies. It is becoming increasingly 
important to continue to develop a system of performance measures that will capture the 
impact of congestion on different modes, the environment, and people living near a 
transportation network. 

Recently, a body of research has emerged which employs new methods for collecting and 
analyzing data from the trucking industry and commercial vehicles in order to develop freight 
performance measures. This research is showing great promise for providing consideration of 
freight transportation within transportation improvement projects. 

Distinct from other studies, this work employs GPS data from commercial trucks, corridor 
travel-time loop data (from ODOT sensors), and incident data to study travel time on I-5 in 
the Portland metropolitan area. Integrating the loop sensor data with the truck GPS data in the 
filtering algorithm allows for validation between the two data sets, and improves the filtering 
process to identify trucks that have experienced congested freeway conditions. By classifying 
truck types, trucks that have diverted from the freeway network to the local network between 
GPS readings are eliminated from the analysis. Unlike the loop sensor data, which may 
underestimate the impacts of congestion on trucks, the GPS data more accurately portray the 
roadway conditions trucks experience. 

A methodology has been developed to combine these data sources and estimate the impacts of 
recurrent and non-recurrent congestion on freight movement speed, travel time and travel-
time reliability. This study seeks to distinguish trucks moving along a freeway network from 
those making local movements (such as for rests or refueling) in order to study freight 
performance with unbiased measures—these trucks traveling the corridor without stopping are 
referred to as through trucks. This work is the first to integrate the multiple data sets into 
filtering algorithms, and the first to identify through trucks within the freeway network from 
GPS data in order to remove bias from trucks traveling as lower speeds on the local network, 
or higher speeds on nearby frontage roads. 

The freight performance measures are then monetized and used to estimate emissions through 
an urban corridor using standard methods—this research is a pioneer in using FPMs from 
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through trucks to investigate the impact of congestion on freight cost and freight vehicle 
emissions through urban areas. The methodology developed and applied in this research 
provides multiple criteria for evaluating the performance of freight vehicles and accounts for 
the impact of congestion on freight industry profit, environmental quality and the health of 
people near transportation facilities. The analysis of the commercial truck GPS data is a 
significant step not only in understanding the behavior of freight travel throughout the day, 
but also the impact caused by recurring congestion and incidents along the corridor on freight 
performance. 

The objective of this research is to study the impact of both recurring and non-recurring 
congestion on the freight industry using multiple criteria to evaluate freight performance. In 
order to evaluate performance, this research: (1) reviews current research and methodologies 
to study freight performance, cost and emissions to identify research gaps and appropriate 
techniques; (2) develops and applies a methodology to identify through trucks from GPS 
readings, and uses through truck data to generate travel-time distributions over time; (3) 
compares findings to loop sensor data to observe trends and develop mobility performance 
measures; (4) applies standard methods to quantify performance measures in terms of freight 
industry costs; and (5) employs the MOVES2010 emission model to estimate freight vehicle 
emissions during congested periods. 

This research will focus the recurring congestion study on truck data collected over a one-year 
period in 2007; the analysis will cover the northbound I-5 corridor surrounding the Portland 
metropolitan area. The non-recurring congestion study will focus on five incident periods and 
investigate five-mile segments surrounding each incident. Cost and emission estimations will 
be quantified at the corridor level, and for one-hour periods when incidents occurred. 

In addition to studying the pre-defined urban corridor described above, this research was 
expanded to investigate longer corridors, using programming logic and available GPS data 
from commercial trucks to segment the roadway into manageable, coherent study areas. Long 
freight corridors are comprised of segments with potentially different reliability 
characteristics. This research has developed a programming logic that uses available truck 
GPS data to: (1) identify corridor natural segments or regions (urban centers, interstate 
junctions, rural areas), and (2) estimate corridor-wide impacts of travel-time unreliability. The 
case study presented here investigates the I-5 corridor in Oregon. 

After identifying corridor segments, statistical techniques are applied to compute vehicle 
travel time and reliability for freight movements within each segment. The proposed 
methodology has been successful in indentifying distinct segments and characteristics of 
travel-time reliability in freight corridors. This travel-time information was used to compute 
cost impacts within rural and urban areas along the I-5 corridor.  

This report is organized as follows. Section 2 provides a review of performance measures in 
general, methods for monetizing these measures, and guidance for quantifying and monitoring 
the impact of congestion on the environment and public health. Section 3 discusses the data 
sources used in this research. Section 4 discusses the procedure to identify through trucks 
(trucks that have traveled a corridor without stopping for deliveries, rest periods or to refuel 
the vehicle). Section 5 discusses the recurring congestion case study used in this research. The 
results from the case study are discussed in terms of mobility and congestion performance 
measures, freight industry cost, and freight vehicle emissions. A summary of the results from 
the recurring congestion analysis is provided at the end of Section 5. Section 6 discusses the 
non-recurring congestion case study used in this research. The results from the case study are 
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discussed in terms of mobility and congestion performance measures, freight industry cost, 
and freight vehicle emissions. A summary of the results from the non-recurring congestion 
analysis is provided at the end of Section 6. Section 7 discusses methods used to investigate 
and segment long corridors. This section applies statistical techniques to compute vehicle 
travel time and reliability for freight movements within each segment. Section 8 provides a 
summary of conclusions and recommendations from this research. Here, the research findings 
are summarized and related to planning and engineering practices, as well as applications for 
use by carriers and truckers in the freight industry. 
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2.0 BACKGROUND 

This section provides a review of performance measures in general, and the development of 
freight performance measures specifically related to the trucking industry. Here, the reader 
will find a description of data sources and methods used to determine congestion and mobility 
performance measures for freight vehicles, methods for monetizing these measures, and 
guidance for quantifying and monitoring the impact of congestion on the environment and 
public health. 

2.1 DEVELOPING CONGESTION AND MOBILITY PERFORMANCE 
MEASURES 

Performance can be defined as how well a system or project is meeting an intended goal or 
purpose (4, 5). Performance measures are an essential element of the planning process; they 
are quantifiable and help to inform and justify decisions made by government officials. 
Additionally, performance measures make it possible to prioritize system improvements so a 
region may target areas most in need of improvement, thereby making efficient use of funds. 
As new performance measures are developed, it is also expected that they are efficient (in 
terms of the data and analysis required), and easy to understand because they are used in 
communication with the public (4, 5). In this way, performance measures increase 
accessibility and understanding of transportation issues within the public body of knowledge, 
as well as increase accountability of the decision makers. 

Transportation asset-management performance measures fall under a broad range of 
categories, including (5): preservation, accessibility, mobility, operations and maintenance, 
safety, environmental impacts, economic development, social impacts, security and project 
delivery. Because of the nature of the freight industry, performance measures falling under the 
mobility category provide the key to understanding how freight movements may be impacted 
by the current and future transportation network. Mobility can be defined as how easily a 
vehicle can travel between its origin and destination (5). Inadequate system performance in 
mobility creates challenges for the freight industry, including increased difficulty in 
scheduling departure/arrival times, additional fees for late arrivals, and potential loss of time-
sensitive goods such as food. 

Travel time—the time it takes a driver to travel between an origin and destination—is the 
most basic measure of roadway performance. Travel-time information is easy to interpret and 
is desired by the general traveling public, as well as freight carriers. Travel-time data are most 
often collected using loop sensors embedded in the roadway. The network of loop sensors 
allows agencies to study corridor travel time under both recurring and non-recurring 
congestion conditions. Recurring congestion conditions can be defined as congestion present 
day to day, resulting from fluctuations in demand or roadway geometry. Non-recurring 
congestion conditions are associated with unexpected events that impact traffic flow, such as a 
collision, stalled vehicle, weather event or construction. While critical information can be 
gleaned from travel-time data, the infrastructure installation and collection effort required to 
gather and analyze the information is costly. This limits how extensive the coverage can be. 
For some states, the cost is too great to implement a system of loop sensors to collect travel-
time data (6). As such, it is important to use readily available data sets with wider coverage 
area to further the development of performance measures. 
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There are several performance measures that can be calculated from travel time, with a bit of 
supplemental data and information about the corridor in question. In comparison to 
uncongested free-flow travel time conditions, delay is defined as the amount of additional 
time required to travel a corridor during congested conditions. Delay can be calculated in 
terms of intensity, (e.g., person-minutes/day or vehicle-minutes/day of delay), or represented 
in terms of the extent of roadway (e.g., number of miles of congested roadway or vehicle-
miles under congested conditions). 

Reliability of a system is defined as the variability in travel time, or delay (6). Report 618 
from the National Cooperative Highway Research Program (NCHRP) recommends the use of 
90th and 95th percentile travel times for a given route or trip as the simplest indicator of travel-
time reliability. This measure allows users to understand how bad delay or travel time may be 
during heavy congestion (6). Other recommended measures of reliability include the Buffer 
Index (BI) and the Planning Time Index, which calculate an allotted trip time for drivers to 
account for variation caused by congestion. 

Finally, speed is often used as a measure of performance, calculated from the travel time and 
distance of a given corridor or trip. State DOT’s with freeway and arterial loop sensor 
networks will typically use speeds to graphically display the real-time performance of the 
roadway. The use of segment speed and visual displays via a DOT webpage help to convey 
general roadway conditions effectively. 

Roadway loop sensors, weigh-in-motion (WIM) data, and GPS data can be used to obtain 
travel-time and speed information for freight trucks. However, with each data source there are 
advantages and challenges in using the data for the purpose of deriving freight performance 
measures for congestion and mobility (such as travel time, speed, and travel-time reliability). 

2.1.1 Loop Sensors 

The use of archived loop sensor data has shown success in estimating freeway performance 
(e.g., travel time, speed and vehicle count) can be used to study recurring and non-recurring 
congestion, and help to identify and study bottlenecks within regions (7, 8). However, loop 
sensors are limited in their ability to capture different vehicle types traveling along the 
freeway to provide disaggregate data by mode. 

Research at the University of Washington has studied the reliability of loop detectors in 
providing accurate count and speed results by vehicle type, and the capability of loop 
detectors to differentiate between vehicles by incorporating video footage (9, 10). The 
findings show that there is promise in integrating single loop detectors with video footage to 
differentiate between general purpose vehicles and freight vehicles with reasonable accuracy 
in count and speed estimates. However, dual loop detectors were found to be less reliable and 
could not reasonably estimate between vehicle types during congestion (9). Sensitivity and 
hardware errors occurring when dual loop sensors are used to detect vehicle types are likely to 
result in discrepancies in count by lane, vehicle speeds, and proper differentiation of mode. 
Additionally, underlying logic within the algorithm and large fluctuations/variations in speed 
during congested periods may cause additional issues (9). 

2.1.2 Weigh-In-Motion (WIM) and Truck Transponder Data 

At WIM stations located along the interstate highways, freight vehicles equipped with 
electronic truck transponders are required to pass through the checkpoint, where vehicle 
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weight, timestamp of visit, and other credentials are recorded. The driver is given an in-
vehicle green light to continue, or a red light to pull off for further inspection. In the U.S., 
three main programs exist that utilize electronic transponders: (1) the Heavy Vehicle 
Electronic License Plate (HELP) program, (2) the North American Pre-clearance and Safety 
System (NORPASS) program, and (3) the Oregon Green Light program. 

Recently, researchers have investigated the use of truck transponder data as a source for truck 
travel-time information, which could then be used to develop freight performance measures. If 
a transponder-equipped vehicle can be tracked at two sequential stations, the timestamp at 
each can be used to generate information regarding the trip, which translates into freeway link 
performance (travel time, speed, reliability). However, there are challenges in working with 
truck transponder data. First, there are generally long distances between WIM stations and 
few locations, so a freight vehicle has the opportunity to stop, rest, re-fuel or make deliveries 
before it is tracked at the next station. Algorithms must be incorporated to filter out trucks that 
have not traveled through the corridor without stopping because their travel-time information 
would present a bias in the data (slower travel time due to stopping/resting or delivery). 
Secondly, the number of trucks equipped with transponders is relatively low, and a large 
sample size must be required to accurately estimate link travel time based on the truck data 
(11). 

Initial work at the University of Washington investigated the use of truck transponder data in 
providing link travel-time information (12). Following this work, the researchers found that 
both GPS and truck transponder technologies have the potential to estimate link travel times; 
however, a large number of vehicle observations are required and must incorporate methods 
for determining which trucks have stopped for deliveries, resting or refueling (13). 

Recent work at Portland State University (PSU), under the sponsorship of the U.S. DOT 
University Transportation Centers Program, investigated the use of transponder-equipped 
trucks to make travel-time estimations between weigh stations in rural Oregon (11). Similar to 
previous research, this work incorporated algorithms to identify trucks deviating from the 
freeway between WIM stations by matching unique truck IDs between stations, and using 
time thresholds and comparisons between trucks to identify those traveling through the 
corridor without stopping. This research was successful in developing an effective algorithm 
to identify through trucks, and deriving additional measures of performance by quantifying 
overweight vehicles, ton-miles on corridors, empty vehicles, the penetration of trucks with 
truck transponders, origin-destination estimations, and seasonal variability in various 
measures as well as travel-time estimations (11). 

The studies discussed above have been successful in incorporating techniques and algorithms 
to mine truck transponder data to identify trucks that have traveled the freeway without 
stopping. 

2.1.3 Commercial Global Positioning System (GPS) Data 

At the national level, the Federal Highway Administration (FHWA) in partnership with the 
American Trucking Research Institute (ATRI) have looked at methodologies to utilize GPS 
technology to determine travel-time reliability in freight corridors (14) and to identify freight 
bottlenecks (15). Most recently, FHWA and ATRI released an online freight-performance 
measure tool, FPMweb, giving users access to aggregated operational truck-speed information 
using GPS data from several hundred thousand unique trucks (16). Limitations associated 
with the approach of the earlier work (14) were carefully examined by Schofield and Harrison 
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(3). The main problems they observed were: (a) the accuracy of the GPS coordinates, which in 
some cases may have an error of up to a quarter of a mile and (b) the low number of 
observations in areas with low traffic volume. In addition, a more severe limitation is that the 
data do not differentiate between vehicle stops due to congestion and stops due to refueling or 
mandatory driver rest periods. This presents a bias in the data set, where slow speeds may be 
representing local trips rather than congestion on the network. 

Researchers at the University of Washington acquired GPS data from many vehicles 
(commercial trucks) having infrequent readings and used these to estimate link travel time, 
develop freight performance measures and study before-and-after conditions where roadway 
improvements were made (13, 17). The research team used spot speeds (the speed between 
two subsequent readings) to estimate measures of mobility. Although a significant amount of 
data cleaning was employed to remove erroneous data, the data were not filtered to identify 
truck type behaviors (e.g., identifying trucks that have not stopped along the corridor). The 
research indicated that spot speeds are best used for large quantities of data over longer 
periods of time (17), However, the team was successful in showing the benefit of a freeway 
improvement project by studying GPS data on a small scale before, after and during 
construction. 

2.2 MONETARY PERFORMANCE MEASURES 

Projects may be ranked by system performance, but performance measures may also be 
monetized and ranked in order to show the benefit and impact of a proposed project. Without 
accurate information regarding the operating costs or value of time for the freight industry, it 
is possible to underestimate the benefit of a given project or overestimate the benefit of 
financing strategies like congestion pricing (18). In this section, data sources and methods 
used to monetize performance measures are discussed. 

2.2.1 Variations in Value of Time for Freight Vehicles 

Research has shown great variation in freight value of time across regions, roadway 
conditions and carrier types. The value of time for freight vehicles derived in several studies is 
presented in Figure 1. 

The NCHRP 431 report investigated variations in value of time for passenger vehicles and 
commercial trucks under hypothetical congested roadway scenarios. For both freight and 
passenger vehicles, time losses during congestion were valued at more than twice the value of 
time savings during uncongested conditions. This report recommends the use of travel-time 
values for congested periods that are 2.5 times the value of time estimates during uncongested 
periods (19). 

As shown in Figure 1, the value of time for freight vehicle derived in the NCHRP 431 report 
is quite large in comparison to values of time derived in other studies. Although the 
researchers note a small number of respondents from the freight industry, and concerns of 
respondent comprehension of surveys as potential sources of discrepancy, it is also 
acknowledged that the need for carriers to adhere to strict schedules contributes to greater 
value of time (19). Additionally, the NCHRP 431 freight value of time presented in Figure 1 
reflects value of time under congested conditions, which NCHRP 431 determined to be 
roughly 2.5 times greater than value of time during uncongested conditions. 
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Variations in freight value of time are also found by region. Figure 1 shows that value of time 
estimates can vary over a wide range, based on research conducted by Minnesota, ODOT and 
a national urban area average provided by Texas Transportation Institute (TTI) (20-22). 

Kawamura (2000) investigated differences in value of time among operators and trucking 
industry segments. Findings from Kawamura show that not only do freight carriers have a 
higher value of time than passenger vehicles, but that there is also significant heterogeneity 
among carriers (23). 

 

Figure 1:  Value of time for freight vehicles ($/hr) derived from several studies. 
 
2.2.2 Monetizing Travel Time and Delay Using Value of Time 

Utilizing the value of time derived from (23), it is possible to monetize measures of travel 
time and delay. TTI publishes the Urban Mobility Report, which evaluates procedures, 
processes and data used for developing estimations of the cost of congestion (22). The 
following expression (Eq. 1) is the TTI formula to determine the annual cost of congestion for 
freight vehicles (22). 
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2.2.3 Incorporating Travel-Time Reliability in Travel-Cost Calculations 

In addition to travel time and delay, travel-time reliability (or variability) can be incorporated 
into travel-cost calculations. Reliability of travel time is particularly important to time-
sensitive shippers and time-definite delivery carriers. One of the simplest approaches to 
quantifying traveler cost takes the following form shown in Eq. 2 (24): 

Uc = a1 * T + a2 * V(T) + a3 * M     Eq. 2 

where: 

 Uc = the traveler cost, 

T = trip travel time,  

V(T) =  trip travel-time variability,  

M = cost of traveling, and  

a1, a2 and a3 are parameters representing the dislike of travel time, variability and travel cost, 
respectively. 

For the variability term, Cohen uses a low- and high-end range for a2 of 0.3 and 1.3; 
parameters a1 and a3 were estimated to be 1 (24). Research has found that, by improving 
reliability (reducing variability) during congested peak periods, there is great potential to 
significantly reduce the cost of travel during congestion. 

2.2.4 Monetizing Travel Time and Delay Using Operational Cost 

Although the value of time has been widely incorporated into cost-benefit analysis, by 
examining marginal operating costs we can gain insight into decisions made by carriers and 
how the freight industry is impacted by the performance of the transportation system. 

Studying aggregate marginal costs in the freight industry is a challenge because of the 
complexity in shipping processes between carriers, variation in fleet size, and differences in 
carrier types—data is difficult to obtain and often varying ranges of marginal costs are 
considered (18). Recent work by ATRI derived marginal operation costs for various carrier 
types by using survey methods. ATRI defined marginal costs as “those costs associated with 
operating a truck one mile or one hour in standard operating conditions” (18). Figure 2 
presents a list of operating costs considered by ATRI, classified into driver and vehicle 
categories. 
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Figure 2:  Operating costs involved in the trucking industry. 
 
Marginal costs are used to analyze costs resulting from transportation-related issues, since 
these are the costs that are impacted most by the roadway conditions—congestion will 
generally have a greater impact on marginal costs than fixed costs. For example, as congestion 
increases, freight vehicles spend more time on the road, thereby consuming more fuel. 
Carriers will adjust shipping schedules and vehicle routing as a response to congestion to 
reduce the cost of fuel as much as possible. Additionally, fixed costs are less consistent across 
carrier types compared to marginal costs, decrease as the vehicle-miles traveled increases, and 
are often allocated differently between carriers, making it more difficult to aggregate 
information. Therefore, examining only the marginal costs will provide a better understanding 
of decisions made by carriers and how the freight industry is impacted by the transportation 
system conditions in terms of cost. 

In a recent study, ATRI found the average marginal operating cost for the freight industry to 
be $1.78 per mile and $83.68 per hour (18). ATRI also found that specialized carrier types had 
the highest cost per mile, followed by less than truckload1 and truckload2 carrier types. Fuel, 
driver wages, and truck/trailer leases or purchases were among the top cost items. As revealed 
in value of time studies, there are major differences among trucking industry sectors. ATRI 
also applied average cost values to investigate the annual cost impact of a network bottleneck 
on the trucking industry, using a three-step methodology; this research concluded that the 
truck congestion costs associated with a bottleneck case study resulted in $5.7 million 
annually (25). 

2.3 ENVIRONMENTAL AND HEALTH PERFORMANCE 
MEASURES 

It is crucial to be able to accurately estimate emissions due to freight vehicles in transportation 
planning and engineering in order to address concerns for public health and air quality, and to 
adhere to current and emerging policies. This section introduces vehicle emissions and factors 

                                                 
1 Less than truckload (LTL) carriers haul a relatively small amount of freight, and may carry goods of different 
types in a given load. LTL carriers may visit multiple customers throughout the day to deliver or to pick up 
goods. 
2 Truckload (TL) carriers haul large amounts of the same type of goods. All goods carried in one truckload will 
generally go to one customer. 
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that influence the amount of emissions produced. The section ends with a discussion of how 
emissions can be estimated and quantified, and subsequently used as a link to understand the 
health impacts of transportation. 

2.3.1 Importance of Quantifying Freight Emissions 

The freight industry is a critical piece of our transportation system and national economy. The 
U.S. Department of Transportation found an average 58 million tons of freight shipments per 
day in 2007 (domestic, exports and imports)—60% of which were transported by the trucking 
industry (26). The Federal Analysis Framework predicts the tons of goods moved by trucking 
will more than double 2007 values by the year 2035 (26). Assuming the status quo, this 
expected increase in freight transportation will have a direct impact on air quality over the 
next 25 years. Freight transportation constitutes 20% of the energy consumed by the 
transportation sector. For ground transportation (rail and trucks), this means that 35 billion 
gallons of diesel fuel are consumed each year, equating to 350 million metric tons of carbon 
dioxide (CO2) per year (27). Without continuing to make changes in policy, transportation 
operations and technology, these rates will only become greater over time as the freight 
industry grows to meet the expanding economy, demands of just-in-time production, and 
increased usage of online shopping. 

2.3.2 Emissions and Air Pollutants 

Greenhouse Gases and the Environment: Greenhouse gases (GHG) are those that trap heat 
in the atmosphere and are largely responsible for changes in the global climate. Non-carbon 
GHG are methane (CH4), nitrous oxide (N2O), hydrofluorocarbons (HFCs), perfluorocarbons 
(PCs) and sulfur hexafluoride (SF6); carbon dioxide (CO2) is the leading carbon GHG. Of the 
six main GHGs, the transportation sector contributes mostly to CO2 emissions and, to a lesser 
degree, N2O emissions (28). The remaining GHGs result mainly from agriculture and 
industrial activities. 

Carbon dioxide is the most prevalent GHG. Although N2O emissions are much less than CO2 
emissions, they are 300 times more powerful at trapping heat in the atmosphere compared to 
CO2, so it is important to monitor more than just carbon emissions. Each year, the EPA tracks 
the nation’s GHG inventory, which allows agencies, policymakers and scientists to observe 
emission trends, monitor progress and develop strategies to reduce GHG emissions in the 
future (29). There are several initiatives and policies aimed toward reducing CO2 emissions. 

Mobile Source Air Toxics and our Health:  In addition to the environmental concerns 
regarding GHGs, there is national concern over the health risks caused by mobile source air 
toxics (MSAT). MSAT are compounds emitted from mobile sources that present known or 
suspected health risks for humans (e.g., cancers, immune system damage or respiratory 
problems). 

The Clean Air Act Amendments established by Congress in 1990 required the EPA to 
regulate 188 MSAT. Over the past two decades, the EPA has compiled a list of several 
hundred compounds emitted from mobile sources and identified several compounds as 
significant contributors to health-related issues (30). FHWA reviewed the EPA’s work and 
agreed upon seven compounds that have the greatest influence on health: acrolein, benzene, 
1,3-butadiene, diesel particulate matter plus diesel exhaust organic gases (diesel PM), 
formaldehyde, naphthalene, and polycyclic organic matter (31). 
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Criteria Pollutants:  The EPA has also identified six “criteria” pollutants, for which the 
agency has set National Ambient Air Quality standards. These include ozone (O3), particulate 
matter (PM), nitrogen oxides (NOx), lead (Pb), sulfur dioxide (SO2), and carbon monoxide 
(CO) (32). Nitrogen dioxide (NO2) can be monitored independently from other highly 
reactive gases in the NOx group, as it stands as an indicator of the group. For diesel engines 
(used almost exclusively to power heavy-duty vehicles), very little CO emissions and 
hydrocarbons are produced; however, significant amounts of NOx and PM are produced (33). 

Nitrous oxides, like NO2, form quickly from emissions of vehicles, and are linked with many 
adverse health effects—short-term exposure to NO2 emissions from 30 minutes to 24 hours 
has shown increased airway inflammation in healthy persons, and increased respiratory 
symptoms in people with asthma (34). In addition to the health risks, NOx contribute to the 
increase of smog, which in turn reduces visibility. It is expected that recent NOx standards for 
passenger vehicles and heavy-duty engines from the 2004 and 2007-2010 model years, 
respectively, will contribute to decreases in NO2 concentrations in the future. 

Particulate matter (PM) is also closely linked with respiratory health and visibility effects. PM 
are small bits of liquid or solid material suspended in air (or water). Ground freight 
transportation (rail and trucking) contributes to 30% of all PM emissions (27), and, as 
indicated above, diesel PM has been identified as one of the EPA’s seven significant 
contributors to health risks resulting from MSAT. Fine and ultrafine particles (particle matter 
with diameter of 2.5 micrometers and smaller, PM2.5) contribute to smog/haze and can be 
inhaled deep into the lungs, causing health problems. 

To date, governmental regulation and vehicle technology improvements have received wide 
attention in reducing GHG emissions, MSAT and other pollutants by heavy-duty vehicles. 
Currently, diesel vehicles are being regulated by the EPA to reduce PM and NOx. As noted in 
recent work by the University of California Riverside, little attention has been paid to the 
impact of traffic operations and various roadway conditions on freight emissions (33). 

2.3.3 Factors Contributing to Freight Emissions 

It is clear that transportation has a significant impact on air quality and, consequently, public 
health, and is responsible for a large portion of global air pollution. However, it is important 
to understand what factors contribute to emission of GHG, MSAT and other air pollutants. 
For example, fuel consumption and CO2 emissions are directly related, but fuel consumption 
depends heavily on travel speed, road characteristics and vehicle characteristics (35). This 
section will present a review of factors contributing to freight emissions. 

Speed and Acceleration:  Using probe passenger vehicles equipped with GPS, loop sensor 
data and an emissions model, one study found that when congestion brings average vehicle 
speed below 45 mph, there is a negative net effect on emissions. Vehicles spend more time on 
the road and exhibit acceleration and deceleration patterns, which result in increases in CO2 
emissions (36). Additionally, very high speeds (above 65 mph) also result in higher emission 
levels. The study makes recommendations for “traffic smoothing” and congestion mitigation 
to maintain steady speeds between 45 to 50 mph and reduce CO2 emissions (36). The impact 
of speed on vehicle emission rates is illustrated in Figure 3, taken from Barth and 
Boriboonsomin; the researchers indicate that moderate speeds produce minimum emissions 
(37). 
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Similar results were found for heavy-duty vehicles at different operating modes. Higher 
emission profiles were shown for vehicles accelerating, with the highest emission rates from 
accelerations between 0 to 25 mph than from accelerations between 0 to 50 mph (38). 
Additionally, at steady speeds of 25 mph, emission profiles for hydrocarbons (compounds 
consisting of hydrogen and carbon) and CO components were greater in comparison to 
hydrocarbon and CO emissions for higher steady speeds of 50 and 60 mph. 

 
Figure 3:  Emission-speed plot taken from Barth & Boriboonsomisin, 2009 (37); moderate speeds show 
minimum emission rates. 
 
More recent work has investigated heavy-duty vehicles using a state-of-the-art Mobile 
Emission Laboratory. The study investigated emissions from heavy-duty vehicles on arterial 
and highway road classes, and found that at moderate speeds, emissions on the arterial road 
conditions were much higher than emissions at moderate speeds along the highway road 
conditions. These differences can be explained by more frequent and sharper accelerations on 
the arterial roadways, and support the argument that it is not enough to use CO2 emission 
factors based solely on average speed, but a measure of driving pattern must be incorporated 
(33). Additionally, tests performed at high speeds (greater than 65 mph) suggest that 
extrapolating from California Emissions Factor Model (EMFAC) curves for high speeds may 
underestimate CO2 emissions from heavy-duty vehicles. 

MSAT have also been investigated, but to a lesser degree. Using the modeling tool CT-
EMFAC, a recent study investigated MSAT sensitivity to changes in traffic volume, fleet 
composition and speed. The study concluded that MSAT emissions are more sensitive to 
speed changes than the other parameters evaluated (39). This study points to a need for further 
research and specification of factors for MSAT (especially for diesel vehicles) in order to 
improve project-level MSAT emission estimates. 

Vehicle Weight:  Researchers have investigated the effect of vehicle weight on freight 
emissions and, in particular, on the emission of NOx (38, 40). Gross vehicle weight was found 
to strongly affect emissions. Using data obtained from the West Virginia University 
Transportable Heavy Duty Emissions Testing Laboratories, a linear relationship was found 
between NOx and heavy-duty diesel vehicle weight (40). Results for CO and PM emissions 
were not consistently affected by vehicle weight, although CO and PM showed increases in 
emissions during periods of acceleration (40). Using the 2002 simulation model Advanced 
Vehicle Simulator, developed by the U.S. Department of Energy’s National Renewable 
Energy Laboratory, researchers noted that increases in vehicle weight from 52,000 pounds to 
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80,000 pounds resulted in approximately a 40% increase in NOx grams per mile emissions 
when vehicles accelerate and travel at higher speeds (38). Both studies point to the importance 
of including a measure of weight within emissions models. 

Recent work at the University of California Riverside supports the relationship between 
vehicle weight and emissions—as vehicle weight increases, quantity of emissions increases. 
By employing the Comprehensive Modal Emissions Model (CMEM) for a variety of vehicle 
weights, the researchers concluded that the emissions are lowest at moderate speeds and 
greatest at moderate average speeds. For a truck with no additional trailer weight, the 
optimum speed for minimizing emissions was found to be 23 mph, while the optimum speed 
for a truck hauling 6,400 pounds was found to be 45 mph (33). 

Roadway Grade:  Though not a freight-specific study, research by Pierson et al. showed that 
NOx emissions were twice as high driving uphill at about a 4% grade compared to driving on 
a level roadway (41). More recent work has investigated freight vehicles specifically (using 
the CMEM model) and found that a 1% increase in grade can increase heavy-duty vehicle 
CO2 emissions as much as 35% for grades between 0-2% (33). Vehicles must travel a longer 
period of time on an uphill (because of reduced speeds caused by the grade), subsequently 
consuming more fuel and emitting more CO2. The reverse is true for a downhill grade. By 
varying grades, the study also found increased linearity of the relationship between CO2 
emissions and speed with increases in grade. These findings show that the speed 
corresponding to the minimum CO2 emissions is greater (faster) for downhill grades in 
comparison to flat terrain because less tractive effort is required to power a vehicle driving 
downhill (33). 

2.3.4 Modeling Freight Vehicle Emissions 

Utilizing freeway performance measures (e.g., speed over time), it is possible to quantify 
environmental and health performance measures related to tailpipe emissions to provide 
transportation agencies the tools to link transportation performance to environmental and 
societal goals. In order to do this, planners and engineers often use a sequential three-step 
model process where outputs from one step become the input for the next. This process 
generally consists of the following models: (a) transportation demand-traffic models, (b) 
emissions rate models, and (c) pollution dispersion models. 

There are a variety of models that can be used to estimate tailpipe vehicle emission rates. The 
MOVES2010 model can be used to estimate national, state, county and project-level 
emissions for GHG, select MSAT, and criteria pollutants. Among models, there are some 
variations in the specific vehicle and roadway factors and assumptions. Several studies have 
investigated the impact of freight vehicle characteristics (e.g., speed, acceleration, weight) and 
the impact of roadway characteristics (e.g. grade, classification) on emission rates, but the 
degree to which these characteristics are incorporated into individual models may vary. 

CMEM was developed at the University of California Riverside, and is intended for use with 
microscale transportation simulation models. Microscale transportation simulation models 
will typically produce detailed, second-by-second trajectory outputs for location, speed and 
acceleration, which can then be used as input for the CMEM model (42, 33, 36). The CMEM 
model can account for various vehicle and roadway parameters, including vehicle type, 
size/weight and grade. Given the necessary inputs, the CMEM model can predict second-by-
second vehicle emissions, which are crucial for transportation policy purposes. 
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When vehicle activity information is combined with the emissions model, the output is the 
estimate of emissions (GHG, MSAT or criteria pollutants) over time and space (43). After 
obtaining results from the emissions model, the outputs can then be used to study air quality 
and health effects using a dispersion model. 

2.4 SUMMARY OF BACKGROUND REVIEW 

The review presented here informed the research investigation. This section demonstrates an 
understanding of performance measures and concepts of using these measures to improve our 
transportation system. The review of literature related to freight performance measures 
highlights gaps in current research and determines challenges in using particular data sets. The 
methodologies presented for estimating the cost of congestion define procedures that can be 
used at a project or regional level to monetize performance measures. Finally, the importance 
of quantifying freight emissions is discussed along with models that can be used to estimate 
emission rates from freight vehicles. 



19 

3.0 DESCRIPTION OF AVAILABLE DATA 

This section discusses the data sources used in this research: loop sensor data, incident data 
and commercial GPS data.  

3.1 LOOP SENSOR 

The Portland State University Intelligent Transportation Systems (ITS) lab has direct access to 
corridor loop data from ODOT sensors. These sensors collect the count and speed of vehicles 
at more than 600 locations in the Portland region. The Portland Oregon Regional 
Transportation Archive Listing (PORTAL, see http://portal.its.pdx.edu) offers traffic data, 
performance measures, and analytical tools in a user-friendly interface. 

The ODOT sensor stations consist of dual loops in each lane and are typically located along 
the freeway mainline upstream of on-ramps and along the on-ramps. The dual loops allow for 
count and speed estimates per lane to be directly measured. PORTAL automatically calculates 
the speed estimate for a given station using a weighted average of speeds by vehicle count 
across all lanes present at the station. Additionally, travel-time estimates are performed 
automatically in PORTAL using the traditional mid-point method. This method distinguishes 
influence areas (distance) midway between a station and the nearest up/downstream detector 
stations, and divides this distance by the weighted station speed to produce travel-time 
estimates through station influence areas. 

In order to calculate the travel time through a corridor, the station travel times are added for a 
given time bin. Finally, the average speed through the corridor can be calculated by dividing 
the corridor travel time by the length of the corridor. It is important to note that weighted 
station average speeds cannot simply be averaged to produce a corridor average speed. This is 
due to the spatial nature of congestion through the corridor, where segments may experience 
congestion at different times. As discussed in the background section, past and current 
research projects at PSU have used the PORTAL archive to study recurrent congestion using 
historical data (7, 8).  

3.2 INCIDENT DATA 

In addition to the loop sensor data, PORTAL has also integrated incident data from the ODOT 
Advanced Transportation Management System (ATMS). These data provide the user with 
more information to discern whether the traffic behavior was recurring or non-recurring 
(caused by an incident, weather event or roadside construction). The incident database 
includes information on the type of incident (crash, stall or random event); number of lanes 
affected; approximate start and end time; and approximate location of the incident, in addition 
to several other fields. 

3.3 COMMERCIAL GPS DATA 

Most significantly, this work incorporates GPS data from a sample of commercial trucks 
along the I-5 corridor. The GPS devices are placed onboard trucks and report a unique truck 
identification (truck ID) number, date, time and position (latitude/longitude) for each truck 
reading. GPS truck data were provided to this research project by the American Trucking 
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Research Association (ATRI) as part of a research contract between the Federal Highway 
Administration and PSU. 

3.3.1 Data Challenges 

This work used data from January through December 2007 along the I-5 corridor in the 
Portland metropolitan area. GPS data provide dynamic travel-time information, and are 
capable of capturing vehicle movement. These two characteristics make the data very useful 
when investigating freight vehicles traveling between different origins and destinations to 
make deliveries. Although GPS data provide more detailed information regarding the 
movement of a given vehicle in comparison to other data sources, there are challenges in 
working with the GPS data. Below is a summary of these challenges and considerations that 
must be made when working with GPS data from commercial vehicles and developing 
algorithms to mine the data. 

1. Error in reading position: As indicated by Schofield and Harrison (3), the accuracy 
of the GPS coordinates may have an error of up to a quarter of a mile. This creates 
difficulty in properly assigning readings to road networks—time thresholds between 
readings can be used to assist in verifying whether or not a reading belongs to an 
assigned roadway. Additionally, a vehicle may appear to have suddenly changed 
direction if the error in position places a reading (occurring later in time) at a location 
prior to the first reading, when in reality the vehicle continued on the same path. By 
looking at the first and last readings covering a greater distance of travel, these sudden 
erroneous changes in direction are reduced. 

2. Erroneous spot speeds: Another error type occurs when the GPS reading happens to 
take place on a period of acceleration—very high speeds (e.g., greater than 100 mph) 
may result (17). Additionally, error in position (as discussed above) may also result in 
erroneous speed estimations between readings. By performing data cleaning, and/or by 
looking at the first and last readings covering a greater distance of travel, these errors 
are reduced. 

3. Multiple trips by a given truck per day: Given the GPS data from all vehicles, it 
becomes necessary to identify individual trips made by a particular truck each day 
(i.e., travel between origin and destination points, or through a defined road segment). 
Depending on the operator or service type, the number of trips inside the study area 
will vary widely between trucks. The data set used for this research did not include 
detailed information regarding truck type, operator type, service type, vehicle contents, 
or the origin/destination of the vehicle. Given these details, filtering methods could 
incorporate the information into algorithms to aid in classifying trips and studying 
freight movement key origin and destination centers. 

4. Data quantity: The data made available to this research provided a large number of 
individual readings surrounding I-5 in the Portland metropolitan area. Figure 4 
presents a map showing the coverage of individual GPS readings for the month of 
August 2007—an average of 126,000 readings were found each month, and roughly 
1.5 million readings for 2007. The sheer size of the data set increases the data cleaning 
effort, pre-processing effort for input into the algorithms, and filter processing time in 
order to obtain truck travel time and other mobility performance measures. 
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Figure 4:  Map showing truck GPS data coverage provided by ATRI—individual readings on I-5 for 
August 2007 are shown (146,290 readings). An average of 126,000 readings occurred each month, with 
roughly 1.5 million readings for January through December 2007. 
 

5. Reading frequency: The frequency of readings vary from truck to truck, meaning 
there is no common gap time between readings—even for a given truck, the frequency 
may vary. This is largely because a lower resolution of reading frequency is adequate 
for the trucking industry. The reading frequency creates challenges because, with 
larger time gaps between readings, it is difficult to know what activity was taking 
place. Techniques must be developed to discern, for instance, if a greater time between 
two readings translates to slower speeds resulting from freeway congestion, or if travel 
actually took place on a nearby local network where speeds are expected to be slower. 

6. Different Truck Travel Types: Within the data set provided for this research, 
multiple truck travel types were discovered—some trucks travel the freeway network, 
while others use the local network while making deliveries. Additionally, it is possible 
for a truck to have readings on both the local and freeway network on a given trip, as 
they leave the freeway to make deliveries, refuel the vehicle or rest. Highlighted in the 
literature review, previous research has not attempted to separate and classify readings 
by different truck travel types. By classifying truck travel types, it is possible to 
remove bias from trucks experiencing local (non-freeway) traffic conditions, and 
analyze only trucks that have experienced freeway network conditions. Section 3.3.2 
will further discuss issues regarding truck travel types. 

Filtering algorithms and data mining, such as those developed for this work (discussed in 
Section 4), are essential in order to manage the large quantity of GPS data and to provide 
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accurate measures of performance. Data challenges and known sources of potential error 
indicated above should be considered throughout the development of filtering methodologies. 

3.3.2 Truck Travel Types 

The truck travel types present in the data set can be grouped into two broad categories:  
through trucks and local trucks. Figure 5 illustrates a small local network and freeway 
network with different truck travel types presented. 

 

Figure 5:  Truck travel types 1) Through, 2) Partial-Through, 3) Partial-Local, and 4) Local 
 
As shown in Figure 5, a through truck makes no stops on the freeway corridor and has at least 
one reading before and after the “start” and “end” of the corridor. Because they have traveled 
the freeway corridor without stopping, the travel time and speed obtained from the GPS data 
from through trucks will reflect the freeway corridor conditions experienced by the freight 
vehicles. 

As shown in Figure 5, a partial-through truck is defined as a truck that has only one reading 
on either end of the corridor, and an intermediate reading somewhere between the start and 
end of the corridor. Partial-through trucks may (or may not) have traveled the entire corridor. 
Without readings at both extremities of the corridor, it cannot be determined with certainty 
that the truck traveled the full length of the corridor, thereby experiencing all roadway 
conditions associated with the corridor at a given time of day. For instance, a partial-through 
truck could have avoided a congested segment further downstream by leaving the freeway 
network if readings are only available at the beginning of the corridor and midway through the 
corridor. The average speed between the available readings would reflect the segment traveled 
by the partial-through truck (before it diverted to the local network), and would not represent 
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the freeway conditions of the corridor. Here, the inclusion of partial-through truck speeds 
could present a bias of higher speeds through the corridor. 

Similarly, partial-local trucks have readings along the freeway corridor, but also readings on 
the local network (see Figure 5). As discussed previously, error in GPS position may cause 
local network readings to appear to be on the freeway network. This can contribute bias of 
slower travel-time and speed estimates that do not represent freeway conditions, but rather a 
combination of freeway and local conditions. For instance, assume that for a given truck the 
first reading is taken near the start of the corridor, and the second reading is taken midway 
through the corridor after the truck has traveled the local network and stopped to deliver 
goods to a customer. A portion of the travel time between the first and second readings 
represents freeway travel conditions, but a portion of the travel time also represents local 
travel conditions. Without a reading between the two points, it is difficult to discern where the 
transition from freeway to local took place. However, it is clear the estimation of speed 
between the two points would not represent the corridor average speed, and could instead 
present a bias of slower speed since local travel occurred. 

Figure 5 shows that local truck readings occur solely on the local network; these trucks may 
represent local or arterial street conditions rather than congested freeway conditions. The 
close proximity of the freeway and local streets, coupled with the error in position of GPS 
readings, creates difficulty in assigning readings to the local network versus the freeway 
network. This is particularly of concern near interchanges, where vehicles transition between 
the freeway and local networks. Data from trucks traveling the local network to accessing 
customers or gas stations, or transitioning between the local and freeway networks, may 
present bias of slower speeds, as they experience roadway conditions related to the local 
network. 

Another example of bias from local trucks may occur where there are nearby frontage roads 
paralleling the interstate. Trucks could choose to travel a frontage road to avoid severe 
congestion on the freeway. Including data from local trucks that have traveled frontage roads 
could present a bias of higher speeds at times of day when the freeway network was severely 
congested. 

Figure 6 provides an example of the potential distorting effect of including local or partial-
through/local truck GPS data in the aggregation of travel-time and speed estimates along 
freeway corridors. 
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Figure 6:  GPS spot speeds for seven trucks (through, partial-through, partial-local, or local trucks) at I-
5/I-84 junction in Portland, OR. It is possible for the local readings to be improperly assigned to the 
freeway network, presenting a bias of slower speeds in the data set. 
 
Figure 6 shows GPS spot speeds for through, partial and local trucks at the junction of I-5 and 
I-84 in Portland, OR. Here the interstates are elevated, with local streets directly beneath the 
interstates and in close proximity to the interstate. Because of the close proximity of the local 
network to the interstate network and the accuracy of GPS units, it is possible for the local 
readings to be improperly assigned to the freeway network, presenting a bias of slower speeds 
in the data set. In addition, mixing freeway reads can also lead to bias, as one freeway can be 
uncongested while the other is highly congested. 

Unlike other studies, this research identifies through trucks to estimate the impact of 
congestion on freight movements throughout the day, thereby eliminating partial-through, 
partial-local and local truck data from the analysis. A methodology is developed to reduce 
speed estimation bias by separating through trucks from partial-through, partial-local and 
local trucks. 



25 

4.0 METHODOLOGY FOR IDENTIFYING THROUGH 
TRUCKS 

This section discusses the procedure to determine those unbiased trucks that are classified as 
through trucks. In order to identify through trucks that experienced congestion, two main 
filtering processes were implemented: 1) truck ID matching process to identify all potential 
through trucks and 2) comparison of GPS speeds to loop sensor average travel time by time 
period. 

4.1 FILTER PROCESS 1: TRUCK ID MATCHING 

Figure 7 presents a diagram of parameters necessary to identify through trucks. The 
extremities of the corridor are defined in Figure 7 as ms = start mile, and me = end mile. 
Because it is unlikely that readings will occur exactly at mile ms or me, a buffer region 
surrounding the start and end mile are created: 

Start buffer = ms +/- r, 

End buffer  = me +/- r, 

where: 

 r = buffer radius in miles. 

A time window tc is defined as the maximum threshold for a vehicle to clear the extremities of 
the corridor plus the buffer region. This assumes that one trip must be completed within time 
window tc; otherwise it is assumed that the truck has made one or more local stops through the 
corridor. This parameter is set liberally to ensure that vehicles traveling less than free-flow 
speed during congested periods are captured as potential through trucks. Similarly, time 
window tb is defined as the maximum threshold for a vehicle to clear the buffer region 
surrounding ms or me.  

Many of the trucks found in the data set have made multiple trips through the corridor, either 
on the same day or on another day in a given month. Because of this, the matching process 
must also incorporate rules to distinguish between multiple through trips made by the same 
truck ID. The logic for identifying potential through trucks is summarized in Figure 7. 

4.2 FILTER PROCESS 2: COMPARISON TO LOOP SENSOR 
AVERAGE TRAVEL TIME 

In the second step to identifying through trucks, the corridor travel times from each potential 
through truck (from Filter Process 1) are sorted by the “start” reading timestamp into time 
bins of 15-minute intervals. These times are then compared to the loop sensor average travel 
time at a 15-minute resolution for the time period of interest. A deviation index is calculated 
using the loop sensor data to determine if the through truck values deviate too greatly from the 
expected average given by loop sensors. The deviation index is calculated as follows: 

For a 15-minute time bin t let,  
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 at = loop sensor average travel time at time bin t 

 σt = loop sensor day-to-day standard deviation in travel time at time bin t 

For each truck trip k in 15-minute time bin t let, 

 Tk = the corridor average travel time for truck trip k  

Then the deviation index gk is defined as 

 gk = | at – Tk |/ σt 

Any gk > m * σ for all time bins is assumed to be too far from the expected average and it is 
excluded from subsequent analysis; m is a user-defined parameter. 

Because loop detection has the potential to underestimate the impact of congestion on the 
freight trucks, it is expected that, in general, loop sensor average travel times may be shorter 
than freight truck travel times. This important fact must be taken into account when setting the 
value of parameter m in order to exclude only trucks making stops from those traveling the 
entire corridor during congestion without making stops. 
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Figure 7:  Diagram showing user-defined parameters for Filter Process 1 (truck ID matching to find 
potential through trucks), and corresponding algorithm logic. 
 

1. Use ArcGIS linear referencing tool (Locate Features Along Routes) to obtain milepost 
measures along an interstate for each GPS truck reading using latitude/longitude data. 

2. Determine the corridor extremities (ms and me). 

3. Create a record of each reading falling within the start and end buffer ranges. 

4. For all readings which fall within the buffer ranges, distinguish individual trips by each 
truck using time thresholds and identify the “start” and “end” points of each trip. 

5. For each truck ID, match all start readings to a downstream end reading that occurs 
within a time tc and record as a single trip. 

6. Search the entire data set to find all intermediate readings for a truck ID that falls 
between the trip start and end readings (using timestamp and milepost data) to create a 
complete trip through the corridor. 

7. Adjust the start and end reading timestamp and milepost to begin at ms and me using 
speeds obtained from the next closest reading. 

8. For each truck ID and trip, use adjusted start and end reading timestamp to obtain the 
travel time and speed through the corridor, and identify trip direction of travel using 
milepost data. 
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4.3 METHODOLOGY FOR NON-RECURRING CONGESTION 

The methodology described above can be applied to study the effect of non-recurring 
congestion caused by an incident. Instead of examining the entire corridor, attention is 
restricted to small roadway segments preceding incidents. The incident analysis required 
minor modifications to the procedure discussed above in order to identify through-incident 
trucks (trucks traveling through the incident without stopping)—two different approaches 
were used. Both approaches start by defining a five-mile incident area where through-incident 
trucks must travel without stopping for reasons unrelated to congestion. Four incident areas 
were studied and are referred to as incident areas A, B, C and D. Twenty-two individual 
incidents occurring within these areas were studied, and are discussed further in a later 
section, along with descriptions of the incident areas. 

The first approach (applied to study incident areas A, B, C), modified only the Filter Process 1 
parameters (me, ms, r, tc, tb) to investigate the incident areas. Figure 8 shows a diagram of the 
parameters used to study incident areas A, B and C. The diagram is similar to the diagram of 
parameters used for recurring congestion analysis (Figure 7). However, instead of creating a 
buffer surrounding the start and end miles, the buffer radius extends only to mileposts after 
(north of) the end mile and before (south of) the start mile. This ensures a truck must travel 
the entire incident area to be considered a through-incident truck. A buffer radius of four 
miles was used for the non-recurring study of incident areas A, B and C. 

 

Figure 8  Diagram of parameters for Filter Process 1 used to study incident areas A, B and C. 
 
The second approach (applied to study incident area D) differs from the first approach in that 
the buffer radius was extended to the extremities of the I-5 corridor in the Portland area 
(milepost 283.93 in Multnomah County, OR., and milepost 7.3 in Clark County, WA.); the 
buffer radius in the first approach was only four miles. Because of the increased buffer radius, 
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a further constraint to identifying through-incident trucks using the second approach was that 
at least one intermediate reading had to occur within the incident area. 

The parameters, incident area extents, and individual incidents occurring within each of the 
incident areas are defined and discussed further in a later section. 

 

Figure 9  Diagram parameters for Filter Process 1, used to study incident areas D. 
 

Following Filter Process 1, the through-incident truck average travel times were compared to 
loop sensor data collected from loop stations spanning the five-mile incident areas to further 
identify through-incident trucks (i.e., Filter Process 2). By evaluating those trucks that were 
certain to have passed through the incident areas without stopping, the fluctuation in travel 
time due to the incident can be observed without the effect of the local network. 
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5.0 RECURRING CONGESTION RESULTS 

Recurring congestion is the result of changes in demand throughout the day and can occur at 
locations where the geometry of the roadway changes, creating a bottleneck (i.e., near 
interchanges or lane drops). This section begins with a description of the recurring congestion 
case study used in this research. The recurring congestion study was designed to analyze 
corridor-level congestion aggregated over a one-year period. The remainder of this section 
will present the results for the recurring congestion analysis. The results are discussed first in 
terms of mobility and congestion performance measures (i.e., travel time, delay, reliability). 
Next, the cost of recurring congestion is presented, followed by the impact of recurring 
congestion on emission rates. Finally, a summary of the results from the recurring congestion 
analysis is presented. 

5.1 CASE STUDY DESCRIPTION 

The recurring congestion case study presented in this work investigates a 31.75-mile segment 
of northbound I-5 from mile marker 283.93 in Multnomah County, OR., through mile marker 
7.3 in Clark County, WA. The study focused on weekdays during 2007 (January through 
December), and allowed for the analysis of congestion’s impact on corridor-level travel time, 
cost and emissions. These results are presented in a later section.  

Figure 10 presents a map of the northbound I-5 corridor, with loop sensor detector station 
locations listed. Because horizontal and vertical curves of a roadway typically affect the speed 
of freight trucks more so than passenger vehicles, the particular segment investigated in the 
case study offers some control for this effect, as this segment of I-5 is fairly flat and with few 
curves. Table 1 presents the user-defined parameters used in Filter Process 1 for the recurring 
congestion analysis. 
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Figure 10:  Map of loop sensor station locations along northbound I-5 recurring congestions study area. 
 
Table 1:  User-Defined Parameters for Recurring Congestion Case Study 

Parameter User-Defined Value for Case Study 

Start of corridor, ms milepost 283.93 Multnomah Co., OR 

End of Corridor, me milepost 7.3 Clark Co., WA 

Corridor Length,  31.75 mile  

Buffer Radius, R 4 miles  

Corridor Travel   
Time Threshold, 

tc 3 hours  

Buffer Region 
Threshold, 

tb 1 hour  
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5.2 TRAVEL TIME, DELAY AND RELIABILITY 

Figure 11a presents the aggregated through-truck corridor average weekday travel times for 
2007. The results show that in the peak hours from 3-6 p.m., the travel time for through trucks 
is consistently greater than the travel time based on loop sensor data which suggests that in the 
p.m. peak period, loop sensor data may underestimate the impact of congestion for freight 
vehicles. 

Figure 11a also presents the standard deviation of the mean for loop sensor data and standard 
error of the mean for through-truck averages. The standard error for through-truck averages 
indicates less reliable travel time during congested peak hours from 3-6 p.m., as evident by 
greater standard error values. This means that in addition to longer travel time experienced 
during congested periods, there is a high degree of unpredictability in day-to-day corridor 
travel time. Figure 11b presents the coefficient of variation in travel time for the through 
trucks and loop sensor data; data were smoothed using a moving average over three time bins. 
This figure confirms increased variability during congested periods for both loop sensor and 
through-truck data. However, through-truck data variability is considerably higher, which 
greatly increases the difficulty of scheduling for carriers’ operations. It is clear that loop 
sensor data underestimate the impact of congestion freight travel-time reliability. 
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Figure 11:  From top to bottom, a) Average corridor travel time results following Filter Process 2, showing 
aggregated loop sensor and through trucks travel time over one year (standard error of mean noted for 
multiple through truck readings in a time bin); b) Coefficient of variation in travel time (smoothed data by 
moving average of three time bins). 
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5.3 THE COST OF RECURRING CONGESTION 

The cost of congestion for freight vehicles traveling the northbound I-5 corridor was 
calculated using hourly travel-time and speed distributions obtained from the recurring 
congestion analysis. The results were compared to costs during uncongested free-flow speeds; 
free-flow speed was assumed to be the accepted industry average operating speed (52.05 mph) 
used by ATRI (18, 25). This is a conservative speed for cost calculations when compared to 
posted freeway speed limits. An hourly truck-count distribution was estimated from 2006 Port 
of Portland disaggregated vehicle counts (44). 

In general there were three formulations for the cost estimates—these are summarized in 
Figure 12b. Formulation A multiplies the travel time (or delay) per mile by operating cost or 
value of time figures. Formulation B incorporates a term for travel-time variability using 0.3 
as a factor for dislike on variability (24), while formulation C uses 1.3 as a factor for dislike 
on variability (24). Formulations B and C provide low- and high-end estimates for the effect 
of variability on travel cost. 

Different value of time and operating cost figures were applied to each formulation type 
described above to provide a range of cost per mile—these will be referred to as cost 
scenarios. Figure 13b presents a description of the 10 cost scenarios, and various parameters 
used to calculate daily cost per mile for the corridor analyzed. Values of time from the 
literature review were adjusted for inflation to reflect 2010 values using the consumer price 
index (45). 

For each cost formulation, Figure 12 presents the percent increase (relative to 52.05 mph free-
flow conditions) in travel cost per mile for freight vehicles by time of day, and provides a 
summary of the daily cost per mile for freight vehicles traveling the northbound I-5 corridor. 
As shown, the daily percent increase in cost of delay per mile relative to costs at 52.05 mph 
free-flow travel is as follows: 

 19% increase in cost per mile, without considering variability 

 22-31% increase in cost per mile, considering variability 

Additionally, costs per mile peak at 2 p.m. Here, the percent increase in cost of delay per mile 
relative to costs at 52.05 mph free-flow travel is as follows: 

 95% increase in cost per mile, without considering variability 

 101-120% increase in cost mile, considering variability 

These results point to the impact of travel-time reliability throughout the day on the cost of 
freight operation. In the p.m. peak, where variability has shown to be the greatest, it is 
difficult for freight vehicles to adhere to arrival/departure schedules. Just by reducing 
variability, the cost of congestion for freight vehicles traveling at 2 p.m. could be reduced by 
25%. 
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Figure 12:  From top to bottom, a) Percent increase in freight vehicle cost of delay for northbound I-5 for 
three cost formulation types; b) Summary of general cost formulation types and percent increase in daily 
cost of delay for freight vehicles relative to 52.05 mph free-flow travel time. 
 
Ten cost scenarios were used to obtain a range of daily cost per mile for the northbound I-5 
corridor and are presented in Figure 13; a summary of the lowest and highest cost scenarios is 
as follows: 

 $576 per mile, when looking at costs by operator type 

 $2,551 per mile, when considering regional value of time for Oregon with a 2.5 
congestion markup, and incorporating the effect of variability 
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Figure 13:  From top to bottom, a) Daily cost of delay per mile for freight vehicle traveling northbound I-5 
for different cost scenarios; b) Cost scenario descriptions, parameters and formulations used. 
 
The wide range of cost results shows the importance of using value of time and operating 
cost- per-hour parameters that provide realistic industry cost estimates during congested 
conditions. Values of time used in cost calculations should represent regional characteristics 
as much as possible, and should reflect the impact of congestion on the value of time. This 
work incorporated Oregon-specific value of time, and for several cost scenarios used value of 
time with a 2.5 congestion markup to reflect congested value of time. 

Additionally, the effect of variability on total travel cost should be considered within the cost 
formulation, as this has shown to have a heavy impact on travel cost and is particularly 
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valuable to the freight industry. Because of lack of good count data on the breakdown of 
carrier characteristics, it was not possible to separate costs by operator or service type with 
reasonable accuracy. However, it is understood that there are documented differences between 
carriers. If reliable data become available in the future, a breakdown of annual costs by 
operator or service type may provide valuable information for carriers. 

5.4 RECURRING CONGESTION EMISSIONS ESTIMATION 

The average daily freight vehicle emissions per mile along the northbound I-5 corridor were 
estimated using the EPA’s MOVES2010 model. Figure 14b presents the increase in freight 
vehicle GHG, MSAT and criteria pollutant emission rates (grams/mile) during congestion 
relative to emissions rates during 52.05 mph free-flow conditions. An additional graph shows 
the percent increase in freight vehicle-hours of delay per mile throughout the day. The various 
emission types (GHG, MSAT, criteria pollutants) show increases in grams/mile of pollutant 
emitted as there are increases in delay. However, the degree to which the emissions increase 
varies between each emission type. For this reason, it is important to consider emissions from 
GHG, MSAT and criteria pollutant groups in order to understand the impact of congestion on 
the environment and public health. For example, CO2 emissions do not represent the same 
impact or amount of pollutant emitted over time in comparison to other pollutant types (e.g., 
1,3-butadiene or PM 10). 

As shown in Figure 14b, there is an 80-120% increase in freight vehicle emission rates during 
the p.m. peak period, which corresponds to an 85-95% increase in freight vehicle-hours per 
mile (i.e., congestion and delay during peak hours are highly correlated to increased 
emissions). 

Environmental concerns are largely centered on carbon dioxide (CO2), as it is the prominent 
GHG. Figure 14b shows that, on a daily basis, an additional 24,099 grams per mile are 
emitted from freight vehicles as the result of congestion (a nearly 50% increase with respect to 
emissions during free-flow conditions).  

Other gases, such as oxides of nitrogen (NOx), present concerns for public health as they are 
linked to respiratory problems. Particulate matter (PM10) and ultrafine particulate matter 
(PM2.5) are linked to ailments such as cancer and heart problems. Due to recurrent 
congestion, a daily increase of 65% in NOx emissions, 13% of PM emissions, and 49% of 
SO2 emissions was found on the northbound I-5 corridor.  
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Figure 14:  Top to bottom: a) Percent increase in freight vehicle Greenhouse Gas (GHG), Mobile Source 
Air Toxic (MSAT), and Criteria Pollutant (CP) emissions in congestion relative to 52.05 mph free-flow 
emission rates, and corresponding increases in freight vehicle-hours of delay per mile; b) Summary of 
daily freight vehicle emission rates above 52.05 mph free-flow emission rates. 
 

5.5 RECURRING CONGESTION SUMMARY 

This section provides an example of how the recurring congestion analysis can be applied to 
study smaller roadway segments in order to capture performance measures spatially through 
an urban corridor. Next, a summary of integrating loop sensor and GPS data sources is 
discussed. Finally, the section ends with a synopsis of the results from the recurring 
congestion analysis, and relates the findings and methods used to engineering, planning and 
freight industry practices. 
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5.5.1 Adapting Methodology to Smaller Segments 

It is possible to adapt the methods described in the recurring congestion analysis to investigate 
smaller segments in order to study bottlenecks or to investigate the spatial nature of 
congestion. A cursory study of three five-mile segments was performed in order to provide an 
example of the capabilities of the methodology defined in Section 4 and applied to study 
recurring congestion. 

The three five-mile segments studied were on northbound I-5 near Corbett Avenue, Morrison 
Street and Terwilliger Boulevard—data were averaged over a three-month period (June 
through August 2007). Figure 15-17 present the truck average travel time through each five-
mile segment, with loop sensor data covering each segment shown; standard error of the 
through truck travel-time mean are shown with error bars. 

It should be noted that because the data were aggregated over a small period of time, many 
time bins provide an average for only a small number of trucks (e.g., two or three). 
Additionally, many of the time bins with a very large standard error were found to have trucks 
crossing the segment at the time of an incident (this is discussed further in Section 6 regarding 
non-recurring congestion). Despite the limited data, the through-truck data at each segment 
follow similar trends compared to the loop sensor data—a.m. peaks occur around 8 a.m. and 
p.m. peaks occur around 6 p.m. As evident by the loop sensor data at each segment, the travel-
time profile varies throughout the data from one study area to the next. For instance, the five-
mile segments near Corbett and Terwilliger have greater travel time on average in the a.m. 
peak, while the five-mile segment near Morrison has greater travel time in the p.m. peak. 
Studying through-truck data over a greater aggregation period would more clearly capture this 
spatial nature of congestion, although trends still emerge for the aggregation period shown. 

The through-truck data for each station reveals, in general, greater travel time in comparison 
to loop sensor data in the p.m. peak, as well as increases in travel-time variability (as indicated 
by standard error of the mean) in the p.m. peak. In off-peak periods, the through-truck data are 
found surrounding the average loop sensor data. Again, this indicates that in the p.m. peak, 
loop sensor data may underestimate the impact of congestion for freight vehicles. 

By studying smaller segments end-to-end throughout the corridor, additional information can 
be gleaned regarding system performance. Particularly, the data could be used to help identify 
key bottlenecks for the freight industry, and allow agencies to prioritize segments and 
bottlenecks throughout the corridor to make the most efficient use of improvement dollars. 
The analysis of the three five-mile segments presented here demonstrates the adaptability of 
the methodology and techniques defined in this research to study the impact of congestion on 
freight movements. 
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Figure 15: Average corridor travel time results following Filter Process 2 at a five-mile segment of 
northbound I-5 near Corbett Ave., showing aggregated loop sensor and through trucks travel time over a 
three-month period (with standard error of mean noted for multiple readings in a time bin). 
 

 
Figure 16: Average corridor travel time results following Filter Process 2 at a five-mile segment of 
northbound I-5 near Morrison Street, showing aggregated loop sensor and through trucks travel time 
over a three-month period (with standard error of mean noted for multiple readings in a time bin). 
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Figure 17: Average corridor travel-time results following Filter Process 2 at a five-mile segment of 
northbound I-5 near Terwilliger Blvd., showing aggregated loop sensor and through trucks travel time 
over a three-month period (with standard error of mean noted for multiple readings in a time bin). 
 
5.5.2 Key Findings 

Travel Time, Delay and Reliability 

 Loop sensor data were found to underestimate the impact of p.m. peak 
congestion on freight vehicles, as indicated by consistently longer freight vehicle 
average corridor travel times from 3-6 p.m. 

 The p.m. peak period was found to have greater variability in freight vehicle 
travel time, as indicated by higher standard error values and greater coefficient of 
variation between 3-6 p.m. 

 In comparison to loop sensor coefficient of variation, there is greater variability 
in freight vehicle travel time, indicating that loop sensor data may underestimate 
the impact of variability on freight vehicles. 

The Cost of Recurring Congestion 

 A 95% increase in cost per mile was found for cost formulation A (does not 
consider variability). 

 101% and 120% increase in cost mile were found for cost formulations B and C, 
respectively, (considers variability with low- and high-end parameters of dislike 
on variability). 

 Costs scenarios ranged from $576 per mile (when looking at costs by operator 
type) to $2,551 per mile (when considering regional value of time for Oregon 
with a 2.5 congestion markup, and incorporating the effect of variability). 
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 In order to provide a more accurate representation, value of time and operating 
cost figures should reflect regional characteristics. The NCHRP 431 report also 
recommends that a congestion factor be applied to values of time used in cost 
scenarios in order to represent congested value of time. 

 Because of a lack of accurate data by operator and service, it is not recommended 
to use value of time by carrier characteristics. If more accurate data become 
available, quantifying cost by carrier characteristics may provide valuable 
information to carriers. 

Recurring Congestion Emission Estimation 

 As there are increases in delay, there are corresponding increases in GHG, 
MSAT, and criteria pollutants emission rates for through trucks in comparison to 
emissions during free-flow travel. 

 An additional 24,099 g/mile of CO2 are emitted by freight vehicles daily (a 50% 
daily increase above free-flow emissions). 

 An additional 138 g/mile of NOx are emitted by freight vehicles daily (a 65% 
daily increase above free-flow emissions). 

 An additional 3.78 g/mile each of PM 10 and PM 2.5 are emitted by freight 
vehicles daily (a 13% daily increase above free-flow emissions). 

 The percent increase in congested emission rates relative to free-flow emissions 
and quantity of pollutants emitted varies between pollutant types. For this reason, 
a variety of pollutants should be modeled, particularly emission types that are 
known to have the greatest impact on the environment and health-related issues. 

Table 2 presents a summary of the multicriteria freight performance measures for the 
recurring congestion analysis, showing percent increase in delay (vehicle-hours per mile), cost 
per mile, and emissions (grams per mile) relative to free-flow conditions. The results are 
presented in terms of daily increases (all day), and increases over the p.m.peak period (3-6 
p.m.). As shown in the table, the impacts of congestion on freight vehicle delay, cost and 
emissions are greater through the p.m. peak period. If only the daily impacts are quantified, 
the impact of congestion is not as pronounced; therefore, p.m. peak-period characteristics 
should be analyzed independently. 

Table 2:  Percent Increase in Multicriteria Performance Measures, Above 52.05 MPH Free-Flow 
Conditions for All Day and P.M. Peak (3-6 P.M.) Time Periods. 

Time 
Period 

Delay Cost Formulations 
MSAT 

Emissions 
GHG 

Emissions 
CP 

Emissions 

  A B C 

1,3-Butadiene 
Acetaldehyde 

Acrolei 
Benzene 

CO2 N2O 
PM 10 
& 2.5 

NOx SO2 

All Day 19% 19% 22% 31% 13% 50% 26% 13% 66% 50% 

PM Peak 72% 72% 78% 99% 43% 75% 66% 43% 103% 75% 
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Table 3 presents the percent increase in various emission types over the course of the day, 
relative to free-flow emissions. Because only a small amount of data was available for off-
peak periods (00:00-4:00 and 20:00-23:00), free-flow conditions were assumed in the off-
peak (i.e., an increase of 0%). As shown, the impact of congestion on freight vehicle emission 
varies between emission types, and is impacted by fluctuations in average speed and volume. 
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Table 3:  Percent Increase by Time of Day in Emission Rates (g/mile), Above Emissions During 52.05 
MPH Free-Flow Conditions. Freight vehicle average speed and volume are shown by time of day. A 
limited amount of truck data was available for a.m. and p.m. off-peak periods, so free-flow conditions 
were assumed—this means in off-peak periods a 0% increase would occur. 

Time 
Period 

Average 
Speed 

(Freight) 

Volume 
(Freight) 

MSAT 
Emissions 

GHG 
Emissions 

CP 
Emissions 

 Mph vehicles/hr 

1,3-Butadiene 
Acetaldehyde 

Acrolei 
Benzene 

CO2 N2O 
PM 10 
& 2.5 

NOx SO2 

5:00 50 180 0% 13% 3% 8% 17% 13% 

6:00 48 267 -4% 49% 8% 28% 64% 49% 

7:00 42 322 4% 61% 18% 38% 78% 61% 

8:00 45 333 2% 56% 15% 34% 73% 56% 

9:00 48 428 -2% 38% 7% 22% 49% 38% 

10:00 52 462 0% 0% 0% 0% 0% 0% 

11:00 51 465 -2% 22% 1% 11% 29% 22% 

12:00 50 439 -4% 34% 3% 17% 44% 34% 

13:00 43 399 3% 58% 16% 36% 75% 58% 

14:00 34 382 34% 67% 49% 56% 91% 67% 

15:00 27 289 62% 84% 93% 78% 119% 84% 

16:00 27 242 64% 86% 95% 80% 122% 86% 

17:00 33 197 37% 70% 54% 61% 95% 70% 

18:00 40 232 10% 60% 24% 41% 78% 60% 

19:00 51 219 -3% 43% 1% 19% 55% 43% 

 

5.5.3 Applying Techniques for Deriving Multicriteria FPM in Practice 

The findings from the recurring congestion analysis are of value to both public agencies (Port 
of Portland, METRO, City of Portland), and the freight industry. The methods used to study 
freight vehicles in congestion and results from the analysis can be used to inform decisions 
made at a project- or regional-planning level. From a carrier perspective, this includes 
decisions made in routing and scheduling of freight deliveries. 

From a planning and engineering perspective, the methodology developed to identify through 
trucks and produce corridor-level multicriteria performance measures will allow for the 
consideration of the freight industry in transportation improvement projects. This is a 
significant step in being able to study and address the needs of all users of the transportation 
system. Current methods used to study freeway performance largely rely on loop sensor data 
and do not incorporate freight independently; as shown through this research, it is possible for 
loop sensor data to underestimate the impact of congestion on freight vehicles. 

The methodology used in this research can be modified to identify and study bottlenecks 
throughout the corridor (i.e., by studying smaller segments). Using the multicriteria 
performance measures (e.g., delay, cost and emissions), comparisons can be made between a 
list of identified bottlenecks, and then used to prioritize the locations most in need of 
transportation funds. Being able to quantify the impact of congestion on freight vehicles 
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creates transparency in the transportation planning process, holding agencies accountable to 
the public for the decisions that are made. 

Additionally, the research presented here can help inform decisions made regarding 
congestion management strategies and infrastructure improvements, such as ramp metering, 
variable speed limit signs, congestion pricing, tolling, and truck-only lanes. Here the 
multicriteria performance measures would allow decision makers to study the benefit to the 
freight industry of such improvements or strategies by using performance data that reflect the 
current impact of congestion on freight vehicles. For instance, decision makers could study 
the benefit of ramp meters or variable speed limit signs in managing congestion during peak 
hours in order to maintain an optimal speed that minimizes delay, variability, industry cost, 
and freight vehicle emissions. Finding a balance between these criteria using transportation 
infrastructure and intelligent transportation systems will provide the greatest overall system 
benefit. 

From a freight industry perspective, the methodology developed to identify through trucks 
and produce corridor-level multicriteria performance measures will allow carriers to improve 
routing and scheduling logistics. By applying the techniques presented in this research, 
region-wide freight performance measures could be developed on interstates throughout the 
Portland metropolitan area. 

Freight carriers could then use the multicriteria performance measures to identify periods of 
time when travel time delay and variability increase on a given freeway. Examining the 
region-wide system of freeways, carriers would be able to identify the optimal route for a 
given time of day that would reduce travel-time delay and improve reliability. By modifying 
scheduling and routing in this way, carriers would see a reduction in transportation costs and 
improvement in reliability, allowing them to more easily adhere to strict scheduling. 
Additionally, by being able to schedule deliveries with more accuracy (by choosing routes 
with less variability), carriers can eliminate built-in buffer time; this time could be allocated to 
make additional deliveries and increase profit for the carrier. 
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6.0 NON-RECURRING CONGESTION RESULTS 

Non-recurring congestion occurs as the result of an unexpected event (i.e., traffic incident, 
weather event or construction). This section begins with a description of the non-recurring 
congestion case study designed to analyze congestion during several incident periods. 
Additionally, one incident period was further studied to investigate the effect of including 
partial-through and partial-local truck types in the analysis of freight movements. The 
remainder of this section will present the results for the non-recurring congestion analysis. 
Non-recurring congestion results are discussed first in terms of mobility and congestion 
performance measures (i.e., travel time and delay). Next, four incident periods are used to 
estimate the cost and emission rates resulting from incidents. 

6.1 CASE STUDY DESCRIPTION 

The non-recurring congestion analysis studied trucks passing through five-mile segments 
(incident areas) where incidents occurred on northbound I-5; four incident areas were studied 
(referred to as A, B, C and D). The Filter Process 1 parameters for each incident area are 
summarized in Table 4. 

Table 4: User-Defined Parameters for Filter Process 1 for Non-Recurring Congestion Case Study 

Incident Area 
Label 

ms me 
Five-Mile 

Incident Area 
r 

(miles) 
tc 

(min) 
bc 

(min) 

A, Corbett Ave. 293 298 293-298 4 75 25 

B, Morrison St. 295 300 295-300 4 75 25 

C, Terwilliger Blvd. 292 297 292-297 4 75 25 

D, Going St. 299 304 299-304 16 & 13 75 25 

 

Many incidents occurred within each incident area, spanning different times of day. This 
analysis focused mainly on incidents that occurred during the summer months (June through 
August 2007), where the weather was clear with no rain. However, one incident day in 
December 2008 was studied, which had a small amount of rain throughout the day. The 
incidents are summarized in Table 5. The incident label shown in Table 5 refers to the 
incident area, the incident day studied, and the sequence of incidents on a given day. For 
instance, incidents B2-1, B2-2 and B2-3 all occur at area B on the second day studied at this 
area (as given by B2), and the numbers following the dash (1, 2 and 3) correspond to the order 
of the incidents on that day. 

In addition to incidents occurring within the incident areas (those shown in Table 5), it was 
noticed that loop sensor and GPS data often captured the impact of incidents occurring 
downstream of the incident area. For this reason, figures presented later within this section 
will note and refer to downstream incidents that occurred within two miles of the incident 
areas. Figure 18 presents diagrams of incident areas A, B, C and D, noting the milepost ranges 
of each incident area, and the location of incidents.  
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Table 5: Summary of Incident Data 

Incident 
Label 

Date 
Milepost 
Location 

Start 
Time 

Duration 
(min) 

Type Weather 
Affected 

Lanes 

A1-1 6/8/07 298 7:06:12 58 Debris Clear 0 

A1-2 6/8/07 297 7:46:17 58 Stall Clear 2 

A2-1 7/3/07 297 6:29:17 58 Stall Clear 0 

A2-2 7/3/07 297 14:57:39 57 Stall Clear 0 

A2-3 7/3/07 298 16:54:52 57 Stall Clear 0 

A3-1 8/14/07 295 10:45:34 56 Stall Clear 0 

A3-2 8/14/07 296 13:30:50 56 Debris Clear 1 

A3-3 8/14/07 295 15:24:26 56 Stall Clear 0 

A4-1 8/24/07 297 16:08:49 56 Stall Clear 0 

B1-1 7/26/07 298 15:04:07 57 Stall Clear 1 

B2-1 8/2/07 297 7:25:35 56 Stall Clear 0 

B2-2 8/2/07 297 13:16:34 56 Stall Clear 0 

B2-3 8/2/07 300 15:04:20 56 Stall Clear 1 

B2-4 8/2/07 299 16:24:59 56 Stall Clear 1 

C1-1 6/12/07 297 6:37:39 58 Debris Clear 0 

C1-2 6/12/07 297 8:37:37 65 Stall Clear 0 

C1-3 6/12/07 297 16:02:32 58 Crash Clear 2 

C2-1 8/3/07 296 9:33:07 77 Crash Clear 2 

C2-2 8/3/07 295 13:33:31 56 Stall Clear 0 

C2-3 8/3/07 295 17:43:22 56 Stall Clear 1 

D1-1 12/12/08 303 3:46:13 102 Crash Minimal Rain 2 

D1-2 12/12/08 304 12:02:50 56 Crash Minimal Rain 2 
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Figure 18  Diagrams of I-5 northbound incident areas A, B, C and D, showing incident locations. 
 
6.1.1 Impact of an Incident on Freight Movements 

Incident areas A-C presented in Table 4 were used to study the impact of an incident on 
freight movements in terms of travel time. To quantify the impact of incidents on cost and 
emission rates, four individual incident periods were studied: incidents C1-1, A1-2, B2-3 and 
A4-1 (see Table 5). These results are presented later in this section. 
 
6.1.2 Effect of Including Partial-Through/Local Trucks 

Incident area D presented in Table 4 was used to study the effect of including partial-through 
and partial-local trucks in the analysis of freight movements. These results are presented later 
in this section. 

6.2 TRAVEL TIME AND INCIDENT DELAY 

As previously mentioned, the non-recurring congestion study was designed to analyze 
congestion during several incident periods and, for one incident period, investigate the effect 
of including partial-through and partial-local truck types in the analysis of freight movements. 
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6.2.1 Impact of an Incident on Freight Movements 

Figure 19-22 present the results for through-incident truck travel times through the five-mile 
incident areas A, B and C. In each figure, loop sensor travel times are shown for the day the 
incidents occurred (to show the impact of the incident), and for an aggregated period from 
June to August 2007 (to represent average day-to-day travel time through the incident area). 
As shown in figures 19-22, there are obvious differences in the loop sensor data when 
comparing the incident-day travel times to the average day-to-day travel times, as indicated by 
increases in travel time around the time of incidents within the incident area or downstream of 
the incident area. Incidents are labeled along the x-axis in Figure 19-22 to show the time and 
duration of the incidents; downstream incidents are labeled with “d.” 

Only a small number of through-incident trucks were identified following Filter Process 1 and 
2 for incident areas A, B and C. Therefore, it was not possible to obtain averages for through-
incident truck data, as there were not multiple through-incident trucks identified in any given 
time bin. However, as shown in Figure 19-22, the through-incident truck travel times for 
incident areas A, B and C followed closely to the loop sensor data on each incident day during 
periods where incidents occurred, as well as periods before and following incidents. 

In general, the through-incident trucks passing the incident area during the beginning of an 
incident period show equal or greater travel time compared to loop sensor travel time. This 
means that the initial impact to freight vehicles resulting from incidents may be 
underestimated by loop sensor data. 

Through-incident trucks passing the incident area towards the end of incident periods or 
afterward often show shorter travel times compared to loop sensor travel time (see incidents 
B1-1, B2-1 and B2-4 in Figure 21 or incidents C2-2 and C2-3 in Figure 22). This effect is 
likely the result of how loop sensor travel time data through the incident area are derived from 
the data archive. The methods used to obtain travel time from loop sensors may produce 
slower travel time following a queue. GPS data are more dynamic and show that the queue is 
dispersing more quickly than indicated by the static representation of travel time from loop 
sensors. 
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Figure 19:  From top to bottom, a) Incident area A northbound I-5 through-incident truck travel-time 
results following Filter Process 2—June 8, 2007; b) Incident area A northbound I-5 through-incident 
truck travel-time results following Filter Process 2—July 3, 2007. 
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Figure 20:  From top to bottom, a) Incident area A northbound I-5 through-incident truck travel-time 
results following Filter Process 2—August 14, 2007; b) Incident area A northbound I-5 through-incident 
truck travel-time results following Filter Process 2—August 24, 2007. 
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Figure 21:  From top to bottom, a) Incident area B northbound I-5 through-incident truck travel-time 
results following Filter Process 2—July 26, 2007; b) Incident area B northbound I-5 through-incident 
truck travel-time results following Filter Process 2—August 2, 2007. 
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Figure 22:  From top to bottom, a) Incident area C northbound I-5 through-incident truck travel-time 
results following Filter Process 2—June 12, 2007; b) Incident area C northbound I-5 through-incident 
truck travel-time results following Filter Process 2—August 3, 2007. 
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6.2.2 Effect of Including Partial-Through/Local Trucks 

As with incident areas A, B and C, the through-incident travel-time results for incident area D 
followed closely to the loop sensor data; Figure 23a presents the results for through-incident 
truck travel times. Several through-incident trucks were identified for incident area D, with 
multiple through-incident trucks identified for four time bins. For these four time bins, an 
average travel time through the incident area is shown in Figure 23a, along with the standard 
error for each average. 

Similar to the through-incident truck analysis, Figure 23b presents results when only partial-
through and partial-local incident trucks were included. For the aggregated data in time bins 
with multiple readings, it can be seen that the standard error of the mean for partial-
through/local-truck data varies more so than when only through-incident trucks were 
averaged. This finding points to the effectiveness of through-only trucks serving as the best 
indicator of performance estimations. 

When trucks making partial-through or partial-local movements are included in the 
estimation, there is likely to be some bias. Partial-local trucks may underestimate speeds, 
while partial-through trucks may not have traveled completely through the incident area (or 
corridor) and, therefore, avoided part or all of the congestion. For instance, a partial-through 
truck with a reading south of the incident area and one reading just inside the incident area 
may have exited the corridor several miles before the incident site; the speed estimation for 
this vehicle may not reflect the full impact of the incident. Alternatively, through-incident 
vehicles provide the best estimation of performance measures because they must travel the 
length of the incident area (or corridor) and fully experience incident congestion. 
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Figure 23:  From top to bottom, a) Incident area D northbound I-5 through-incident truck travel-time 
results following Filter Process 2—December 12, 2008 (with standard error of mean noted for multiple 
readings in a time bin); b) Incident area D northbound I-5 partial-through and partial-local incident truck 
travel-time results following Filter Process 2—December 12, 2008 (with standard error of mean noted for 
multiple readings in a time bin). 

6.3 THE COST OF NON-RECURRING CONGESTION 

Four incident periods were used to quantify the impact of non-recurring congestion in terms 
of cost: incident C1-1, A1-2, B2-3 and A4-1. These incidents were chosen because they 
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represent a range of a.m. and p.m. peak-hour incidents, incident type and number of lanes 
affected. These incident periods all had at least one through-incident truck crossing the 
incident area during the duration (one hour) of the incident. The methods for estimating cost 
for non-recurring congestion were similar to the methods used for the recurring congestion 
analysis; however, the focus was on the hour that the incident occurred. Because of a lack of 
data, it was not possible to obtain costs for scenarios that incorporated a term for reliability; 
only cost formulation A was used. 
 
Table 6 presents the travel times obtained from through-incident trucks in the non-recurring 
study, through recurring congestion travel times were obtained at each incident area (averaged 
over June-August 2007) and free-flow travel time at 52.05 mph for a five-mile segment. The 
cost of non-recurring congestion was compared to the cost of free-flow travel (at 52.05 mph) 
to assess cost above ideal travel conditions. Additionally, recurring congestion travel time for 
through trucks traveling each incident area was used as a comparison to average day-to-day 
cost of congestion.  

 
Table 6:  Non-Recurring, Recurring and Free-Flow Travel Times Through Five-Mile Incident Areas 

Incident 
Label 

Incident 
Hour 

Non-Recurring 
Congestion 

Travel Time 
(min) 

Recurring 
Congestion 

Travel Time 
(min) 

Free-Flow 
Travel Time 

(min) 

Hourly Truck 
Volume 

C1-1 7:00-8:00 6.54 6.47 5.76 322 

A1-2 8:00-9:00 11.16 6.43 5.76 333 

B2-3 15:00-16:00 16.17 14.04 5.76 289 

A4-1 16:00-17:00 15.07 14.66 5.76 242 

 

Figure 24 presents the percent increase in freight vehicle cost during each incident period—
percent increase is shown relative to free-flow travel time at 52.05 mph and relative to 
recurring congestion travel time (see Table 6). As shown, the incidents had a wide range of 
impact in terms of cost. The p.m. peak-hour incidents happening between 15:00-17:00 (B2-3 
and A4-1) show the greatest impact in cost from free-flow congestion conditions; however, 
it’s a smaller impact relative to average recurring congestion conditions. It is important to note 
that average recurring congestion conditions do reflect conditions at each incident area. 
However, the aggregation period between June-August 2007 did not provide a large amount 
of data—a greater aggregation period may show greater differences between the cost of 
incident delay in the p.m. peak hour and cost of delay due to average recurring congestion 
conditions in the p.m. hour. 
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Figure 24:  Percent increase in freight vehicle cost of incident delay for northbound I-5, relative to 52.05 
mph free-flow travel time and relative to recurring congestion travel times presented in Table 6.  
 
Figure 24 shows that in the a.m. peak hour incident, C1-1 had little impact on costs above 
free-flow and average recurring congestion travel times, while A1-2 shows greater impact in 
costs. This is roughly a 90% increase in cost above costs at free-flow, travel-time conditions, 
and a 70% increase in cost above average costs for average recurring congestion travel-time 
conditions. Again, the results for cost above recurring congestion conditions may differ more 
greatly when a larger aggregation period is used. 

Finally, Figure 25a and 25b present the freight vehicle cost per mile above free-flow and 
recurring congestion conditions. As with the recurring congestion analysis, 10 cost scenarios 
were used to obtain a range of costs for each incident period. Figure 25c presents the cost 
scenarios used for the incident periods studied. As mentioned earlier, cost scenarios 
incorporating a term for reliability (scenarios 5-8) were not used because there was not a large 
amount of data to produce average travel times and standard deviations. 

Incident A1-2, which appears to have had the greatest impact on both freight vehicle costs 
above free-flow and recurring congestion conditions, resulted in $416 per mile (cost above 
free-flow conditions) and $366 per mile (cost above average recurring conditions) for cost 
scenario 4. This scenario uses a regional value of time, with a 2.5 congestion markup to reflect 
congested value of time. 
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6.4 NON-RECURRING CONGESTION EMISSIONS ESTIMATION 

The four incident periods used to quantify the impact of non-recurring congestion in terms of 
cost were also used to estimate emission rates during incident periods C1-1, A1-2, B2-3 and 
A4-1. The methods for estimating emissions for non-recurring congestion were similar to the 
methods used for recurring congestion. However, the focus was on the hour that the incident 
occurred; the MOVE2010 model was employed for this portion of the analysis. 

The emissions rates estimated during incident periods were compared to the emission rates 
during free-flow travel (at 52.05 mph), and emission rates during recurring congestion 
conditions for each incident area. Table 6 presents the travel times obtained from through-
incident trucks in the non-recurring study through truck recurring congestion travel times 
obtained at each incident area (averaged over June-August 2007), and free-flow travel time at 
52.05 mph for a five-mile segment.  

Figure 26-28 present the percent increase in freight vehicle emission rates (g/mile) relative to 
emission rates during free-flow conditions and relative to emission rates during average 
recurring congestion conditions. Figure 26 presents GHG emission rates, Figure 27 presents 
MSAT emission rates, and Figure 28 presents criteria pollutant emission rates. 

As shown in the figures indicated above, incident B2-3 appears to have the greatest impact on 
freight vehicle emission rates above emission rates during free-flow, while incident A1-2 
appears to have had the greatest impact relative to recurring congestion conditions. During 
this incident period, there was a 97-188% increase above free-flow emission rates, and a 
roughly 25% increase above recurring congestion emission rates. Relative to emissions during 
free-flow conditions, the incident periods each produced an additional 1,800-3,500 grams per 
mile of CO2 emitted from freight vehicles as the result of incident congestion. Similarly, the 
incident periods each produced an additional 9-23 grams per mile of N2O, 0.23-0.68 grams 
per mile of particulate matter, and 0.05-0.11 grams per mile of SO2. 
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Figure 25:  From top to bottom, cost of incident delay per mile for freight vehicle traveling northbound I-5 
during incident periods C1-1, A1-2, B2-3 and A4-1, a) relative to free-flow travel time at 52.05 mph; b) 
relative to recurring congestion travel times presented in Table 6; c) cost-scenario descriptions, 
parameters and formulations used for non-recurring analysis. 
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Figure 26: From top to bottom, percent increase in freight vehicle GHG emissions from freight vehicle 
traveling northbound I-5 during incident periods C1-1, A1-2, B2-3 and A4-1, a) relative to 52.05 mph free-
flow emission rates; b) relative to recurring congestion travel times presented in Table 6. 
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Figure 27: From top to bottom, percent increase in freight vehicle MSAT emissions from freight vehicle 
traveling northbound I-5 during incident periods C1-1, A1-2, B2-3 and A4-1, a) relative to 52.05 mph free-
flow emission rates; b) relative to recurring congestion travel times presented Table 6. 
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Figure 28: From top to bottom, percent increase in freight vehicle CP emissions from freight vehicle 
traveling northbound I-5 during incident periods C1-1, A1-2, B2-3 and A4-1, a) relative to 52.05 mph free-
flow emission rates; b) relative to recurring congestion travel times presented in Table 6. 

6.5 NON-RECURRING CONGESTION SUMMARY 

This section provides a synopsis of the results from the non-recurring congestion analysis and 
relates the findings and methods used to the engineering, planning and freight industry 
practices. 
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6.5.1 Summary of Key Findings 

Travel Time and Incident Delay 

 Analysis of nine individual incident days found through-incident truck travel 
time to be consistently equal or greater than travel time derived by loop sensor 
data, indicating that loop sensor data may underestimate the impact of incident 
congestion on freight performance. 

 Analysis of travel time of partial-through/local-incident trucks versus travel time 
from only through-incident trucks revealed greater variation in travel time when 
partial-through/local-incident trucks are used. This finding demonstrates the 
potential bias that can be incorporated if partial- or local-truck data is included 
when estimating freight performance measures. 

The Cost of Non-Recurring Congestion 

 Incident periods studied for this analysis occurred at different times of day, 
through different incident areas and various incident types—the resulting impact 
of each incident on freight industry cost varied greatly. This shows that the cost 
of incident depends on a variety of factors, particularly the severity and duration 
of the incident, but also the period of time in which it occurs.  

 Incident A1-2 appears to have had the greatest impact on freight industry cost 
compared to both free-flow and recurring congestion conditions: $416/mile 
(above free-flow costs) and $366 (above recurring congestion costs). 

 Incident B2-3 had the greatest impact on freight industry cost relative to free-
flow conditions. 

 A1-2 had the greatest impact relative to recurring congestion conditions. 

 The impact of the incidents on freight vehicle emission rates varied greatly from 
incident to incident. Again, this shows that the impact of the incident depends on 
the severity and duration of the incident, but also the period of time in which it 
occurs. 

 Incident B2-3 appears to have had the greatest impact on freight vehicle 
emissions above free-flow conditions, while A1-2 appears to have had the 
greatest impact on freight vehicle emissions above recurring congestion 
conditions. 

Table 7 presents the multicriteria performance measures resulting from an average incident—
average percent increase in delay, cost and emissions are relative to free-flow and recurring 
congestion conditions through the incident area. As shown, MSAT emissions resulting from 
the average incident show the greatest increases in emission rates relative to recurring 
congestion conditions compared to other emission types. In comparison to free-flow 
conditions, NOx, SO2 and the GHG emissions show the greatest increases in emission rates. 
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Table 7:  Average Impact of an Incident; Average Percent Increase in Delay, Cost and Emissions Relative 
to Free-Flow, and Recurring Congestion Conditions. Averages are based on data obtained for incidents 
C1-1, A1-2, B2-3 and A4-1. 

 Multi-Criteria Performance Measure 

 Delay 
Freight 
Vehicle 

Cost 

MSAT 
Emissions 

GHG 
Emissions 

CP 
Emissions 

  Form. A 

1,3-Butadiene 
Acetaldehyde 

Acrolei 
Benzene 

CO2 N2O 
PM 

10 & 
2.5 

NOx SO2 

Above 
Free-Flow 

112% 112% 66% 96% 140% 77% 139% 96% 

Above 
Recurring 
Condition 

23% 23% 25% 12% 13% 19% 14% 12% 

 

6.5.2 Applying Techniques for Deriving Multicriteria FPM in Practice 

The findings from the non-recurring congestion analysis are of value particularly to public 
agencies—although indirectly, the freight industry will likely benefit from decisions made by 
public agencies regarding non-recurring congestion. The methods used to study freight 
vehicles in congestion and results from the analysis can be used to inform decisions made 
regarding intelligent transportation system infrastructure improvements, as well as incident 
response strategies. 

Understanding the monetary and environmental impacts of non-recurring congestion may 
motivate and justify the need for public agencies to provide system-wide improvements—
technologies such as variable message signs located along freeways would be beneficial in 
communicating to passenger and freight vehicles of an upcoming incident. Communicating 
this information well in advance of the incident area provides drivers with ample opportunity 
to divert to an alternative route in order to avoid incident congestion. The research here has 
shown that incidents greatly affect travel time, cost and emissions through incident areas; the 
multicriteria performance measures would allow agencies to quantify these impacts. 

Additionally, multicriteria performance measures may also justify the need for increased 
incident response by ATMS. The incidents studied in the non-recurring congestion analysis 
each lasted roughly one hour. Because of a lack of data, it was not possible to study 
congestion prior to or following incident periods, as a limited amount of through-incident 
trucks were available. However, further analysis of a larger quantity of data may show that 
costs and emissions continue to rise even after the incident period, as queues propagate 
upstream; this effect is evident in the loop sensor data following incident durations. The 
quicker an incident is cleared, the quicker the queue will disperse following the incident 
duration, decreasing costs and emissions following incident periods. 

  



66 



67 

7.0 INVESTIGATING MULTISEGMENT CORRIDORS 

In addition to studying the pre-defined urban corridor described above, this research was 
expanded to investigate longer corridors, using programming logic and available GPS data 
from commercial trucks to segment the roadway into manageable, coherent study areas. Long 
freight corridors are comprised of segments with potentially different reliability 
characteristics. This research has developed a programming logic that uses available truck 
GPS data to: (1) identify corridor natural segments or regions (urban centers, interstate 
junctions, rural areas), and (2) estimate corridor-wide impacts of travel-time unreliability. The 
case study presented here investigates the I-5 corridor in Oregon. 

This section discusses the logic of the algorithm used to separate the corridor into coherent 
sections for analysis (i.e., identifying changes between urban and rural areas), and discusses 
the results from corridor segmentation. Next, this section presents the estimation of travel 
time in a route, the algorithm to estimate travel-time reliability is proposed, and the travel-
time results are discussed. These are standard methods for estimating the cost of travel-time 
variability. 

7.1 METHODOLOGY FOR CORRIDOR SEGMENTATION 

This section describes the methods of data handling and the algorithmic description of the 
process used to determine potential segments based on geographic location (rural or urban), 
on the Oregon I-5 corridor.  

1. Data handling: The analysis is performed using GPS data from commercial trucks 
along I-5; these data were provided by ATRI. The data provides detailed information 
about the unique truck ID, timestamp, latitude and longitude of the trucks. Using the 
ArcGIS linear referencing tool, every GPS latitude-longitude reading is mapped to a 
milepost measure. The data is then arranged in database tables using the postgreSQL 
database, and simulated using scripts written in PHP and shell. Using the milepost 
measures, the direction of travel is also determined for every truck and designated as 
northbound (NB) or southbound (SB). 

2. Segment Distribution: In order to identify segments for analysis along the whole 
corridor, the following steps are performed:  

 Truck counts are determined for every mile of the NB or SB corridor by applying 
queries and scripts on the previously arranged database tables. 

 A cumulative distribution function (cdf) is drawn for the truck counts. This 
identifies any sudden rise and fall in truck counts occurring in a particular area of 
the corridor. 

 Smoothing is performed on the cdf using a moving average of length 20 miles.  

 The above three processes are repeated for different months that fall on different 
seasons around the year to capture any seasonal effects on the truck counts. 
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3. Segment Analysis: The truck-density patterns are analyzed by considering the two 
important factors: 1) the location of significant change in truck density, and 2) the time 
of the year/seasonal variations. Using the truck-density patterns and GIS for 
confirmation, the whole corridor is broken into a number of segments falling within 
rural and urban areas. A bar graph showing the change in truck counts over the four 
seasons is plotted to determine which month has the maximum truck count. 

7.1.1 SEGMENTATION RESULTS 

The analyses described above were performed for I-5 NB only; however, it can be applied to 
any direction. Commercial GPS data for four months in 2007 were analyzed (April, July, 
October and December). These months were chosen to represent seasonal variation in truck 
travel. 

To begin the process, the truck counts were determined for one-mile segments along the I-5 
corridor. During the four months analyzed, the month of July exhibited the highest number of 
truck counts for all computed segments; hence, this paper will present results for the case 
study analysis and travel-time computations for this month only. Next, the cumulative 
distribution function is produced for the truck counts during each month. Figure 29a presents 
the cumulative distribution function for NB I-5 during July 2007. The sudden rise and fall in 
truck counts throughout the corridor occur at the same locations for all the four chosen 
months (i.e., the cumulative distribution plots for the chosen months are similar to the plot 
shown for July in Figure 29a). To create a clearer image of the rise and fall in truck counts, 
the data were smoothed by averaging over a 20-mile sliding window; the results following 
data smoothing are shown in Figure 29b. Figure 29b indicates the segment end points, where 
the sharp rise/fall in truck counts occur. 
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Figure 29: From top to bottom:  a) Cumulative distribution plot drawn for the count of truck readings 
found in every mile of the I-5 NB corridor for July 2007 GPS data;  b) Cumulative distribution graph 
showing smoothed results calculated by averaging over a 20-mile sliding window. 
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Finally, the start and end of each segment, and nearby attractors (urban areas, major highway 
junctions, etc.) are identified. Table 8 presents each segment ID, the segment extents, truck 
count and nearby locations; results reflect July 2007. Figure 30 presents the truck count per 
segment for the four months analyzed. As shown in the figure and mentioned earlier, July 
achieves the highest truck counts for all segments in comparison to the other months. 
Additionally, Figure 30 for all four months, as well as Table 8 for July only, show a higher 
truck count in segments near urban areas, a finding consistent with expectations regarding 
rural and urban areas. 

Table 8: Segment Summary Information from NB I-5 July 2007 GPS Data 

Segment 
ID 

Segment extents 
(miles) 

Truck 
counts 

Nearby locations on I-5 NB 

1 0-33 51244 Pacific Hwy 99, Crater Lake Hwy, and International Medford-
Airport (Figure A) 

2 33-80 28954 Pacific Hwy 99 (Figure A)  

3 80-129 41030 Pacific Hwy, NE Stephens St, Roseburg Airport (Figure A) 

4 129-149 25459 Pacific Hwy, Eagle Valley Rd, Umpqua Hwy 99 (Figure A) 

5 149-180 15569 Near Eugene (Figure A) 

6 180-200 23048 Near Eugene (Figure B) 

7 200-244 42565 Eugene–Corvallis (Figure B) 

8 244-264 47232 Salem, Woodburn (Figure B) 

9 264-279 34149 Wilsonville, Tualatin, Portland (Figure B) 

10 279-300 19611 Portland, Vancouver (Figure B) 

 
 

Figure 30: Truck counts across segments for months April—spring, July—summer, October—fall  and 
December—winter. Higher truck counts correspond to urban areas. 
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Figure 31a and 31b present maps showing the identified segment locations for NB I-5. As 
depicted in the maps and evident in the results presented in Table 8 and Figure 30, segments 
toward northern Oregon (segments 6-7) correspond to urban areas with a higher truck count 
density (counts/mile), while segments toward southern Oregon correspond to rural areas with 
a lower truck count density. Identified segments can be mapped against GIS data in this way, 
in order to validate the results of corridor segmentation. With corridor segments identified, 
each corresponding to rural or urban areas, it is possible to analyze segments independently. 

 

 
 

Figure 31: From top to bottom: a) Map of Northern Oregon I-5 segment 6–10; these segments fall mostly 
in the urban areas;  b) Map of Southern Oregon I-5 segments 1–5; these segments fall mostly in the rural 
areas. 
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7.2 METHODOLOGY FOR ESTIMATING TRAVEL-TIME 
RELIABILITY 

After applying the methodology to determine segments for analysis presented above, analysis 
of truck travel times for each segments are computed using the methodology described in this 
section. The parameters, variables, assumptions and output of the algorithm are described 
below. 

Parameters:  

d0 - Initial distance (i.e., the start point of a segment in miles). 

d1 - Final distance (i.e., the end point of a segment in miles). 

d1 – d0 = Length of segment in miles. 

br = 0.1(|d1 – d0|) - Buffer radius or the radius of influence in miles around the start and end 
points of a segment, where |d1– d0| is the length of the segment we chose. 

meancur = Total time/number of trucks - mean of the timestamp readings for current 
 segment being analyzed. 

meanprev - Mean of timestamp readings for a previous segment.  

Variables: 

dstart - Actual start point for a truck in miles. 

dend - Actual end point for a truck in miles. 

nactual - Actual number of truck trips in a segment as obtained from the data. 

nmin - Expected minimum number of trucks trips. 

Assumptions: 

The vehicle travel time within a segment is normally distributed. 

Outputs: 

t95 – Travel time of trucks at 95% confidence interval in hours. 

t50 - Travel time of trucks at 50% confidence interval in hours. 

t80 - Travel time of trucks at 80% confidence interval in hours. 

Algorithmic description: 

1. Pick one of the chosen segments.  

2. In order to determine the starting point of the truck trip on a particular day for that 
segment, find dstart that is closest to d0 and lies within the buffer radius br. Similarly 
find end point of the truck trip dend for the same day that is closest to d1 and lies 
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within the buffer radius br. The buffer radius varies as mentioned above with the 
length of the chosen segment.  

3. Count the number of truck trips obtained for the segment; i.e, nactual 

4. If nactual <<< nmin  (to determine nmin refer to item 7. below).  Try to include trucks 
from a previous segment based on the following observation:  

4.1. Find mean of the time readings for this segment: meancur = Total 
time/number trucks 

4.2. Calculate mean of time readings from the previous segment: meanprev = 
total time/number of trucks 

4.3. If meancur lies between meanprev +/- 1 standard deviation, then include 
the trucks from the previous segment for this segment's travel-time 
calculations.  

5. Calculate travel-time distribution for all the trucks by finding the difference in the 
timestamp between their consecutive dstart and dend readings. This time difference is 
the actual time required by the trucks to cross the segment that can be determined 
from the data.  

6. Compute a threshold time based on the assumption that the speed of a truck is at 
least 10 miles/hr within a segment. The corresponding trucks taking less than the 
threshold are only used to calculate the travel time within that segment.  

7. Plot a probability distribution function of that time difference for every truck and 
use the z-scoring technique to compute the travel time. 

 A z-score is the “x” value on a standard normal distribution corresponding to a 
cumulative probability. In terms of the integral, this cumulative probability is the 
area under the curve, or the value of the integral, and the x value is the upper 
limit of integration. To avoid calculating them every time, these values are 
calculated for the standard normal distribution and kept in a table. Standardizing 
is a method of relating non-standard normal distributions to the standard normal 
distribution, which can then be integrated using z-values in this table by an 
appropriate shift and scaling factor. 

 The probability distribution of the truck count with mean µ and standard 
deviation σ can be normalized as: z = (x-µ)/σ, where x, in this case, is desired 
travel time. The above equation can be expressed alternatively as: 

   x = µ + z σ   ּ◌  

 For example, the z value for 95% confidence is 1.96 which is correspondingly 
used to compute the travel time t95: t95 = μ + 1.96σ 

8. Repeat the analysis for other segments. Also, vary the time of day to find travel 
time for specific time frames.  
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9. Learning the minimum number of trucks (nmin) from the data: The expected 
minimum number of trucks traveling along a segment will depend on the following 
factors: 

1. Urban region 

2. Suburban region 

3. Peak/off-peak time 

4. Time of year (Seasonal variations) 

 nmin at each condition is chosen: 

 By selecting any random four months (non-consecutive and covers the four 
quarters) and then choosing some random days from those particular months. 

 The number of trucks having readings within the radius br of start and the ends of 
the potential segment will be calculated. 

 The outliers that show huge variations will be discarded. 

 This operation is performed for several potential segments, which satisfies the 
particular condition. 

 The average of the number of trucks calculated for each potential segment after 
removing the outliers will be equal to nmin. 

 

7.3 RESULTS OF ESTIMATED TRAVEL-TIME RESULTS OVER 
THE IDENTIFIED SEGMENTS 

For the NB I-5 July 2007 data, the algorithm in Section 7.2 was applied to each of the 
segments indentified in Section 7.1. Parameters and variables used within the algorithm are 
presented for each segment in Table 9 for a 24-hour period. Table 10 presents parameters and 
variables used within the algorithm Segment 1 and Segment 8 during an a.m. peak period (8-
11 a.m.), and Table 11 presents parameters and variables used within the algorithm for each 
segment during a p.m. peak period (3:30-6:30 p.m.). 
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Table 9: Algorithm Parameters, Variables and the Estimated Travel Time Over a 24-hour Period with 
50%, 80% and 95% Confidence Using July 2007 Data for I-5 NB. The free-flow travel time is computed 
by dividing the segment length with the truck’s free-flow speed, assumed to be 60 miles/hr.  
 

 
Table 10: Algorithm Parameters, Variables and the Estimated Travel Time During Evening Hours (8–11) 
with 50%, 80% and 95% Confidence Using July 2007 Data for I-5 NB. The free-flow travel time is 
computed by dividing the segment length with the truck’s free-flow speed, assumed to be 60 miles/hr.  
 

 
  

Segment 
ID 

d0 

(miles) 
d1 

(miles) 
br 

(miles) 
nactual 

(count) 
Free-flow 

(hrs) 
t50 

(hrs) 
t80 

(hrs) 

t95 

(hrs) 

1 3 33 3 246 0.5 1.43 1.75 2.10 

2 33 80 4.7 124 0.78 1.26 1.49 1.74 

3 80 129 4.9 147 0.82 1.29 1.53 1.80 

4 129 149 2 98 0.33 1.12 1.5 1.91 

5 149 180 3.1 65 0.52 0.89 1.15 1.44 

6 180 200 2 34 0.33 1.1 1.47 1.88 

7 200 244 4.4 143 0.73 1.34 1.65 2.00 

8 244 264 2 116 0.33 1.38 1.82 2.32 

9 264 279 1.5 110 0.25 1.36 1.84 2.37 

10 279 300 2.1 94 0.35 1.6 2.09 2.64 

Segment 
ID 

d0 
(miles) 

d1 
(miles) 

br 
(miles) 

nactual 
(count) 

Free-flow 
(hrs) 

t50 
(hrs) 

t80 
(hrs) 

t95 
(hrs) 

1 3 33 3 58 0.5 1.65 1.95 2.32 

8 244 264 2 19 0.33 1.92 2.35 2.91 
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Table 11: Algorithm Parameters, Variables and the Estimated Travel Time During Evening Hours (3:30–
6:30 p.m.) with 50%, 80% and 95% Confidence Using July 2007 Data for I-5 NB. The free-flow travel 
time is computed by dividing the segment length with the truck’s free-flow speed, assumed 60 miles/hr. 
 
 

 
The actual number of truck trips identified was sufficient to perform the travel-time 
calculations on each segment, and the condition nactual << nmin never arises for this case study’s 
simulations. It is important to note that, if the analysis were done on an hourly basis, such as 
peak/off-peak hour for one day, step 4 of the travel-time estimation algorithm needs to be 
performed, as the truck counts per segment can be too small in such cases.  

Estimates for travel time with 50%, 80% and 95% confidence were calculated using the 
algorithm discussed in Section 7.2. These results are presented in tables 9-11. To investigate 
differences between travel-time reliability in different regions, the researchers studied the 
probability distribution between segments. Figure 32a and b present the Gaussian kernel 
probability distribution graphs for the computed truck travel times at a rural and urban 
segment, over a period of 24 hours. The travel time with 95% confidence is noted on each 
figure. Comparing the two figures, it is clear the probability curves produce similar shapes 
(i.e., similar travel-time distributions); however, a noticeable peak in probability occurs near 
the 95% confidence interval for the urban area. This is likely the result of increased 
occurrences in highly congested travel times, caused by influxes in volume during peak hours 
within urban areas.   

 

Segment 
ID 

d0 

(miles) 
d1 

(miles) 
br 

(miles) 
nactual 

(count) 
Free-flow 

(hrs) 
t50 

(hrs) 
t80 

(hrs) 

t95 

(hrs) 

1 3 33 3 12 0.5 0.75 0.97 1.22 

2 33 80 4.7 9 0.78 0.99 1.23 1.49 

3 80 129 4.9 10 0.82 0.92 1.12 1.35 

4 129 149 2 11 0.33 0.84 1.16 1.51 

5 149 180 3.1 6 0.52 0.52 0.54 0.56 

6 180 200 2 6 0.33 0.60 0.73 0.86 

7 200 244 4.4 10 0.73 0.77 0.95 1.15 

8 244 264 2 12 0.33 0.64 0.78 0.93 

9 264 279 1.5 9 0.25 1.28 1.69 2.16 

10 279 300 2.1 7 0.35 1.59 1.98 2.42 
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Figure 32: Distributions of travel time for 24 hours -- from top to bottom, a) Segment 1—Rural region, t95 
= 2.10 hrs; b) Segment 8—Urban region, t95 = 2.32 hrs 
 
To investigate the differences between urban and rural travel-time reliability further, the 
periods from 8-11 a.m. and from 3:30-6:30 p.m. were investigated for these two segments. 
Figure 33a and b present the Gaussian kernel probability distribution graphs for the computed 
truck travel times at a rural and urban segment, during a period between 8-11 a.m. Figure 34a 
and b present the Gaussian kernel probability distribution graphs for the computed truck travel 
times at a rural and urban segment, during a period between 3:30-6:30 p.m. The travel time 
with 95% confidence is noted on each figure. Comparing the two segments during the a.m. 
and p.m. peak (Figure 33a versus Figure 33b; Figure 34a versus Figure 34b), it is clear the 
probability curves produce different shapes (dissimilar travel-time distributions). While the 
rural area follows a more normal distribution in the p.m. hours (comparing Figure 32a and 
Figure 34a), the urban area follows a more bimodal distribution in the p.m. hours and for the 
daily travel time probability (comparing Figure 32b and Figure 34b). This means that, when 
the urban area is studied over a greater time period, such as a 24-hour period, the increase in 
variability of travel time (decrease of reliability) is less prominent. When comparing the rural 
and urban areas, it is clear that the travel-time distributions in urban areas tend to have a 
longer right tail, an expected finding that validates the methods presented in this work. These 
findings can be further studied and quantified using standard methods to determining the cost 
of travel-time reliability and delay. 
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Figure 33: Distributions of travel time between 8-11 – from top to bottom: a) Segment 1—Rural region, t95 
= 2.32 hrs; b) Segment 8—Urban region, t95 = 2.91 hrs. 
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Figure 34: Distributions of travel time between 3:30 and 6:30 p.m. – from top to bottom: A) Segment 1—
Rural region, t95 = 1.22 hrs; B) Segment 8—Urban region, t95 = 0.93 hrs. 
 

7.4 COST OF TRAVEL-TIME RELIABILTY 

The impact of travel-time reliability on operating and travel-time costs can be estimated using 
the predicted travel times with 50%, 80% and 95% confidence across each segment of the 
corridor. The average operating cost figure was derived during recent research by ATRI, and 
used to estimate operating cost per mile—this figure was $83.68 per hour (18). The average 
value of time figure for freight vehicles in Oregon was adjusted to reflect 2010 prices, and 
used to estimate travel-time cost per mile—this figure was $27.85 per hour (21). 

For each segment along the corridor, Figure 35a and b present the daily operating cost per 
mile per freight vehicle, and daily travel-time cost per mile per freight vehicle for travel below 
free-flow conditions (i.e., the cost of delay for travel time at 50%, 80% and 90% confidence 
intervals). As shown, there are greater costs per mile per freight vehicle near urban areas, with 
the Portland-Vancouver and surrounding cities achieving the highest cost per mile per freight 
vehicle (segments 9 and 10). Additionally, the urban areas show greater differences in costs 
among the travel times at 50%, 80% and 90% confidence. The smaller cities of Eugene and 
Salem (segments 6 and 8) also achieve moderate cost per mile per freight vehicle, as does the 
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area surrounding the key junction of I-5 and Pacific Highway (Segment 4). The remaining 
rural areas achieve lower cost per mile, with little difference between travel times with 50%, 
80% and 90% confidence. 

Higher costs reflected near urban centers are a direct result of the increase in the variability 
(decrease in reliability) of travel time within these areas, caused by recurring and non-
recurring congestion. Variability in travel time presents a challenge particularly for the freight 
industry, as carriers must meet scheduling demands of their customers.  

Figure 35  illustrates a comparison between free-flow travel time and travel time at 50%, 80% 
and 90% confidence by depicting the increase in cost above free-flow cost. Again, it is shown 
that in urban areas operating and travel-time cost can be four to nine times the free-flow costs, 
while rural areas merely double in cost. Clearly, there are differences in the impact of travel-
time variability between urban and rural areas on the cost of transportation goods. 

 

 
 

 
 
Figure 35: Top to bottom:  a) daily operating cost per mile per freight vehicle;  b) additional daily travel-
time cost per mile per freight vehicle due to unreliable travel time only. 
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Figure 36: Percent increase in cost per mile per freight vehicle relative to free-flow costs for travel times at 
50%, 80% and 95% confidence intervals.  
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8.0 CONCLUSIONS 

A unique contribution of this research is the integration of GPS with loop sensor and incident 
data to study multicriteria trucking performance measures. The integration of diverse data 
sources has validated the accuracy of the raw GPS data and allowed for a new methodology to 
filter and identify through trips. 

The new methodology presented in this work was effective to identify through trucks using a 
two-step filtering process. The first process finds all potential through trucks, while the 
second process integrates loop sensor data in order to eliminate any remaining through trucks 
that may have stopped midway through the corridor. It is shown that the separation of through 
trucks from partial-through, partial-local and local trips removes bias from the estimation of 
performance measures. Otherwise, the results have shown that corridor travel time and 
reliability can be under/overestimated. 

Findings show that, in general, the GPS truck data have greater travel times than the expected 
loop sensor average in the p.m. peak period. The GPS data more accurately portray the 
roadway conditions experienced by a freight truck, and the comparison with loop sensor data 
indicates that traditional loop-detector congestion estimates tend to underestimate increases in 
both truck travel times and travel-time variability. 

Variability, in particular, is critical to the freight industry as carriers must meet customer 
demands and adhere to strict delivery schedules. Without a reliable transportation network, 
carriers are forced to increase buffer time in case of delay. This work has shown that by 
eliminating variability in the p.m. peak, a cost savings of 6-27% can be made. 

Additionally, this research developed algorithms that use available truck GPS data to: (a) 
identify corridor natural segments or regions (urban centers, interstate junctions, rural areas) 
and (b) estimate corridor-wide impacts of travel-time unreliability. The method was applied 
successfully to segment the Oregon I-5 corridor. The impact of travel-time reliability on 
operating and travel-time costs were estimated using the predicted travel times with 50%, 
80% and 95% confidence across each segment of the corridor. Travel-time distributions 
between urban and rural areas are not alike.  

There are greater costs per mile per freight vehicle near urban areas, with the Portland-
Vancouver and surrounding cities achieving the highest cost per mile per freight vehicle. The 
mostly rural areas achieve lower cost per mile with little difference between travel times with 
50%, 80% and 90% confidence. Higher costs reflected near urban centers are a direct result of 
the increase in the variability (decrease in reliability) of travel time within these areas, caused 
by recurring and non-recurring congestion. Variability in travel time presents a challenge for 
the time-definitive freight industry as carriers must meet their customers scheduling demands. 
In urban areas operating and travel-time costs can be four to nine times the free-flow costs, 
while rural areas merely double in cost.    
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This research shows that congestion is not only detrimental for carriers’ costs and shippers’ 
just-in-time operations, but also for the environment due to major increases in GHG emissions 
and for the local community due to increases in NOx, PM, and other harmful pollutants. 
Freeway congestion management strategies that can maintain moderate speeds will benefit 
people living near transportation systems by minimizing freight vehicle emissions such as 
NOx, and PM, which are closely linked to respiratory heath issues. 

8.1 PRACTICAL APPLICATION 

The methodology developed throughout this work has the potential to provide valuable freight 
operation and performance data for transportation decision makers to incorporate freight 
performance measures into the planning process. 

From a planning and engineering perspective, the methodology developed to identify through 
trucks and produce corridor-level, multicriteria performance measures will allow for the 
consideration of the freight industry in transportation improvement projects. This is a 
significant step in being able to study and address the needs of all users of the transportation 
system, as current freeway performance measures are not freight specific. 

The methodology can be modified to identify and study bottlenecks throughout the corridor 
and allow for comparisons to be made between target areas, in order to prioritize the areas 
most in need of transportation improvements. Being able to quantify the impact of congestion 
on freight vehicles creates transparency in the transportation planning process, holding 
agencies accountable to the public for the decisions that are made. 

Additionally, the research presented here can help inform decisions made regarding 
congestion management strategies, infrastructure improvements, and incident response 
strategies. Here, the multicriteria performance measures would allow decision makers to study 
the benefits of such improvements or strategies to the freight industry by using performance 
data that reflect the current impact of congestion on freight vehicles.  

Understanding the monetary and environmental impacts of non-recurring congestion may also 
motivate and justify the need for public agencies to provide system-wide improvements—
technologies such as variable message signs located along freeways would be beneficial in 
communicating to passenger and freight vehicles about an upcoming incident. Additionally, 
multicriteria performance measures may also justify the need for increased incident response 
by ATMS.  

From a freight industry perspective, the methodology developed to identify through trucks 
and produce corridor-level, multicriteria performance measures will allow carriers to improve 
routing and scheduling logistics. Freight carriers could use the multicriteria performance 
measures to identify periods of time when travel-time delay and variability increase on a 
given freeway. Examining the region-wide system of freeways, carriers would be able to 
identify the optimal route for a given time of day that would reduce travel-time delay and 
improve reliability. By modifying scheduling and routing in this way, carriers would see a 
reduction in transportation costs and improvement in reliability, allowing carriers to more 
easily adhere to strict scheduling. 
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8.2 FUTURE WORK 

Researchers should continue to develop and build upon the methodologies outlined in this 
research. Parameters used in filter processes 1 and 2 (r, tc, tb, m) should be studied further to 
determine optimum user-input values for differing corridor lengths. Because of large gaps 
between readings, it was difficult to obtain a large quantity of through trucks crossing smaller 
segments. Further analysis may reveal user-defined parameters that are more fruitful in the 
number of through trucks identified. 

One of the challenges regarding commercial GPS data is that freight carriers do not require a 
high frequency of readings to track trucks along routes. The gap times between readings in the 
data set obtained for this research varied among carriers, and often among sequential readings 
for given trucks. When narrow corridors are defined to obtain realistic data for small 
segments, as with the non-recurring congestion analysis, very few through trucks (or through-
incident trucks) are obtained on a given day. Future work seeking to study non-recurring 
congestion should identify data sources (i.e., data vendors) that can provide truck data at a 
higher resolution—this would increase the number of through-incident trucks that can be 
identified using the filtering methods defined in this research. 

The estimation of travel-time reliability plays a crucial role in the timely delivery of goods. As 
discussed in this work, the estimation of travel time is, in turn, dependant on several factors 
such as the location of the traveling trucks (i.e., urban or rural segments and the cost of 
transporting goods). Thus, to improve the functionality of the transportation network and 
make efficient use of funds, this paper discusses a methodology that can estimate the travel 
times across a particular segment of the corridor with 50%, 80% and 95% confidence. The 
predicted travel times can help meet a carrier’s departure and arrival time constraints. 

Future research will include applying these methods on a large-scale network. In this context, 
finding the shortest path in networks will be evaluated. One of the basic complications to 
finding such solutions is the inapplicability of Bellman's principle of optimization (46). This 
leads to the notion of α and β reliability (47, 48), which should be explored further in future 
applications. In addition to using normal distribution to estimate the travel time, alternative 
distributions should be investigated, such as log-normal, beta and student-t distributions. As 
the travel-time distributions have a longer tail (an increased number of trips achieving a very 
long travel time) these distributions may prove to be a better fit. The accuracy of our z-scoring 
method as proposed by (49) can also be improved. 

In this work, the researchers have computed the travel time considering only trucks that are 
within a given segment. However, the travel time in any segment may also depend on the 
conditions of the previous and next segments. This motivates the use of joint multivariate 
probability distributions (50), although this may significantly increase the computational 
complexity of the system. 

Finally, to improve accessibility of multicriteria freight performance measure to public- and 
private-sector users, this research could be incorporated into a web interface. This would 
provide freight carriers and public agencies with a user-friendly interface to interpret and 
compile multicriteria freight performance measures. The online tools would help justify 
routing and scheduling decisions, as well as decisions made at a project or regional level. 
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