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Brownian motion in a flowing fluid revisited 
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It is shown how the phenomenon of osmosis may be treated using the phenomenological theory of Brownian 
motion in a flowing fluid. The theory is also generalized to include viscous stresses in the particle and mixture 
momentum equations. 

The purpose of this note is to address two questions 
that have arisen about the phenomenological theory of 
Brownian motion in a flowing fluid. 1 The notation is that 
of Ref. 1, and Eq. (n) from Ref. 1 will be referred to as 
Eq. (I-n). 

The first question is concerned with how the phenom­
enon of osmosis may be treated within the framework of 
the theory. Osmosis occurs when a particle-fluid mix­
ture is partitioned by a semi- permeable membrane 
which acts as a rigid barrier to the particles but through 
which the fluid may flow freely. In the simplest case, 
particles are present on one side of the membrane (side 
1) but not on the other (side 2). The phenomenon to be 
explained is this: if the pressure is initially uniform, 
fluid spontaneously flows from side 2 to side 1, until an 
equilibrium is reached in which the pressure on side 1 
(p 1) exceeds that on side 2 (p2) by the osmotic pressure 
q. In particular, what is the driving force that makes 
the fluid flow? 

No explicit modifications to the theory are needed in 
order to represent the membrane, because the effect of 
the latter may be considered part of the force field Gp. 
With this in mind, the equilibrium pressure differential 
is easily obtained by setting v, VT, and J, equal to 
zero in Eqs. (I-9) and (I-15). This yields 

Vq =( 1- etp)Vp- p1G1 . (1) 

If the Brownian particles are everywhere dilute, so that 
Ctp«1, then Eq. (1) assumes the simpler form V(p-q) 
=p1G1 • Integrating this equation across the membrane, 
we obtain simply p 2 - q2 =P1 - q1• (The term p1G1 makes 
a contribution proportional to the membrane thickness; 
this contribution has been neglected under the assump­
tion that the membrane is very thin.) But q2 =0 because 
there are no particles on side 2; therefore, P1 =P 2 +q 1, 

as was to be shown. 

The above argument yields the correct equilibrium 
pressure differential, but it does not reveal the driving 
force that sets the fluid in motion initially. To obtain 
this information, it is necessary to examine the tran-

sient equations, in particular, the fluid momentum 
equation. This equation is not explicitly given in Ref. 1, 
but is readily found to be 

To obtain Eq. (2), use Eq. (I-29) to convert the left 
member of Eq. (I-9) into a(pv)/at + V· (pvv). Now replace 
the approximate momentum flux pvv, which is appro­
priate only when up and u, are not very different, by the 
correct momentum flux p,upup + p1u,u,. The result then 
combines with Eqs. (I-2), (1-3), and (1-29) to yield Eq. 
(2) above. If G1 = 0 and if the particles and fluid are in­
itially at rest with uniform temperature and pressure, 
then F vanishes and the initial time derivative of u1 be­
comes simply au1/at=(1/p1)Vq. Thus, we see that the 
gradient of the osmotic pressure q is a driving force in 
the fluid momentum equation, and that it tends to make 
the fluid flow in the direction of increasing particle den­
sity. Since q is just the pressure in an ideal gas of 
Brownian particles, it has the form of an ideal gas partial 
pressure [cf. Eq. (1-1 )]. What is remarkable is that it 
also has the significance of a partial pressure, even 
though the particle-fluid mixture is incompressible and 
is not at all like an ideal gas. This interpretation fol­
lows from the fact that q must be subtracted from the 
total pressure to obtain the pressure whose gradient ap­
pears in the fluid momentum equation (2). 

It is now clear that the phenomenon of osmosis is cor­
rectly and automatically accounted for by the general 
equations of the theory. These equations can therefore 
be used in the analysis of transient osmotic effects. 
The present point of view may also have some pedagog­
ical value, since it provides an essentially mechanical 
interpretation of the osmotic pressure and a mechanis­
tic route to van' t Hoff's law. 

We now turn to the second question to be discussed: 
how would Jp be affected by the inclusion of vis-
cous stresses in the particle and mixture momentum 
equations, Eqs. (I-3) and (I-9)? To pursue this ques-

1210 Phys. Fluids 24(6), June 1981 0031-9171/81/061210-02$00.90 © 1981 American Institute of Physics 1210 



Downloaded 06 Jun 2012 to 131.252.4.4. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions

tion we simply restore the neglected terms. Since the 
particle-fluid mixture is incompressible, V·[a9Up +(1 
- a 9)u1 ] = 0. We are interested only in the limit of large 
friction, in which up and ut become very nearly equal to 
v; the incompressibility condition then implies that V·v 
=V·Up =0, so the viscous terms may be simplified to 
their incompressible forms. With this in mind, it is 
clear that a term V·(1J.9 s9 ) must be added to the right 
member of Eq. (1-3), where s 9 = (Vu9 ) + (Vu9 )T, and the 
superscript T denotes the transpose. Here, llp is the 
particle shear viscosity, which according to Ref. 1 must 
be evaluated as though the particles were an ideal gas. 
If the particles are assumed to be smooth, rigid, and 
perfectly elastic, then2 1J.9 =(5/64R 2)(mkT/7r)112 =(5/32) 
(pgkT /3R)112

• Similarly, a term V· (p:s) must be added 
to the right member of Eq. (I-9), where S =(VV) + (Vv)T, 
and jl is the shear viscosity of the particle-fluid mix­
ture. If the particles are sufficiently dilute, jl is given 
by the Einstein formulas jl =J.L{1 +~a9), where ll is the 
shear viscosity of the pure host fluid. 

It is now straightforward to repeat the development of 
Ref. 1, Sec. Ill with the viscous terms included. The re­
sulting diffusion flux is given by 

J9 = -o·Vp9 -D T·V lnT +D9Vp 

+ (p9p,/ p(3)(G9 - G1 ) + DvV2v, 

where Dp is given by Eq. (I-19) and 

o= (k T /m(3) u + (5Ma/2p(3) s, 

(3) 

(4) 

(5) 

(6) 

here U is the unit dyadic, and the dependence of IJ. on p 
has been neglected. Comparison with Eq. (I-15) et seq. 
shows that the concentration and thermal diffusion co­
efficients have now become tensors, and an additional 
term proportional to v2v has appeared. Depending on 
the values of the various parameters, these modifica-
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tions may be quantitatively significant even though v 
varies negligibly over distances of order R. [If the lat~ 
ter condition is violated, Eq. (I-4) is no longer ade­
quate, and more extensive modifications become nec­
essary. J For example, the second term in D may be 
neglected relative to the first when (51J.a9V/ pL) « kT /m, 
where L is a characteristic length for appreciable spa~ 
tial variations in v (L » R), and v is the associated var­
iation in !v!. For the typical values J.Jip==:O.Ol cm2/sec, 
v=lOcm/sec, L=1 em, T=300K, andp~=l g/cms, 
this condition reduces to apR 3 « 2X10-14 ems. For large 
colloidal particles with R = 1 o-<~ em, the condition be­
comes ap « 0.02, which will be satisfied only if the par­
ticles are extremely dilute. But for particles with R 
= 1 o-5 em, the condition becomes a 9 « 20, which is no 
restriction at all. 

Similar numerical estimates may be made for the 
other new terms in Eqs. (3)-(6), and they further rein­
force the conclusion that the a priori neglect of the new 
terms is hazardous and cannot be recommended as a 
general procedure. Some or all of these terms will in­
deed be negligible in many situations, but this must be 
separately determined in each particular case. 

I am grateful to R. S. Hotchkiss and R. T. Foister for 
their interest and for the stimulating questions which 
led to this work. 

This work was performed under the auspices of the 
United States Department of Energy. 
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