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Sagebrush steppe, a major vegetation type
occupying approximately 45 × 106 ha in the
western United States, has undergone long-
term changes in species composition due to
overgrazing and introduction of exotic plants
(West 1983). Increasing atmospheric CO2 may
also cause long-term changes in species com-
position and productivity of rangelands (Mooney
et al. 1991, Polley 1997, Campbell et al. 2000,
Smith et al. 2000, Morgan et al. 2001).

Only a few studies to date have quantified
how elevated CO2 affects the growth and phys-
iology of grasses and shrubs common to semi-
arid systems. In one study CO2 enrichment
increased leaf weights of 3 grasses; water-use
efficiency was higher at elevated CO2 due to
reduced stomatal conductance and higher net
photosynthesis (Smith et al. 1987). Elevated
CO2 increased shoot biomass of Artemisia tri-
dentata (Nutt.), but effects on leaf area and
root:shoot ratios were inconclusive ( Johnson
and Lincoln 1990, 1991). In another study ele-
vated CO2 increased root but not shoot bio-
mass of Artemisia tridentata (Klironomos et al.

1996). In the field elevated CO2 increased net
photosynthesis (Morgan et al. 1994) and growth
(Morgan et al. 2001) in plants native to the
short-grass steppe. Elevated CO2 increased
shoot production by 50% in a desert shrub com-
munity in a high-rainfall year (Smith et al. 2000).

Predicting how elevated CO2 will affect the
sagebrush steppe may be complicated by the
2°–5°C global increase in air and soil tempera-
ture expected by 2300 (IPCC 2001). In one
study in California annual grassland, the effect
of CO2 on growth was higher in ambient than
elevated temperature plots (Shaw et al. 2002),
whereas in the short-grass steppe the CO2 re-
sponse was higher at elevated temperatures
(Coughenour and Chen 1997). Most studies of
global warming test the simultaneous effects
of increased soil and air temperature, but few
have independently tested the effects of ele-
vated soil temperature and CO2 on plant
growth. In tomato (Lycopersicon esculentum
Mill.), there were interactive effects of CO2
and root temperature on root but not shoot
biomass (Yelle et al. 1987). No interactive effects
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were found in root or shoot growth of tussock
sedge (Eriophorum vaginatum L.; BassiriRad
et al. 1996).

The effects of soil temperature on growth
may differ between grasses and shrubs. Soil
temperature may alter growth and competi-
tion by favoring the shoot growth of grasses,
since their apical meristems are located at the
soil surface (Engels 1994). Although the effects
of soil temperature on plant growth may depend
on growth form, the effects of elevated CO2
are also dependent on growth rates, with higher
growth stimulation in fast- than slow-growing
species (Poorter 1993). This could be particu-
larly detrimental to degraded rangelands if
fast-growing invasive species such as cheat-
grass are stimulated by elevated CO2 (Smith
et al. 1987, 2000).

The objective of this study was to determine
how atmospheric CO2 concentration and soil
temperature affect the growth and physiology
of 3 species native to the sagebrush steppe. To
isolate the effects of soil warming, we exposed
seedlings to different soil temperature treat-
ments while keeping the air temperature con-
stant. We hypothesized that (1) elevated CO2
and elevated soil temperature would increase
root, shoot, and total biomass, (2) low soil tem-
peratures would limit growth responses to
CO2, and (3) elevated CO2 would increase
water-use efficiency of all 3 species. We also
hypothesized that the fast-growing grass, bottle-
brush squirreltail [Elymus elymoides (Raf.)
Swezey], would be the most responsive to
CO2; Thurber needlegrass (Stipa thurberiana
Piper), a slow-growing grass, would be inter-
mediate in its response; and the slow-growing
shrub, Wyoming big sagebrush (Artemisia tri-
dentata ssp. wyomingensis Beetle), would be
the least responsive. We also expected soil tem-
peratures to have a greater effect on grasses
than shrubs.

METHODS

Seed Collection and 
Propagation

Seeds from Wyoming big sagebrush, bottle-
brush squirreltail, and Thurber needlegrass
were collected from the Northern Great Basin
Experimental Range (199°43′W, 43°29′N) in
Harney County, Oregon, in November 1993.
In March 1994 we initially planted seeds in
flats. Soil medium was a 3:1 mixture of steril-

ized coarse river sand and soil obtained from
the experimental range (coarse to fine sandy
loam Holte-Milican complex; Lentz and Simon-
son 1986). Flats were placed in continuously
stirred tank reactors (CSTR) with a 16-hour
photoperiod and constant day (24°C) and night
(15°C) temperatures. In April we transplanted
2 seedlings of each species into pots (10 × 10 ×
25 cm) containing the soil mixture. The pots
were thinned to 1 seedling. After soil analysis
in April revealed that percentage nitrogen in
pots was lower than N at the Northern Great
Basin Experimental Range, we subsequently
fertilized the plants each week with 57 mM
nitrogen, 10 mM phosphorus, and 17 mM
potassium.

Experimental Design

This experiment was a split-plot design in
which the CSTR was designated as the whole
plot. At the whole-plot level, 6 CSTR cham-
bers were randomly allocated to ambient (374
ppm) and 6 chambers to high CO2 (567 ppm)
treatment. These conditions reflected the local
concentration of atmospheric CO2 and the
predicted CO2 concentration in the year 2050
(IPCC 2001). Within each CO2 treatment, 3
chambers were randomly assigned high (18°C)
and 3 were assigned low (13°C) soil tempera-
tures. The low soil temperature treatment re-
flects average soil temperature in March at a
sagebrush site in south central Washington
(Black and Mack 1986), while the high soil
treatment represents a 5°C increase in tem-
perature predicted by 2300 (IPCC 2001). This
design allowed for 3 replicates of each CO2
and soil temperature treatment combination.
At the subplot level, each chamber contained
36 pots (12 pots per species per chamber).

Treatment Conditions

During the experiment, the 12 CSTR cham-
bers were maintained at a relative humidity of
48% (Humicap, HMD 20, Vaisala Sensor Sys-
tems, Woburn, MA) using a steam generator
(EHU-500, Armstrong Machine Works, Three
Rivers, MI). Chambers were illuminated by
1000-W metal halide lamps that subjected seed-
lings to photon flux of 600 µmol m–2 s–1 (SB-
190 Quantum Sensors, LI-COR, Inc., Lincoln,
NE) and a 16/8 hour light/dark period. Air tem-
peratures were maintained at 15°C during the
dark period and at 24°C during the light period.
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Soil temperature was regulated indepen-
dently of air temperature by using a root
chiller located at the base of each chamber. In
addition, a foam septum within each chamber
limited the mixing of air between the roots
and shoots. Soil temperature was measured
hourly at a depth of 10 cm. Chambers allo-
cated to the low soil temperature treatment
were maintained at 13 ± 1°C (sx–), while the
high temperature chambers had an average
root temperature of 18 ± 2°C.

Low CO2 chambers were maintained at CO2
concentrations of 374 ± 24 ppm, while high
CO2 chambers averaged 567 ± 5 ppm. To en-
sure adequate water supply for each species,
we watered seedlings every other day to field
capacity. Two pots of each species were ran-
domly selected and watered until water was
observed at the base. The volume of water
added to each pot was averaged between the 2
plants, and the average volume of water was
added to all plants of that species.

Gas Exchange Analysis

To compare physiological responses with
CO2 and soil temperature between species,
gas exchange measurements were taken before
harvest. Photosynthesis, transpiration, and
water-use efficiency were measured using a
LI-COR 6200 Portable Photosynthesis System
(LI-COR, Inc., Lincoln, NE) on the most re-
cently emerged, fully expanded leaf of 9 ran-
domly selected plants from each treatment.
Measurements were taken 3 times daily on 20,
26, and 30 June. A small window in the cham-
ber door allowed for gas exchange measure-
ments within the CSTR.

Growth Analysis

Plants were harvested in July, approximately
127 days after planting. Squirreltail and needle-
grass were separated into shoots and roots,
and sagebrush was separated into stems, leaves,
and roots. We then oven-dried this material at
60°C for 72 hours. Root:shoot (R:S) ratios
were calculated for each plant, and leaf area
was measured on a random sample of the pop-
ulation (9 plants per species per treatment)
using a LI-3000 Portable Area Meter (LI-COR,
Inc., Lincoln, NE).

Statistical Analysis

To determine the effects of CO2 and soil
temperature on total plant weight, shoot weight,

root weight, and leaf area, we analyzed data
using the generalized linear models (GLM)
procedure in SAS with error terms dictated by
the split plot design. When species interac-
tions were significant at the P < 0.05 level, we
analyzed the effects of CO2 and temperature
separately by species. Gas exchange measure-
ments were averaged over the 3 days (24, 26,
and 30 June) and analyzed using GLM.

RESULTS

Effects of Elevated CO2

Total biomass of both grasses, squirreltail and
needlegrass, was higher at elevated CO2, where-
as biomass was similar between CO2 treat-
ments for the slow-growing shrub, sagebrush
(Fig. 1). Since squirreltail has a higher growth
rate than needlegrass, we expected CO2 enrich-
ment would stimulate the growth of squirrel-
tail more than needlegrass. Contrary to our
hypothesis, elevated CO2 had similar effects
on squirreltail and needlegrass; CO2 enrich-
ment increased their total growth by 14% and
11%, respectively.

Elevated CO2 significantly increased root
growth of needlegrass but not squirreltail or
sagebrush (Fig. 1). Elevated CO2 did not sig-
nificantly affect shoot growth. Needlegrass
was the only species in which CO2 signifi-
cantly affected R:S ratios. At ambient CO2,
R:S ratios averaged 0.39 but were 0.55 at ele-
vated CO2. Carbon dioxide concentrations had
no impact on leaf area or leaf thickness (data
not shown).

As expected, leaf water-use efficiency was
significantly higher at elevated CO2 in all spe-
cies (Fig. 2). This increased efficiency resulted
from higher photosynthetic rates and lower
transpiration rates in response to high CO2,
although these effects taken separately were
not statistically significant.

Effects of Soil 
Temperature

Higher soil temperature significantly in-
creased the root and total plant weights of
squirreltail and needlegrass and the shoot
weights of needlegrass (Fig. 3). Surprisingly,
soil temperature stimulated total growth of
slow-growing needlegrass by 48% while increas-
ing growth of slow-growing squirreltail by
only 18%. Sagebrush was not significantly
affected by soil temperature. Soil temperature
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had no effect on photosynthesis, transpiration
rates, or water-use efficiency (data not shown)
and did not significantly modify the response
to CO2 in any of the species. However, trends
indicate that growth stimulation of roots and
shoots may be higher at low soil temperatures.

DISCUSSION

The effects of elevated CO2 on growth are
often dependent on potential growth rates, with
higher stimulatory effects of CO2 in fast- than
slow-growing species (Poorter 1993). As pre-
dicted, elevated CO2 increased biomass of
squirreltail and needlegrass more than that of
sagebrush. Unexpectedly, the growth of fast-

growing squirreltail at elevated CO2 was sta-
tistically indistinguishable from that of slow-
growing needlegrass. Since CO2 stimulated
the growth of grasses more than shrubs, in-
creased CO2 may lead to changes in seedling
competition between these 2 growth forms.

Higher overall biomass of squirreltail and
needlegrass at elevated CO2 was primarily due
to root growth, although CO2 increased root
biomass significantly only in needlegrass. Sage-
brush root biomass was similar between CO2
treatments, which agrees with a previous study
(Johnson and Lincoln 1991). These results,
however, disagree with another study that found
sagebrush root biomass was higher at elevated
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Fig. 1. Mean total plant, shoot, and root weights of squir-
reltail, needlegrass, and sagebrush exposed to ambient (370
ppm) or high (570 ppm) CO2. Error bars indicate standard
errors. N = 69–72 plants.

Fig. 2. Mean water-use efficiency, photosynthetic rate,
and transpiration rate of squirreltail, needlegrass, and sage-
brush exposed to ambient (370 ppm) or high (570 ppm)
CO2. Error bars indicate standard errors. N = 6 plants.



CO2 (Klironomos et al. 1996). Elevated CO2
affected R:S ratios of needlegrass but not
squirreltail or sagebrush. Among rangeland
species, there is no consistent pattern of car-
bon allocation in response to elevated CO2
since some species increase (Smith et al. 1987,
Larigauderie et al. 1988), decrease ( Johnson
and Lincoln 1991), or have no change (John-
son and Lincoln 1990) in their R:S ratios.

Although previous studies indicate that
CO2 stimulates shoot growth by 10%–150% in
species native to the sagebrush steppe (Smith
et al. 1987, Johnson and Lincoln 1990), we
found no significant effects of CO2 on shoot
biomass or leaf area. In particular, we expected

shoot weights of sagebrush to increase with
elevated CO2 as found in a previous study
with Artemisia tridentata ssp. tridentata (John-
son and Lincoln 1990) grown at 650 µL L–1 for
3 months. Artemisia tridentata ssp. wyoming-
ensis, used in this study, has slower growth
rates (Bonham et al. 1991) and therefore may
be less responsive to CO2 than Artemisia tri-
dentata ssp. tridentata. Although not signifi-
cant, photosynthesis was higher at elevated
CO2 as previously found in many studies with
range plants (e.g., Larigauderie et al. 1988).

We found that elevated CO2 increased water-
use efficiency of all 3 species, confirming pre-
vious studies with crop and rangeland plants
(Kimball and Idso 1983, Dahlman et al. 1985,
Larigauderie et al. 1988, Jackson et al. 1994).
Needlegrass exhibited a 40% greater increase
in water-use efficiency than sagebrush or squir-
reltail at elevated CO2. Since water is often
limiting in rangelands, small increases in water-
use efficiency of seedlings may cause relatively
large changes in seedling survival and compe-
tition between species. Therefore, alterations
in water-use efficiency in response to CO2 en-
richment may cause relatively large changes
in the structure of rangelands (Polley 1997).

Soil temperature plays an important role in
determining community composition of the
sagebrush steppe (West 1983) and tallgrass
prairie (DeLucia et al. 1992). High soil tem-
perature increases growth rates (Benzioni and
Dunstone 1988) and photosynthetic (Bassiri-
Rad et al. 1993) rates of rangeland plants. As
predicted, soil temperature increased total
growth of both grasses, needlegrass and squir-
reltail. Sagebrush had consistent total and root
growth across soil temperature treatments,
confirming germination trials that indicate its
ability to tolerate a broad range of soil temper-
atures ranging from 10° to 30°C (McDonough
and Harniss 1974).

We expected high soil temperatures to affect
shoot growth of both grasses (Larigauderie et
al. 1991, Engels 1994), but soil warming signif-
icantly increased shoot biomass only of needle-
grass. Although higher soil temperatures have
been reported to increase net photosynthesis
(Duke et al. 1979, Day and Heckathorn 1991,
Vapaavuori et al. 1992) and decrease transpira-
tion rates (Benzioni and Dunstone 1988), we
found no significant changes in physiology in
response to soil temperature. This could be due
to the small sample size in our study or the
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Fig. 3. Mean total plant, shoot, and root weights of squir-
reltail, needlegrass, and sagebrush exposed to low (13°C) or
high (18°C) soil temperature. Error bars indicate standard
errors. N = 69–72 plants.



small difference (5°C) between soil tempera-
ture treatments.

These results suggest that elevated CO2
will stimulate the growth of squirreltail and
needlegrass seedlings more than sagebrush,
under conditions where water and nutrients
are not limiting. Since soil temperatures did
not affect growth responses to CO2, diurnal
and seasonal changes in nutrient and water
availability may play a more important role in
regulating responses to CO2. Since the plants
in this study were harvested after 4 months to
prevent root restriction in the pots, additional
studies are needed to assess how elevated
CO2 will affect mature individuals in the field.

CONCLUSIONS

This study suggests that elevated CO2 and
soil temperature have the potential to alter
growth and carbon partitioning of seedlings in
the sagebrush steppe. In addition, elevated
CO2 and soil warming may affect grasses more
than shrubs. These controlled environment
studies should pave the way for field studies
in the sagebrush steppe to determine whether
differences in carbon allocation, resulting from
changes in CO2 and soil temperature, are ex-
hibited in the field. Alterations in growth and
carbon allocation in response to elevated CO2
may potentially alter the competitive relation-
ships between species and influence succes-
sional processes in the sagebrush steppe.
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