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EXECUTIVE SUMMARY 

Most transportation agencies rely on point detectors (e.g., inductive loops, axle detectors) located 
at specific locations on highways to collect data on traffic volumes, vehicle classes and other 
relevant attributes of traffic. By utilizing these data collected from these point detectors, 
researchers have developed vehicle re-identification algorithms to match measurements at two 
sites that belong to the same vehicle. This enables tracking the movement of individual vehicles 
between different data collections sites, which in turn provides valuable information for the 
estimation of travel times, travel delays and origin-destination flows. 

The main goal of this OTREC project is to investigate the factors that impact the accuracy of the 
re-identification algorithms and to implement such algorithms on larger datasets. By building 
upon a previous OTREC-funded study conducted by the authors, this research further contributes 
to the re-identification literature in two significant ways. First, the feasibility of using neural 
networks in solving the re-identification problem is investigated. Second, an extensive analysis is 
performed to understand the key factors affecting the matching accuracy of the re-identification 
algorithms.  

Data from weigh-in-motion (WIM) stations provide a basis for the development and testing of 
these algorithms. The data supporting this research come from the WIM sites in Oregon, which 
are equipped with sensors that can measure axle weights, axle spacing, and gross vehicle weight 
estimates that are uniquely matched to each truck. Since some of the trucks (20-35%) are 
carrying radio-frequency identification (RFID) transponders, these measured attributes are also 
uniquely matched to transponder-equipped trucks. These particular trucks provide the needed 
data for model development, calibration and testing.  

The neural network models are trained and tested on datasets from four different upstream and 
downstream pairs of WIM sites. While developing the neural network models, special attention 
is paid to ensure that the neural network design (e.g., number of neurons in the hidden layer) is 
optimal. The performance of neural network models is then compared to the Bayesian models 
developed by the authors in a previous study. Overall, with the exception of one case, the 
Bayesian models are found to outperform the neural networks based on the datasets considered 
in this study. The overall results show that both methods can be effective in solving the re-
identification problem, while the Bayesian method yields more accurate results.  

A comprehensive analysis is then performed to investigate the key factors impacting the 
accuracy of the results. The analyses are performed by employing the Bayesian algorithm to 
match trucks that cross upstream and downstream pairs of WIM sites that are separated by long 
distances ranging from 70 to 214 miles. Data from 14 different pairs of WIM sites are used to 
evaluate how matching accuracy is impacted by various factors such as the distance between two 
sites, travel-time variability, truck volumes, and sensor accuracy or consistency of 
measurements. After running the vehicle re-identification algorithm for each one of these 14 
pairs of sites, the matching error rates are reported. The results from the testing datasets showed 
a large variation in terms of accuracy. It is found that sensor accuracy and volumes have the 
greatest impacts on matching accuracy, whereas the distance alone does not have a significant 
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impact. Overall, for estimating travel times and origin-destination flows between two WIM sites, 
the methods developed in this project can be used to effectively match commercial vehicles 
crossing two data collection sites that are separated by long distances.   

   



 

3 
 

1.0 INTRODUCTION 

Most transportation agencies rely on point detectors (e.g., inductive loops, axle detectors) located 
at specific locations on highways to collect data on traffic volumes, vehicle classes and other 
relevant attributes of traffic. By utilizing these data collected from these point detectors, 
researchers have developed vehicle re-identification algorithms to match measurements at two 
sites that belong to the same vehicle. This enables tracking the movement of individual vehicles 
between different data collections sites, which in turn provides valuable information for the 
estimation of travel times, travel delays and origin-destination flows. 

Even though there are other technologies that can be utilized to track the movements of vehicles 
over transportation networks, most of these technologies (e.g., automatic vehicle identification 
(AVI) tags, license plate recognition) require installation of additional in-car and/or roadside 
devices and may have related privacy concerns. However, vehicle re-identification methods that 
are based on the vehicle attribute data collected by sensors already installed on roadways enable 
tracking vehicles anonymously and do not require substantial additional investment.  

This OTREC project improves upon a previous study conducted by the authors on the same 
research theme. The main goal of the project is to investigate the factors that impact the accuracy 
of the re-identification algorithms and test such algorithms on additional datasets. Data from 
weigh-in-motion (WIM) stations provide a basis for the development and testing of these 
algorithms. The data supporting this research come from the WIM sites in Oregon, which are 
equipped with sensors that can measure axle weights, axle spacing, and gross vehicle weight 
estimates that are uniquely matched to each truck. Since some of the trucks (20-35%) are 
carrying radio frequency identification (RFID) transponders, these measured attributes are also 
uniquely matched to transponder-equipped trucks. These particular trucks provide the needed 
data for model development, calibration and testing.  

This report describes the models used for re-identification, including a new algorithm developed 
based on neural networks. It also describes the analyses carried out to evaluate the impacts of 
different factors (e.g., distance between two sites, travel-time variability, truck volumes, and 
sensor accuracy or consistency of measurements) on the accuracy of the results produced by the 
re-identification algorithms.  

Overall, the methods developed in this research can be used to support programs and 
applications for monitoring freight over the highways. One of the key aspects of monitoring 
freight has to do with determining the flow patterns (and travel times) of trucks, which can be 
achieved by uniquely identifying trucks at specific points along the roads or by tracking 
individual trucks using technology such as GPS. The re-identification method, in some 
circumstances, can be more advantageous as compared to other available options to track and re-
identify trucks (e.g., GPS, automatic vehicle identification (AVI), license plate recognition) 
because of several reasons: 

 Data from AVI transponders, such as the Oregon Green Light program, or from other 
types of electronic tracking systems might not be readily available to the public agencies 
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involved in motor freight planning (e.g., MPOs, DOTs) due to privacy, jurisdictional, and 
institutional issues; 

 Not all trucks are equipped with AVI transponders. However, with the re-identification 
methods all trucks can be potentially tracked since they all cross the WIM stations; and 

 The proposed approach does not require installation of any new sensors since the input 
data are already collected at existing WIM and automatic vehicle classification (AVC) 
stations, whereas alternative technologies like license plate recognition requires 
additional investment. 

1.1 OBJECTIVES 

By building upon past and ongoing research by the principal investigators (PIs) and others in the 
areas of WIM data analysis, travel-time estimation for commercial trucks and vehicle re-
identification methods, this research aims to contribute to the state-of-art and state-of-practice in 
freight movement by developing and testing novel vehicle re-identification methods to improve 
the ability to estimate truck movements in a transportation network. These methods capitalize on 
vehicle-attribute data, such as axle spacing and axle weights, which are already collected by 
numerous sensors installed on roadways.  

The specific objectives of this project are: 

 To investigate the factors that impact the accuracy of the re-identification algorithms that 
are developed for re-identifying commercial trucks based on vehicle-attribute data 
automatically collected by sensors installed at traffic data collection stations; 

 To investigate alternative re-identification methods (e.g., neural networks) to solve the re-
identification problem; and  

 To implement such algorithms on larger datasets. 

 

1.2 ORGANIZATION OF THE REPORT 

This report is organized as follows: Chapter 2 provides an overview of some relevant studies on 
vehicle re-identification methods and applications. Chapter 3 describes the WIM data utilized for 
model development and testing in this project. Chapter 4 describes the problem of re-
identification in detail and presents the Bayesian algorithm developed in the previous study 
conducted by the authors (Monsere, Cetin and Nichols, 2011). Chapter 5 describes the neural 
network model developed to solve the re-identification problem. Chapter 6 presents the results of 
the analyses carried out to evaluate the factors impacting the accuracy of the re-identification 
algorithms. Conclusions of the study are given in Chapter 7. 
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2.0 LITERATURE REVIEW 

As explained in A Concept for a National Freight Data Program: Special Report 276, data on 
goods movements are needed to identify and evaluate options for mitigating congestion; improve 
regional and global economic competitiveness; inform investment and policy decisions about 
modal optimization; enhance transportation safety and security; identify transportation marketing 
opportunities; and reduce fuel consumption and improve air quality (TRB, 2003). This project 
contributes to a better understanding of freight movement by developing re-identification 
algorithms to estimate truck O-D (origin-destination) flows and travel times. Even though 
determining truck counts at particular locations on a transportation network is relatively easy to 
do, obtaining O-D data is, in general, more difficult since it requires uniquely re-identifying 
trucks at multiple points. 

Since the mid-1990s, many research efforts have focused on methods to anonymously track 
vehicular movements by re-identifying individual vehicles at multiple locations utilizing existing 
sensors.  The predominant objective has been to estimate travel times in order to characterize 
link performance.  For this reason, the re-identification has focused primarily on passenger cars 
and light trucks, which typically make up the majority of traffic in urban areas where the link 
performance varies the most.  Various techniques and technologies have been employed for the 
re-identification of vehicles including video/imaging (Shuldiner and Upchurch, 2001), and 
automatic vehicle identification (AVI) (Hellinga, 2001; Dion and Rakha, 2006). A more detailed 
explanation of these technologies and the associated techniques can be found in the Travel Time 
Data Collection Handbook (Turner, Eisele, Benz et al., 1998).   

There have been several studies on re-identifying individual vehicles anonymously at multiple 
locations by utilizing data from existing inductive dual loop detectors (Sun, Ritchie, Tsai et al., 
1999; Coifman and Cassidy, 2002; Coifman, 2003). While most of the previous studies are based 
on data from dual loops, some researchers also extended the application of the re-identification 
algorithms to data from single loops (Coifman and Krishnamurthy, 2007). Other than the 
traditional inductive loops that are embedded in the pavement, researchers have investigated new 
types of inductive loops, the so-called “blade sensors,” to get more detailed characteristics of 
vehicles. These sensors are more sensitive than the typical inductive loops and are capable of 
capturing wheel locations (Oh, Ritchie and Jeng, 2007). In general, magnetic vehicle signatures 
from loops provide the raw data which is used to extract useful vehicle features or attributes to 
differentiate between different vehicles. The predominant application of vehicle re-identification 
has been to estimate travel times (Liu, Oh and Recker, 2002; Sun, Arr and Ramachandran, 2003; 
Oh, Tok and Ritchie, 2005). Application of new technologies and algorithms, such as those 
provided by Sensys Networks, are expanding the use of these re-identification approaches.  

Less attention has been given to the techniques to re-identify commercial vehicles at multiple 
locations, even though such techniques can support numerous applications including estimating 
travel times for trucks, quantifying travel-time reliability, estimating truck flow patterns (i.e., 
origins-destinations), estimating empty-truck movements, trip-length estimation, pavement 
management, WIM-sensor accuracy, and weigh-station enforcement.  
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Recently, the authors of this report explored the use of axle-spacing and axle-weight data to re-
identify commercial trucks at two WIM stations (Cetin and Nichols, 2009; Cetin, Nichols and 
Monsere, 2011). In the 2009 study by Cetin and Nichols, commercial trucks at two WIM stations 
in Indiana were matched based on re-identification techniques. They developed matching 
algorithms based on statistical mixture models and tested the performance of the algorithms on 
the data from these two WIM stations that are separated by one mile. The results showed that 
trucks were matched with 99% accuracy when both axle spacing and weights were used, and 
with 97% accuracy when only axle spacing was used. However, the WIM stations in this earlier 
study were only separated by one mile, and all trucks in the sample crossed both the upstream 
and downstream stations (Cetin and Nichols, 2009).  

On the other hand, the datasets used in the 2011 study included WIM stations in Oregon that are 
separated by greater distances (more than 100 miles). This distance introduces additional 
complexities since travel times can vary significantly, and trucks can leave and enter the road in 
between the two stations (this was not the case in the Indiana dataset). Since not all trucks cross 
both stations, screening techniques were developed to identify vehicles that cross only one of the 
stations. It was observed that the algorithms can match trucks with approximately 90% accuracy, 
while the total number of trucks being matched at this accuracy level is about 95% of the actual 
common trucks that cross both upstream and downstream sites. These methods allow the user to 
trade off the accuracy vs. total vehicles being matched by adjusting a threshold parameter.  

Other than the work by Cetin and Nichols in 2009 and Cetin, Nichols and Monsere in 2011, the 
only known previous application of WIM data for vehicle re-identification was conducted by the 
Norway Public Roads Administration for determining link travel times on the Oslo Toll Ring 
(Christiansen and Hauer, 1996). A prototype of the system was tested at the Winter Olympic 
Games in Lillehammer in 1994 and later refined with more advanced matching algorithms. 

In general, vehicle re-identification methods rely on the variability within the vehicle population 
and the ability to accurately identify the pairs of measurements collected at upstream and 
downstream stations that are generated by the same vehicle. These measurements can either be 
the actual physical attributes of vehicles, such as length (Coifman and Cassidy, 2002) and axle 
spacing (Cetin and Nichols, 2009; Cetin, Nichols and Monsere, 2011) or some characteristics of 
the sensor waveform or inductive vehicle signature (Sun, Ritchie, Tsai et al., 1999). Researchers 
have developed various methods, such as lexicographic optimization (Sun, Ritchie, Tsai et al., 
1999; Oh, Ritchie and Jeng, 2007) and decision trees (Tawfik, Abdulhai, Peng et al., 2004) to re-
identify vehicles. In a typical implementation of these methods, a downstream vehicle is matched 
to the most “similar” upstream vehicle (or vice versa) based on some defined metric (e.g., 
Euclidian distance). The resulting accuracy of these methods depends on several factors, 
including the variation of the attribute data from vehicle to vehicle, number of attributes, the 
distance between data collection stations, variability of travel time, and type of the re-
identification algorithm used. Given a particular set of factors, this accuracy may or may not be 
satisfactory for a given application. The impacts of different factors on the accuracy of the re-
identification algorithms are investigated in this report. A summary of the findings presented in 
this report can be found in (Cetin, Monsere, Nichols et al., 2011). 
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3.0 WEIGH-IN-MOTION DATA 

In this chapter, the assembly, processing and storage of the weigh-in-motion (WIM) and 
automatic vehicle classification (AVC) data is described. Oregon’s prescreening/preclearance 
program for commercial motor vehicles at fixed weigh and inspection stations is called Green 
Light. There are 22 equipped stations on the Oregon state highway system.  These locations are 
shown in Figure 3-1 with a corresponding list of stations shown in Table 3-1. The station number 
in the table is an internal number as part of PSU’s archiving process. At each of the stations, 
approaching trucks are directed into the appropriate lane on the mainline highway. At a location 
upstream from the static weigh station, transponder-equipped trucks are identified by the reader. 
Participation in the Green Light program is high; on average about 40% of observed vehicles are 
equipped with transponders (though this varies from station to station). In addition to the 
transponder record, the vehicles are weighed in motion (by load cells). The observation consists 
of axle weights as well as the spacing of the axles. These data also include speed, timestamp, the 
lane of observation (some stations are multilane), length (calculated), gross vehicle weight 
(calculated), and a count of the number of axles (calculated). As part of the proprietary control 
program by the equipment vendor (International Road Dynamics), a sieved-based classification 
algorithm uses the axle-spacing information to classify vehicles. A more detailed description of 
the Oregon WIM system is provided by Elkins and Higgins (2008). 

The unique aspect of Oregon’s system is that this transponder and weight-related data are 
available together in one record. These transponder-equipped vehicles provide a large pool of 
data to develop, validate and test the vehicle re-identification techniques described within.  

Table 3-1: List of stations 

Number Code Name Route Direction MP 

1 FWB Farewell Bend POE I-84  WB 353.31 

2 EMH Emigrant Hill I-84  WB 226.95 

3 WYT Wyeth I-84  WB 54.3 

4 CSL Cascade Locks POE I-84  EB 44.93 

5 LGR LaGrande I-84  EB 258.52 

6 ODF Olds Ferry I-84  EB 354.38 

7 ASP Ashland POE I-5   NB 18.08 

8 BOR Booth Ranch I-5   NB 111.07 

9 WDN Woodburn, NB I-5   NB 274.15 

10 WDS Woodburn, SB I-5   SB 274.18 

11 BRE Brightwood, EB US-26 EB 36.51 

12 BRW Brightwood, WB US-26 WB 36.31 

13 JBS Juniper Butte US-97 SB 108.2 

14 LWL Lowell US-58 WB 17.17 

15 WLB Wilbur I-5   SB 130 

16 ASH Ashland, SB I-5   SB 18.08 
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17 KFP Klamath Falls POE US-97 NB 271.73 

18 BND Bend US-97 NB 145.5 

19 JBN Juniper Butte US-97 NB 106.9 

20 KFS Klamath Falls, SB US-97 SB 271.41 

21 UMT Umatilla POE I-82  EB 183.8 

22 RPT Rocky Point US-30 WB 16.53 

 

 

Figure 3-1 Map of WIM station locations in Oregon 

 
3.1 DATA ARCHIVE 

In support of this and other research, a WIM data archive was created (http://wim.its.pdx.edu/). 
This archive is housed under the Portland Transportation Archive Listing (PORTAL) umbrella at 
Portland State University’s Intelligent Transportation Systems Lab. PORTAL is the official 
Archived Data User Service (ADUS) for the Portland metropolitan region as specified in the 
Regional ITS Architecture. PORTAL provides a centralized, electronic database that facilitates 
the collection, archiving and sharing of information/data for public agencies within the region.  
The creation of the PORTAL data archive was supported by a CAREER grant from the National 
Science Foundation (NSF). In addition, the Federal Highway Administration (through ODOT) 
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has supported the purchase of hard disc storage, and the Portland metropolitan regional 
government (Metro) has invested in the ongoing support of the archive. 

The archive stores data in a PostgreSQL-relational database management system (RDBMS). This 
archive implements a data warehousing strategy in that it retains large amounts of raw 
operational data for analysis and decision-making processes, and in that these data are stored 
independently of their operational sources, allowing the execution of time-consuming queries 
with no impact on critical operations uses. The database server is a Dell Server with two Quad 
Core Intel Xeon Processors running at 2.33 GHz with 8GB of memory. The database server runs 
Red Hat Linux. The RDBMS stores data physically on a 3.2 Terabyte redundant array of 
independent disks (RAID) providing both high-speed access and increased reliability through 
redundancy in the event of hardware failure. Offsite backups of the raw data are done once a 
week. 

Monthly data are sent from ODOT via an FTP connection. These data are processed and then 
loaded in the WIM archive. A forthcoming OTREC report will describe the WIM data archive in 
detail (including data-quality efforts), but a short description follows. There are four primary 
tables in the WIM data. A schematic of the database is shown in Figure 3-2. The truck-level 
observations are loaded in a table called wimdata. A table stations includes the identifying 
information about each station. The table stationmap is a list of all possible routes (i.e., 
upstream-to-downstream station pairs), which defines the free-flow travel time, distance, and a 
parameter called upper time (currently time to travel between stations at 50 mph). Each possible 
link is given an identification that lists the upstream and downstream stations. An algorithm 
described in (Monsere, Wolfe, Alawakiel et al., 2009) produces a table linktraveltime of all 
trucks matched by transponder identification number between stations. The search algorithm 
matches a truck with a transponder at an upstream station with the same transponder at the 
downstream station. All matches within the time window of 0.75*free-flow time to 2*free-flow 
time are recorded.  Free-flow time is defined as the time to traverse the route between stations at 
55 mph (the posted speed limit for trucks on Oregon roadways).This table contains the upstream 
and downstream station numbers, tag number, timestamps of each observation, and whether the 
truck has been identified as a thru vehicle. 
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Figure 3-2: Key table definitions for PSU PORTAL WIM Archive 

STATIONS
stationnum integer
station_code character(3)
longname text
name text
route character(5)
direction character(2)
hwy_no integer
roadbed integer
mp doubleprecision
lrs charactervarying(15)
lat doubleprecision
long doubleprecision
filename prefixtext

STATIONMAP
linkid integer
up_station integer
up_stationname character(3)
dwn_station integer
dwn_stationname character(3)
freeflow real
distance real
uppertime real

LINKTRAVELTIME
linkid integer
up_station integer
up_tag text
up_timestamp timestampwithtimezone
dwn_station integer
dwn_tag text
dwn_timestamp timestampwithtimezone
thru_truck boolean

WIMDATA
timestamp timestampwithtimezone
year integer
month integer
day integer
hour integer
minute integer
seconds integer
lane integer
speed integer
type integer
length integer
gvw real
esal real
sumlen real
numaxles integer
axl1 real
axl2 real
axl3 real
axl4 real
axl5 real
axl6 real
axl7 real
axl8 real
axl9 real
axl10 real
axl11 real
axl12 real
axl13 real
axl14 real
spc1 real
spc2 real
spc3 real
spc4 real
spc5 real
spc6 real
spc7 real
spc8 real
spc9 real
spc10 real
spc11 real
spc12 real
spc13 real
spc14 real
tag text
stationnum integer
gvw_zero boolean
gvw_50 boolean
mph_10 boolean
mph_99 boolean
length_200 boolean
axle_sum_length boolean
axle_sum_7 boolean
axle_first_5 boolean
num_axle_13 boolean
gvw_280 boolean
axle_spc_34 boolean
gvw_diff_7 boolean
truck_table integer
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4.0 THE BAYESIAN METHOD FOR RE-IDENTIFICATION 

In general, the re-identification problem can be described as follows: Given two separate datasets 
that consist of vehicle attribute data (such as length, axle spacing, axle weights or some attributes 
of the magnetic signature), the re-identification algorithms attempt to match the pairs of 
measurements (one from each dataset) that belong to the same vehicle. These two datasets are 
collected at some upstream and downstream points in a transportation network. To simplify the 
discussion, an example is given in Figure 4-1which shows graphically two datasets for four 
vehicles that cross upstream and downstream stations. Each box represents a vehicle and the 
attribute data is indicated with horizontal bars. The actual matching is indicated with arrows in 
Figure 4-1. For both sites, vehicle number 3 only crosses one of the sites.  

 

Figure 4-1: All vehicles are correctly matched while there is no match for one vehicle 

 

Figure 4-2: Vehicles 2 and 3 are mismatched  
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Vehicle re-identification algorithms attempt to match each vehicle in the downstream set to a 
vehicle in the upstream (or vice versa) based on some “similarity” measure that is a function of 
the attribute data between the two sites. These methods essentially capitalize on the variance in 
vehicle populations and the consistency or correlation of the measurements taken at the upstream 
and downstream stations. Figure 4-2 shows a potential outcome from a hypothetical algorithm 
for the same vehicles given in Figure 4-1. In this case, vehicles numbered 1 and 4 are matched 
accurately as the similarity measure is maximized for these pairs. On the other hand, vehicles 2 
and 3 are mismatched. In reality, for downstream vehicle 3 there is no match at the upstream, but 
the matching algorithm identifies the upstream vehicle 2 as the best match among the four 
possibilities. Based on this simple illustration it can be observed that not only is a mechanism 
needed to identify the best match (in terms of the similarity in attribute data), but there also needs 
to be a method in place to screen out vehicles that cross one site but not the other.  

The authors developed algorithms based on Bayesian statistics in Phase I of this project for 
solving the re-identification problem (Cetin, Nichols and Monsere, 2011; Monsere, Cetin and 
Nichols, 2011). The vehicle re-identification approach developed by the authors consists of two 
main stages. In the first stage, each vehicle from the downstream station is matched to the most 
“similar” upstream vehicle based on the posterior probabilities from a Bayesian model. For the 
second stage, several methods are developed to screen out vehicles that cross only one site. 
These methods increase the accuracy of matching, but may reduce the total number of vehicles 
matched. By setting a threshold value, these methods allow the user to trade off accuracy versus 
the total number of vehicles being matched. These methods involve calculating both the highest 
and the second-highest similarity measures for each vehicle being matched. Further details of 
these algorithmic steps can be found in Cetin, Nichols and Monsere (2011) and Monsere, Cetin 
and Nichols (2011). 

The next two subsections provide a technical description of the problem and a brief overview of 
the Bayesian method for solving the re-identification problem.  

4.1 NOTATION AND THE SEARCH SPACE 

Let U and D be two non-empty sets that denote the vehicles crossing the upstream WIM station 
and downstream WIM station, respectively.  Depending on various factors, including the station 
locations, WIM record validity (i.e., crossed sensors properly) and types of activity between the 
sensors, four general cases arise:  
 

sites)both  cross downstream

or  upstream in the  vehiclesallnot  (i.e.,0and, ,    iv)

sites)both  cross  vehiclesall (i.e.,    iii)

site) upstream cross also site downstream  thecrossing  vehiclesall (i.e., and     ii)

site) downstream cross also site upstream  thecrossing  vehiclesall (i.e.,  and       i)







DUDUUD

DU

DUUD

DUDU

 

 

Even though the fundamental re-identification problem is the same in all four cases, the search 
procedure in the third case is the simplest as all vehicles cross both sites.  In this case, for any 
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selected vehicle there is a match in the other set (i.e., there is a one-to-one mapping between the 
members of the two sets). One can apply not only statistical matching algorithms, but also 
assignment algorithms to assign all the members in one set to those in the other set while 
ensuring that each member is assigned only once. This is demonstrated in Cetin and Nichols 
(2009) and is shown to significantly improve the accuracy of matching vehicles.  

The last case above (iv) is somewhat more difficult than the others since one needs to consider 
the possibility that a vehicle taken from one set might not have a match in the other set. In the 
first three cases, there is always a match for each vehicle in the smaller set (or in either set for 
case iii). The methods developed in this research can be used for any one of these four cases as 
the methods for screening can be applied to screen out vehicles that do not cross both sites. 
Without loss of generality, the methods (of the first stage) will be described for case ii where for 
each vehicle in D a match will be identified in U, which has more samples than set D. Then, in 
the second stage, the screening methods will be applied to the results of the first stage to 
determine which matched vehicles will be kept and which ones should be eliminated. In Chapter 
6, the models are applied to datasets that fall into both case ii and case iv.  

Let XU and XD be two matrices with the same number of columns that denote the data collected 
at an upstream station and a downstream station, respectively. XU

i and XD
j denote rows of these 

two matrices that correspond to the measurements (e.g., axle weights) taken for vehicle i at the 
upstream station and for vehicle j at the downstream station. Further, assume that the timestamps 
indicating arrival times of vehicles at each station are given and denoted by tU

i for the upstream 
vehicles and tD

j for the downstream vehicles. Given XU, XD, tU
i and tD

j the vehicle matching 
problem involves determining XU

i and XD
j that are generated by the same vehicle. Let ij be a 

binary variable that equals 1 if XU
i and XD

j belong to the same vehicle and equal zero otherwise. 
The main objective of the matching algorithms is to estimate all ij’s with minimum error.  

As mentioned before, a two-stage approach is proposed in this research for the re-identification 
problem. In the first stage, for each vehicle in D a match is found in U. This is accomplished by a 
Bayesian method as explained below. In the second stage, a new method is proposed to screen 
out mismatched vehicles to improve accuracy. These two stages are explained in detail in the 
subsequent sections.  

For the first stage of re-identification, each vehicle in D needs to be matched to the most similar 
vehicle in U. Since timestamp information is available for each vehicle, a reasonable “search 
space” from the upstream vehicle records (U) can be identified based on travel times. Before the 
search starts to match a downstream vehicle j to an upstream vehicle i, a search space for vehicle 
j, denoted by Sj, is determined based on the timestamps at two stations (tU

i and tD
j) and some 

defined time window. The variability in travel time can be captured by specifying minimum and 
maximum values for travel times. The minimum value (minTime) can be easily predicted based 
on an assumed maximum travel speed and the distance between the two stations. The maximum 
value can exhibit a large variation depending on the individual vehicle speeds, travel distance, 
and traffic flow interruptions between the two stations, and any pick-up, delivery or rest stops the 
driver may make. The maximum value (maxTime) can be taken as a multiple of the minimum 
time if no data exists or can be based on observations. The search space for a downstream 
vehicle j is then determined as follows: 



 

14 
 

Sj = i ϵ U | tD
j – maxTime ≤  tU

i ≤  tD
j – minTime }   (1) 

 
Depending on the difference between maxTime and minTime or simply time window, the number 
of vehicles among which a match is to be found varies. Larger time windows will result in a 
larger number of vehicles in the search space, which can make the matching problem more 
difficult.  

4.2 THE BAYESIAN METHOD 

The Bayesian re-identification method relies on calculating the posterior probability of a match 
between two vehicles given two sets of data points collected for a vehicle pair (i,j) at the 
upstream and downstream stations. A vehicle j at the downstream station is matched to the 
upstream vehicle i that yields the largest probability of a match. The steps of the Bayesian 
method are formally explained below.  
 
For each vehicle j in D 
    Identify a search space (see equation 1), Sj   U 
       For each iSj 
           Calculate P(ij = 1|data) 
        m = argmax P(ij = 1|data)  
           i 
     Match vehicle j to m, i.e., ij =1 if i=m 
  
Once a search space is identified, P(ij = 1 | xij), the conditional probability that XU

i and XD
j 

belong to the same vehicle given data (i.e., xij = xU
i U xD

j), can be computed by the Bayes’ 
theorem as follows:  

P൫δ୧୨ ൌ 1หx୧୨൯ ൌ
൫୶ౠหஔౠୀଵ൯൫ஔౠୀଵ൯

൫୶ౠหஔౠୀଵ൯൫ஔౠୀଵ൯ା൫୶ౠหஔౠୀ൯൫ஔౠୀ൯
  (2) 

 
In order to calculate this posterior probability, both the two conditional probability density 
functions (i.e., f(xij|ij=1) and f(xij|ij=0)) and the prior probabilities (i.e., P(ij=0) and P(ij=1)) 
are needed. The functions f(xij|ij=1) and f(xij|ij=0) are the density functions that characterize the 
collected data at two stations when it belongs to the same vehicle and different vehicles, 
respectively. As demonstrated in Cetin, Nichols and Monsere (2011) and Monsere, Cetin and 
Nichols (2011), when vehicles match (i.e., upstream and downstream measurements belong to 
the same vehicle) there is high correlation between the measurements, which is critical for re-
identification to work effectively. On the other hand, when random data for upstream and 
downstream measurements are plotted the correlation disappears as expected and a roughly 
uniform distribution of points is observed. Since this amounts to an approximately uniform value 
for the density function, f(xij|ij=0) in equation (2) can be replaced by some arbitrary constant 
(). Furthermore, the travel-time information can be used to approximate the prior distribution 
P(ij=1), as opposed to assigning a fixed value to the prior. If the probability density function for 
the travel time is denoted by, f(tij), then the posterior probability in equation (2) can be simplified 
to: 

ܲ൫ߜ ൌ 1หݔ൯~
൫௫ೕหఋೕୀଵ൯൫௧ೕ൯

൫௫ೕหఋೕୀଵ൯൫௧ೕ൯ାఈ
  (3) 
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where  is a positive arbitrary constant accounting for f(xij|ij=0) and f(ij=0). Since in matching 
vehicles only relative magnitude of this posterior probability is important, the selected value of  
is not critical. In this research the simplified version (equation 3) is used and does not require the 
estimation of f(xij|ij=0), which is an advantage in terms of model calibration and development.  

In order to use equation 3, two probability distributions (i.e., f(xij|ij=1) and f(tij)) are needed to 
calculate the posterior probability. These probability density functions are found based on fitting 
finite mixture models to the training dataset as explained in Monsere, Cetin and Nichols (2011). 
Finite mixture modeling is a well-known semi-parametric technique for fitting a statistical 
distribution that is a weighted sum of multiple distributions. A mixture model is able to model 
quite complex distributions and can handle situations where a single parametric family cannot 
provide a satisfactory model (McLachlan and Peel, 2000). A sample mixture model is shown in 
Figure 4-3 for truck travel times between two stations.   

 

 

 

Figure 4-3 Travel time histogram for Link 234 and a probability density function (pdf) fit by mixture distributions  
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5.0 NEURAL NETWORKS FOR VEHICLE RE-
IDENTIFICATION  

In addition to the Bayesian method, the researchers also explored the applicability of neural 
networks in solving the vehicle re-identification problem. This section describes the steps taken 
to develop the neural network models.  

5.1.1 Neural Networks 

The neural network (NN) used for vehicle re-identification is a multilayer perceptron (MLP) as 
shown in Figure 5-1. In this figure, the left-most nodes represent the input layer, and the right-
most nodes represent the output layer. The nodes in between represent the hidden layers. The 
number of neurons within the hidden layer is a variable that needs to be determined 
experimentally. The outputs from the previous-layer neurons become the input to all the neurons 
in the next layer. The connections between the neurons have weights, and these weights are the 
basis by which the MLP is able to learn from the given training data. Learning is achieved by 
adjusting the value of the weights, and this is done using the back-propagation algorithm. As 
shown in Figure 5-1, the neural network gives out an output of 1 or 0. For the re-identification 
problem, an output of 1 indicates a match, and an output of 0 indicates no match. 
 
When a neural network receives an input pattern, the activation values of the neuron layers are 
propagated forward to the output neurons. The actual (known) output of the input pattern is 
compared with that of the output neuron, and an error value is computed. This error value is 
propagated backwards through the neural network to the hidden neurons to be used in weight 
adjustment. According to the universal approximation theorem, the back-propagation technique 
applied to a neural network of one hidden layer can approximate any function. The condition is 
that the neurons of the hidden layer must have nonlinear activation functions. In the majority of 
cases, the nonlinear function used is a sigmoid function.   
 
Table 5-1 Pairs of WIM sites and the total number of trucks observed in neural network case 

Training Data (10/1 – 10/ 15) Testing Data (Oct 16 - Oct 31) 

Station 
ID 

Distance 
(mi) 

Time window 
(min) 

Total Number of Trucks with 
AVI 

Total Number of Trucks with AVI 
 

Link 
ID Up Dn Min  Max Up Down Common Up Down Common 

Avg 
Search 

Size 

229 14 9 103 88 221 1,777 28,873 757 1,936 32,186 819 207 

231 17 18 125 107 268 4,001 2,715 1,286 4,459 3,119 1,551 44 

234 17 14 145 124 311 4,001 1,777 1,245 4,459 1,936 1,371 47 

237 19 12 90 77 192 3,613 1,923 874 4,188 2,004 868 25 

 
 
As mentioned previously, vehicular attributes consists of travel time, vehicle length, axle spacing 
and five axle weights. For the vehicle re-identification, data from two candidate vehicles - one 
from an upstream vehicle set and another from a downstream vehicle set - constitute an input 
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pattern. The differences in the respective attributes of the two candidate vehicles are used as the 
input into the neural network. Since the attributes have different units (i.e., feet for distance and 
pound for axle weights) and measurement devices have different calibrations, it is important to 
normalize all input data (i.e., the differences of the vehicle attributes) before being used for 
neural network training and testing. Therefore, the data was normalized following formula: 

 

where Attribute specifies the travel time, vehicle length, axle weights or spacing, i represents the 
row, and ധܺ

௧௧௨௧ represents the normalized input for the indicated attribute and row. µ and σ 
are the mean and standard deviation, respectively, of each attribute. The mean and standard 
deviation of each attribute were calculated using data from only matching vehicles in the training 
dataset. These mean and variance were then used to normalize the testing dataset.  
 
Table 5-1 provides a summary of the source data used for developing the neural network models. 
For each one of the four links analyzed, Table 5-1 gives the distance between the two sites, 
travel-time window, and total number of trucks observed in two time periods as indicated. The 
observations within the first 15 days of October 2007 are utilized for model training and the rest 
of the data for model testing. The minimum and maximum values of the time window are critical 
as they define the feasible time periods for the search of a matching vehicle. 
 
The Java programming language was used in this research. The neural networks used in this 
research were built using a Java-based library that provides a neural network framework called 
JOONE (Java Object Oriented Neural Engine). The relevant documentation can be found in 
(sourceforge.net, 2011).  
 

ധܺ

௧௧௨௧ ൌ ܺ

௧௧௨௧ െ ௧௧௨௧ߤ

௧௧௨௧ߪ
 

(4)
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Figure 5-1 Diagram of the multilayer perceptron used for re-identification 

 
Before discussing the experimental results, it is important to define the terms that are used to 
describe the output from the neural network. The vehicle re-identification problem can be 
categorized as a two-class problem. The neural network will identify vehicles that either match 
or do not match. Therefore, the output of the neural network can be something as simple as 1 and 
0: 1 indicating a match and 0 indicating no match. However, in most cases, the neural network 
does not produce outputs as integers but as continuous values like 0.9523247 or 0.001258745. 
The easiest and most logical thing to do is to round up the output values to the nearest integer. 
Output values greater than or equal to 0.5 will be rounded to 1 and output values less than 0.5 
will be rounded to 0. This threshold value of 0.5 will be used throughout the experiments to 
make a separation between Matching and No Matching vehicles.  
 
Another important issue is the meaning of the output of the neural network. There are four 
possible output scenarios for the two neural network outputs (i.e., 0 or 1): 

 Scenario 1: The system indicates a match when, in fact, it is a match. 
 Scenario 2: The system does not indicate a match but, in fact, it is a match.  
 Scenario 3: The system indicates a match but, in fact, there is no match. 
 Scenario 4: The system does not indicate a match when, in fact, there is no match.  

The terms used to describe the above four scenarios are borrowed from Signal Detection theory 
(Green and Swets, 1974). The terms Hit, Miss, False Alarm (FA) or Correct Rejection (CR) are 
used to describe Scenarios 1, 2, 3, and 4, respectively. These four terms will be used throughout 
the remainder of this section to describe the results of the neural networks.  
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While the output of the neural network model can be interpreted in four ways, Hits and FAs are 
of particular importance. In the ideal system, the number of Hits should be as high as possible 
while, at the same time, the number of FAs should be as low as possible. In the perfect scenario, 
the number of Hits should be the same as the number of matching vehicles and FA should be 
zero.  
 
5.1.2 Determining the Size of the Hidden Layer   

One of the biggest issues of using neural networks is the size of the hidden layer. Too few 
neurons in the hidden layer will result in poor performance, while too many neurons will result 
in over-learning and poor performance. It is therefore important to determine an “optimized” 
hidden-layer size to get the best result. This optimized hidden-layer size has to be determined 
experimentally. A manual search is first carried out by training NNs with various hidden-layer 
sizes for the training dataset of Link 234. Table 5-2 shows the results. For each hidden-layer size, 
10 different NNs are trained to account for the randomness in the results (the back-propagation 
algorithm starts with a random set of weights). The results shown in Table 5-2 are the aggregated 
statistics of 10 data points. The final results show that having 25 neurons is better than other 
options since with this solution the average difference between Hit and FA is relatively high and 
the standard deviations are low.   
 
 
Table 5-2 Summary of results as hidden-layer size is varied (Link 234 training data) 

Hidden 
Layer 
Size 

Hits False Alarm (FA) 
Avg (Hit-

FA) Avg Stdev Avg Stdev 

5 1054 22 299 21 755 

10 1119 29 301 59 818 

15 1110 27 259 42 851 

20 1109 17 276 42 833 

25 1101 18 248 24 853 

30 1095 24 256 24 839 

35 1109 18 265 35 844 

40 1102 16 262 25 840 

45 1105 27 265 50 840 

50 1104 27 254 25 850 

55 1109 23 254 26 855 

60 1105 29 259 45 846 
 
In addition to the manual method for searching the optimum hidden-layer size, simulated 
annealing (SA), a meta-heuristic optimization technique, is used to determine the best number of 
hidden-layer neurons. The details of the SA method developed for this problem can be found in 
Rashid (2011). The use of simulated annealing did not show any significant improvement in the 
accuracy of the neural network model. Therefore, the size of the hidden layer is kept at 25 
neurons. 
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5.2 COMPARISION OF MODEL ACCURACIES 

 
This subsection presents the results of both Bayesian and the neural network models when they are applied to the 
testing datasets. In order to solve the re-identification problem, a large number of comparisons need to be 
performed. For example, for link 229 there are 1,936 trucks in the upstream stations, for some of which (783) 
matching vehicles need to be identified from the downstream station dataset which contains 32,186 vehicles. Since 
on average there are 207 vehicles in the search space, 400,752 (1936*207) comparisons are expected to be made. 
The exact number of comparison is 392,751 since the size of the search space varies for each vehicle depending on 
its timestamp. This exact number is equal to the sum of Hit, Miss, FA and CR numbers listed  

Table 5-3 for Link 229.  
 
In  

Table 5-3, the columns labeled 1-5 represent five separate trials performed for each of the four links. Each trial is 
based on a corresponding neural network model that is trained on the training datasets. Therefore, to generate the 
results shown in  

Table 5-3, 20 (5*4) neural network models are created from the training datasets. The variation 
from one trial to another is due to the variation in the results of the back-propagation algorithm 
when applied each time to the same training dataset. The columns AVG and STDEV indicate the 
average and standard deviations of the results of five trials. The values in column “% Hit” are 
calculated by dividing the average Hits by the sum of Hits and Miss. 
 
Based on the results in  

Table 5-3, the performance of the neural network models varies from link to link; Link 231 
having the best while Link 229 the worst performance. This may be expected as the size of the 
search space is much larger for Link 229 than that of Link 231 (i.e., 207 versus 47). Even though 
Link 237 has the lowest search space (25) its performance is not highest since there are other 
factors that contribute to the accuracy of matching, like the calibration and precision of the WIM 
sensors (Cetin, Monsere, Nichols et al., 2011) 
 
The results in  

Table 5-3 are generated when all output values greater than or equal to 0.5 are declared as a 
matching instance and output values less than 0.5 as not a match, as explained before. This 
threshold value of 0.5 can be increased to match fewer vehicles, and thereby, the error rate can 
be improved. For example, rather than trying to match all vehicles, a small but accurately 
matched sample may be more relevant for the particular application (e.g., travel-time estimation 
or WIM-sensor calibration). In that case, the error can be measured more appropriately by the 
equation below:  
 

 
 
 

ܣܨ
ݐ݅ܪ  ܣܨ

ൈ 100 (5)
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Table 5-3 Summary of the results obtained from the neural network models for the four links 

Link 229   

Trials 1 2 3 4 5 AVG 
STD 
DEV 

% Hit 

Hit 532 521 488 498 541 516 22 66 

Miss 251 262 295 285 242 267 22   

FA 308 282 238 249 289 273 29   

CR 391660 391686 391730 391719 391679 391695 29   

Link 231   

Trials 1 2 3 4 5 AVG 
STD 
DEV 

% Hit 

Hit 1330 1321 1328 1317 1306 1320 10 86 

Miss 200 209 202 213 224 210 10   

FA 404 311 312 283 273 317 52   

CR 134187 134280 134279 134308 134318 134274 52   

Link 234   

Trials 1 2 3 4 5 AVG 
STD 
DEV 

% Hit 

Hit 1138 1129 1162 1099 1145 1135 23 83 

Miss 223 232 199 262 216 226 23   

FA 280 271 335 242 331 292 40   

CR 89506 89515 89451 89544 89455 89494 40   

Link 237   

Trials 1 2 3 4 5 AVG 
STD 
DEV 

% Hit 

Hit 678 648 623 605 639 639 27 74 

Miss 183 213 238 256 222 222 27   

FA 113 94 104 88 83 96 12   

CR 49552 49571 49561 49577 49582 49569 12   

 
 
  
The results of the Bayesian models and neural network models are compared to each other in 
terms of the error defined in equation 5. The threshold value is varied incrementally to generate 
results at different levels. These results are then plotted in Figure 5-2, which shows the error 
graphs of the Bayesian and the neural network models for Links 229, 231, 234 and 237. The 
vertical axis in each graph shows the error calculated by equation 5. The horizontal axis shows 
the total number of matched vehicles as a percentage of the common vehicles (or total actual 
matching vehicles) on that link, which is determined by,   
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The number of common trucks for each link is listed in Table 5-1. These are 819, 1551, 1371 and 
868 for Links 229, 231, 234 and 237, respectively.  
 
The four charts in Figure 5-2 show the results of the Bayesian model and those of the five neural 
networks for each link.  Overall, as fewer vehicles are being matched the error rate goes down. In 
the graphs for Link 229, when the system is matching 90% of vehicles, the error in the Bayesian 
model is around 25%. For the neural network models, the error at the same point is around 30%. 
This approximately 5% difference is generally maintained for nearly all percentage of matches 
for Link 229.   
 
In the chart for Link 231, when the system is matching 90% of vehicles, the error in the Bayesian 
model is around 6%. For the neural network models, the error at the 90% match rate is 
somewhere around 12%. At 100% level, the error for the Bayesian model is about 10%, and it is 
16% for the neural network models. In the figure for Link 234, when the system is matching 
90% of vehicles, the error in the Bayesian model is around 11%. For the neural network models 
the error is around 16%. Finally, for Link 237, three of the neural network models seem to be 
outperforming the Bayesian model by about 3-4%, especially for values above 60% on the 
horizontal axis.   
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Figure 5-2 Comparison between the Bayesian and NN models for all four links 

0%

10%

20%

30%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Matched Vehicles as a Percentage of Common Trucks for Link 229

0%

5%

10%

15%

20%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Matched Vehicles as a Percentage of Common Trucks for Link 231

0%

5%

10%

15%

20%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Matched Vehicles as a Percentage of Common Trucks for Link 234

0%

5%

10%

15%

20%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Matched Vehicles as a Percentage of Common Trucks for Link 237

Bayesian Model Neural Network 1 Neural Network 2

Neural Network 3 Neural Network 4 Neural Network 5

M
is

m
at

ch
ed

 V
eh

ic
le

s 
as

 a
 P

er
ce

n
ta

ge
 o

f 
T

ot
al

 V
eh

ic
le

s 
M

at
ch

ed
 



 

25 
 

5.3 SUMMARY 

To compare the performance of the Bayesian and neural network models in re-identifying 
vehicles, a large dataset from weigh-in-motion (WIM) stations in Oregon is utilized. The models 
are trained and tested on four different pairs of WIM sites (called links). For each one of these 
links, neural network models are developed and tested. Special attention is paid to ensure that the 
neural network design (e.g., number of neurons in the hidden layer) is optimal. The performance 
of neural network models is then compared to the Bayesian models. Overall, with the exception 
of one case, the Bayesian models are found to outperform the neural networks based on the 
datasets considered in this study.  
 
The results from this study will be helpful to researchers in developing algorithms for solving the 
vehicle re-identification problem. In terms of future research, it will be desirable to investigate 
whether the Bayesian models and/or neural network models are transferable between two links 
as opposed to estimating a model for each link separately. These models can also be tested on 
different datasets to further evaluate their performance.  
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6.0 INVESTIGATING THE KEY FACTORS AFFECTING THE 
ACCURACY OF RE-IDENTIFICATION  

In this section, the key factors that impact the accuracy of vehicle re-identification algorithms are 
investigated. The analyses are performed by employing the Bayesian re-identification algorithm 
to match vehicles that cross upstream and downstream pairs of weigh-in-motion (WIM) sites that 
are separated by long distances ranging from 70 to 214 miles. The data to support this research 
come from 17 fixed WIM sites in Oregon. Data from 14 different pairs of WIM sites are used to 
evaluate how matching accuracy is impacted by various factors including the distance between 
two sites, travel-time variability, truck volumes, and sensor accuracy or consistency of 
measurements. After running the vehicle re-identification algorithm for each one of these 14 
pairs of sites, the matching error rates are reported. The results from the testing datasets showed 
a large variation in terms of accuracy. It is found that sensor accuracy and volumes have the 
greatest impacts on matching accuracy, whereas the distance alone does not have a significant 
impact.     
 
6.1 WIM DATA  

Table 6-1 provides a summary of the source data used in this study. For each one of the 14 links 
analyzed, Table 6-1 gives the distance between the two sites, travel-time window, and total 
number of trucks observed in two time periods as indicated. The observations within the first 15 
days of October 2007 are utilized for model training and the rest of the data for model testing. 
The minimum and maximum values of the time window are critical as they define the feasible 
time periods for the search of a matching vehicle. The minimum time is found by dividing the 
distance by a 70 mph travel speed, whereas the maximum time is assumed to be 2.5 times the 
minimum time (approximately 28 mph). Even though not all trucks necessarily reach the 
downstream site within these time boundaries, these are deemed appropriate for the purpose of 
this research since most of the trucks travel within this time window. Table 6-1 also identifies the 
total number of trucks that had a transponder at the upstream station (Up), the downstream 
station (Down) and the number of trucks that were matched via transponder at both stations 
(Common). Finally, the last column in Table 6-1shows the average number of vehicles within the 
“search space” for each vehicle that is being matched in the testing dataset. These are the average 
number of vehicles among which a true match is identified. As the time window becomes larger 
or the vehicle volumes increase, the average search size increases which makes it more 
challenging to find the true match.  
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Table 6-1  Pairs of WIM sites and the total number of trucks observed  

    
Training Data (Oct 1 - Oct 

15) Testing Data (Oct 16 - Oct 31) 

Station 
ID 

Distance 
(mi) 

Time window 
(min) 

Total Number of Trucks with 
AVI Total Number of Trucks with AVI 

Link 
ID Up Dn Min  Max Up Down Common Up Down Common 

Avg 
Search 

Size 

201 1 2 126 108 271 11,762 12,874 8,549 11,294 5,353 2,968 87 

202 2 3 173 148 370 12,874 13,716 3,570 5,353 15,419 1,684 181 

205 3 10 79 68 169 13,716 32,645 2,284 15,419 35,873 2,546 191 

208 4 5 214 183 459 15,986 13,516 4,110 17,460 15,247 4,579 236 

210 5 6 96 82 206 13,516 7,388 5,594 15,247 8,836 6,900 94 

211 7 8 93 80 200 16,355 16,589 8,710 18,217 18,718 9,814 118 

214 8 9 165 141 354 16,589 28,873 8,126 18,718 32,186 9,518 309 

217 9 4 70 60 150 28,873 15,986 1,931 32,186 17,460 2,098 147 

223 11 13 90 77 193 2,068 3,951 1,151 2,152 4,559 1,179 28 

227 13 20 163 140 350 3,951 3,881 1,174 4,559 4,217 1,375 49 

229 14 9 103 88 221 1,777 28,873 757 1,936 32,186 819 207 

231 17 18 125 107 268 4,001 2,715 1,286 4,459 3,119 1,551 44 

234 17 14 145 124 311 4,001 1,777 1,245 4,459 1,936 1,371 47 

237 19 12 90 77 192 3,613 1,923 874 4,188 2,004 868 25 

 

6.2 APPLICATION OF THE BAYESIAN RE-IDENTIFICATION 
METHOD 

The Bayesian method described in Section 4 is applied to the datasets for the 14 links discussed 
above. The overall methodology followed to match vehicles on each link has two main steps: 
model training and model testing. For each link dataset, mixture models are estimated based on 
the training dataset. These mixture models, f(tij) and f(xij|ij=1), are then used as inputs in the 
testing phase on the new observations for the same link to re-identify vehicles. For screening out 
vehicles for which there is no match, a simple method (i.e., the naïve method described in Cetin, 
Nichols and Monsere (2011)) is employed to improve the accuracy. This is accomplished by not 
matching those vehicles for which the posterior probability in equation 3 (see Section 4) is less 
than a threshold which ranges from 0 to 1. The results are then analyzed by varying the threshold 
from 0 to 1for the screening method to evaluate how accuracy is changing. These are then used 
to obtain the final results which are shown as tradeoff graphs, as in Figure 6-1.  

In Figure 6-1, the horizontal axis shows the total number of vehicles being matched which is 
presented as a percentage of the common trucks on each link since the number of common trucks 
is different on each link. The total numbers of common trucks on each link are shown in Table 
6-1. This percentage on the x-axis can be larger than 100% since all vehicles observed at one site 
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are being matched to the vehicles in the other site (when no screening is applied), and the 
number of those vehicles is always larger than the common trucks. The vertical axis shows the 
mismatched vehicles as a percentage of the total vehicles being matched. As the screening 
threshold is increased from zero to one, the total number of vehicles being matched decreases. 
The vehicles being matched are those for which the posterior probability in equation 2 is greater 
than the screening threshold. As it can be observed in Figure 6-1, there is a wide range of 
accuracy levels. The factors that can potentially explain this variation in accuracy are 
investigated in the next section. 

6.3 EVALUATION OF FACTORS AFFECTING MATCHING 
ACCURACY 

In this section, the potential factors that can explain the large range of error levels observed in 
Figure 6-1 are explored. For example, for link 231 the error level is 90% (i.e., when the total 
number of vehicles matched is 90% of the common vehicles on that link) is about 6%, whereas 
for link 205 it is 57%. Potential factors that can explain this large variation are listed in the 
columns of Table 6-2. It was hypothesized that distance between station pairs (dist), the travel-
time variance (ttvar), sensor accuracy and the volume of trucks between each station-pair (link) 
would influence the accuracy of the matching algorithm. Variables characterizing these are 
summarized for each link in Table 6-2. The column heading is given with the variable name in 
(), followed by a description: 
 Travel-time variance (ttvar): Variance of the travel times of the common vehicles that 
cross both sites in the training dataset.  
 Set 1 (set_1): The total number of vehicles with transponders in the testing data from 
which a match is found for the vehicles in Set 2. Between the upstream and downstream sites, 
the site with the larger number of vehicles is represented as Set 1. Vehicles in Set 2 are being 
matched to the vehicles in Set 1.  
 Set 2 (set_2): The total number of vehicles with transponders in the testing data for which 
a match is found in Set 1. Between the upstream and downstream sites, the site with the fewer 
number of vehicles is represented as Set 2. 
 Common (common):  The total number of vehicles with transponders in the testing 
dataset that cross both upstream and downstream sites. 
 Average search size (search): The average number of vehicles considered in Set 1 for 
searching a match for each vehicle in Set 2. For a given vehicle, search size or search space is 
determined based on the time window as described previously. 
 Mean and Standard Deviation of the Axle 1-2 spacing (mu_sp1, sd_sp1): For the vehicles 
matched by transponder ID, the average difference in measured distances between axles 1 and 2 
at the upstream and downstream sites (normalized by the measured spacing at the upstream). If 
the WIM sites had identical calibration (not necessarily accurate) and vehicle speeds were 
constant over the sensors, the mean would be close to zero and the standard deviation would be 
low. A negative value indicates that the average spacing measured at the upstream site was less 
than the average spacing measured at the downstream site. 
 Mean and Standard Deviation of the Axle 1 weight (mu_ax1, sd_ax1): For the vehicles 
matched by transponder ID, the average difference in measured axle 1 weights at the upstream 
and downstream sites (normalized by the measured weight at the upstream). Deviations of the 
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mean and standard deviation from zero are due to differences in sensor calibration and pavement 
smoothness at the two WIM sites.    
  Percent of ODOT WIM Class 11 trucks (pct_11):  The percentage of Oregon DOT class 
11 trucks (FHWA class 9) among the common vehicles crossing both upstream and downstream 
sites.  Generally, this is the most common truck type on roads in the United States. 
 Error at 90% match (error): This is the dependent variable. This is the error shown on the 
y-axis of Figure 6-1 when x is 90% (i.e., when the total number of vehicles matched is 90% of 
the common vehicles on that link). Other values can also be selected to quantify the error but it 
will not impact the evaluation and results.  
 
 
 
Table 6-2 Summary of link parameters  

Link 
ID 

Dist. 
(mi) 

Travel 
time 

varian
ce 

Volume  Sensor accuracy  

Erro
r at 

90 % 
matc

h 

Total Number of Trucks with 
Tags (Testing Dataset) 

Difference in  
Axle 1-2 
Spacing 

% 
Clas
s 11 

Difference in 
Axle 1 Weight 

Set 1 Set 2 
Com
mon 

Avg 
Searc
h Size Mean  

St. 
Dev Mean   

St. 
Dev 

201 126 240 
11,29

4 
5,353 2,968 87 -5.1% 11.7% 76% -1.4% 11.3% 0.380 

202 173 584 
15,41

9 
5,353 1,684 181 9.5% 41.8% 72% 7.8% 39.5% 0.426 

205 79 126 
35,87

3 
15,419 2,546 191 -0.1% 13.0% 51% -15.0% 8.8% 0.571 

208 214 825 
17,46

0 
15,247 4,579 236 15.1% 8.8% 71% 0.6% 20.1% 0.525 

210 96 123 
15,24

7 
8,836 6,900 94 -9.2% 9.1% 73% -2.1% 17.1% 0.246 

211 93 156 
18,71

8 
18,217 9,814 118 2.9% 7.2% 85% -3.5% 22.2% 0.499 

214 165 713 
32,18

6 
18,718 9,518 309 -1.9% 8.6% 76% 14.2% 55.6% 0.492 

217 70 92 
32,18

6 
17,460 2,098 147 -5.9% 11.4% 62% 6.9% 14.0% 0.479 

223 90 129 4,559 2,152 1,179 28 1.1% 6.5% 39% -9.2% 8.5% 0.123 

227 163 536 4,559 4,217 1,375 49 2.9% 3.8% 92% 0.4% 9.0% 0.199 

229 103 214 
32,18

6 
1,936 819 207 -1.8% 5.0% 78% -4.6% 8.0% 0.251 

231 125 191 4,459 3,119 1,551 44 -6.1% 3.3% 86% 4.0% 6.6% 0.059 

234 145 315 4,459 1,936 1,371 47 -0.7% 5.3% 70% 1.1% 9.0% 0.106 

237 90 38 4,188 2,004 868 25 -7.0% 3.6% 33% 10.1% 8.5% 0.162 
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Figure 6-1 Percent error versus the total vehicles matched. 

 
There are limited samples (14 points) to explore the variation of link-level error which may limit 
the robustness of conclusions. Nonetheless, in an effort to quantitatively analyze the limited data, 
a multivariate regression model was fit (error at 90% being the dependent variable). To begin, a 
scatterplot matrix of all candidate variables was created for exploratory data analysis. Because of 
the information density of these plots, a sample with fewer candidate variables is shown in 
Figure 6-2 with a subset of the candidate variables. In the plot, each cell with data points is 
scatterplot of two variables. The x-axis for each plot in a common column can be read along the 
top of the matrix; the labels for each y-axis for each common row can be read to the right of the 
matrix.  The left-most plot in each row gives the variable name, a kernel density estimate, and a 
rug plot. In each plot pair, the dashed line is a simple linear regression model fit to the data in 
each cell. Scatterplots of all variables (not shown here) hinted at a strong correlation between the 
distance between stations (dist) and the travel-time variance (ttvar) and weaker correlations 
between the variables that measure the volume of trucks between station pairs (set_1, set_2, 
common, search). The correlation matrix of independent variables confirmed this observation 
(dist and ttvar correlation coefficient of 0.947). The exploratory plots also identified a possible 
outlier for the standard deviation of the axle 1-2 spacing error (sd_sp1) for link 202 (see 
rightmost data point in Column 5 plots in Figure 6-2).   
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Figure 6-2 Scatterplot matrix  

To fit the multivariate regression model, candidate variables were manually selected; the 
resulting model diagnostics (i.e., AIC, R2 and parameter estimates) were compared. In most 
model combinations, distance and ttvar were not significant. Search and sd_sp1 were significant, 
though sd_ax1 was not. All diagnostic plots confirmed the outlier for the observation sd_sp1 of 
link 202 (0.42). Though there is no reason to suspect that this data point is erroneous, it was 
shown to have high influence in the model diagnostic plots. The data point was removed and the 
regression model for search and sd_sp1 recalibrated. Finally, recognizing that the intercept 
estimate was not significant (and that when search space is 0, error should be zero) the intercept 
was removed. The final selected model for search and sd_sp1, with the outlier removed, is given 
below:    
 

       Coefficients: 
        Estimate Std. Error t value Pr(>|t|)     
search 0.0009897  0.0003097   3.195 0.008525 **  
sd_sp1 2.6648429  0.5706331   4.670 0.000683 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05  
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Residual standard error: 0.08609 on 11 degrees of freedom 
Multiple R-squared: 0.9516,     Adjusted R-squared: 0.9428  
F-statistic: 108.2 on 2 and 11 DF,  p-value: 5.82e-08 

 
The adjusted R2 is 0.94; the coefficients for the two variables are significant at the p=0.05 level. 
The results of the model quantitatively confirm the observations in the scatterplot. Reading the 
first row of independent variables plotted against error in Figure 6-2, both search and sd_sp1 
show strong linear relationships. It should be noted that removing the sd_sp1 outlier does little to 
change the conclusions of the model (sign and relative magnitude of coefficients remain the 
same), though it does improve the overall fit.  
 
The analysis hints that the error rate of the matching algorithm increases both with search size 
and decreased consistency of sensor measurements between sites (i.e., high standard deviation). 
The average search size is a function of both the distance (time window) and the volume of 
trucks between station pairs. More distance between stations and more vehicles in the search 
window increases the likelihood that the algorithm will incorrectly match vehicles. For sensor 
accuracy, the axle-spacing metric explained more of the error difference than the weight-
accuracy metric (explained in the next paragraph). While the weight-sensors errors have much 
larger variance (see Figure 6-3), they are very similar for each link and are not able to explain 
much of the link-to-link error differences. The spacing-sensor error, however, is much more 
varied on a link basis.  
 

 
Figure 6-3 Kernel density estimates of normalized errors of the transponder-matched vehicles in training data set, 
axle 1-2 spacing and axle 1 weight 

 
6.4 SENSOR ACCURACY  

Some of the reasons for the upstream and downstream observations to not be the same for given 
vehicles include sensor calibration drift, failing sensors, vehicles not crossing the sensors 
properly, and the AVI tag not being properly matched to the WIM/AVC record. Vehicles not 
crossing the sensors properly, AVI tag mismatching, and some sensor failures are random events 
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and would show up as outliers in the density plot. Sensor calibration problems and some sensor 
failures would be consistent across all observations, causing a shift in the density plot rather than 
outliers. More information on WIM-sensor errors can be found in the literature (Nichols, Bullock 
and Schneider, 2009) 
 
In Figure 6-3, kernel density plots of the normalized errors of transponder-matched vehicles from 
the training data are shown. In the regression model, only the point estimates of the mean and 
standard deviation of these plots are used to explain link error. The means of the weight and 
spacing plots are most likely an indicator of the difference in sensor calibration parameters.  For 
example, on link 205, the mean difference in weight is -15%, which indicates that the upstream 
sensors are measuring weights that are 15% lighter than the downstream sensors on that link.  
Assuming the calibration remains constant at a site, the difference in calibration precision (i.e., 
closeness to the correct value) between sites should not affect the error rate of the matching 
algorithm. This is qualitatively supported by the plots showing error vs. mu_sp1 (row 1 column 
4 in Figure 6-2) and error vs. mu_ax1 (row 1 column 7 in Figure 6-2), where there is no linear 
relationship apparent. This is expected since the mixture model parameters that are estimated for 
a given pair of WIM sites can account for the observed differences in the measured parameters 
for matched vehicles. 
 
The cause of increased standard deviations of the weight and spacing plots are more difficult to 
explain. The axle-spacing measurement reported at a WIM site is a function of the speed of the 
vehicle. If the speed of an individual vehicle is not constant as it crosses the sensor, the axle-
spacing data for that vehicle will not be accurate. Therefore, locations with congested traffic 
conditions would likely report inaccurate axle-spacing data during congested periods. Another 
reason for increased standard deviations in the axle spacing could be failing axle-sensor 
detectors. Sometimes when a sensor fails, it will miss light-weight axles, causing axle-spacing 
data and classification data to be erroneous. Under ideal conditions, the standard deviation for 
this measurement should be very low, similar to link 231. The large variations illustrated by link 
202, 205, 208, and others are unexpected and warrant further investigation.   
 
Large standard deviations in the axle-weight error are most likely attributed to the pavement 
profile at the WIM sites, different sensor types, poor calibration or a failing sensor. If the 
pavement approaching the weight sensors is not smooth, the vehicle dynamics will increase and 
cause more variations on the measured weights compared to smooth pavement. However, the 
variations due to the pavement profile will vary from vehicle to vehicle, depending on the 
suspension type, axle spacing, vehicle speed, and other parameters that are not consistent.    
 
An increase in standard deviation of the measurement error of the axle spacing or the axle weight 
between two sites is expected to increase the matching error rate. Consider a five-axle FHWA 
class 9 vehicle that crosses two WIM sites that have different calibration precision, but are 
consistent and repeatable in their measurements. Calibration factors for axle spacing, in general, 
are linear corrections. Therefore, the axle-spacing data are going to differ, but the difference 
should be constant by a percentage that is related to the difference in calibration factors, which is 
the mean that is estimated here. Calibration factors for axle weight can be linear or non-linear, 
depending on the type of sensor and its susceptibility to temperature variation.  If the sensor 
measurements are not consistent and repeatable, those differences are not going to be consistent 
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from vehicle to vehicle and result in high standard deviations. The matching algorithm is not 
capable of overcoming this deficiency in system performance. The sensors at the two WIM sites 
do not necessarily need to be correctly calibrated for successful re-identification, but the sensors 
need to perform consistent and repeatable measurements.   
 
6.5 SUMMARY 

The key factors that impact the accuracy in re-identifying vehicles are analyzed. Data from 17 
WIM stations in Oregon is used to create 14 pairs of sites (called links). For each one of these 14 
links, the Bayesian re-identification models are estimated and tested. The results from the testing 
dataset showed a large variation in terms of accuracy. Some links, such as links 234 and 231, 
have very low error rate, whereas others, such as links 205 and 208, have very large errors. 
Several explanatory variables, including distance between the sites, travel-time variability, truck 
volumes, and sensor accuracy or consistency of measurements, are analyzed to explain the 
variation in matching accuracy. It is found that the consistency of sensors measuring axle 
spacing and the number of vehicles in the search window have the greatest impact on matching 
accuracy. Error increases with search size and with decreased sensor consistency/repeatability. 
The distance alone between the two sites is not found to be a significant factor. These results 
imply that matching vehicles over long distances is feasible provided that sensors at two sites are 
accurate and provide consistent measurements and the volumes are not very high.  
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7.0 CONCLUSIONS  

This project examined the use of vehicle attribute data that are typically obtained from WIM and 
AVC sensors for anonymously re-identifying commercial vehicles so that their movements can 
be tracked. Tracking the movement of individual vehicles between different data collections sites 
provides valuable information for the estimation of travel times, travel delays and origin-
destination (OD) flows. Even though the data from transponder-equipped trucks can also be used 
for the estimation of travel times and OD flows, these trucks represent less than half of all trucks 
or a small fraction, depending on the selected sites. For example, in Oregon, on average, the rate 
of transponder-equipped trucks is about 40%. In addition, vehicle re-identification based on 
vehicle-attribute data does not raise any privacy concerns as is the case with other types of 
vehicle-tracking technologies (AVI, license plate recognition, etc.).  

The authors developed both Bayesian and neural network models to solve the vehicle re-
identification problem. To compare the performance of the Bayesian and neural network models 
in re-identifying vehicles, a large dataset from WIM stations in Oregon is utilized. The models 
are trained and tested on four different pairs of WIM sites (called links). For each one of these 
links, neural network models are developed and tested. Special attention is paid to ensure that the 
neural network design (e.g., number of neurons in the hidden layer) is optimal. The performance 
of neural network models is then compared to the Bayesian models. Overall, with the exception 
of one case, the Bayesian models are found to outperform the neural networks based on the 
datasets considered in this study.  
 
The authors also investigated the factors that impact the accuracy of the re-identification 
algorithms. Data from 17 WIM stations in Oregon is used to create 14 pairs of sites (called 
links). For each one of these 14 links, the Bayesian re-identification models are estimated and 
tested. The results from the testing dataset showed a large variation in terms of accuracy. Some 
links, such as links 234 and 231, have very low error rate, whereas others, such as links 205 and 
208, have very large errors. Several explanatory variables, including distance between the sites, 
travel-time variability, truck volumes, and sensor accuracy or consistency of measurements, are 
analyzed to explain the variation in matching accuracy. It is found that the consistency of sensors 
measuring axle spacing and the number of vehicles in the search window have the greatest 
impact on matching accuracy. Error increases with search size and with decreased sensor 
consistency/repeatability. The distance alone between the two sites is not found to be a 
significant factor. These results imply that matching vehicles over long distances is feasible 
provided that sensors at two sites are accurate and provide consistent measurements and the 
volumes are not very high.  
 
Overall, for travel-time estimation purposes, the methods presented in this report can be used 
effectively to match commercial vehicles crossing two data collection sites that are separated by 
long distances. 
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