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Glaciers in equilibrium, McMurdo Dry Valleys, Antarctica

ANDREW G. FOUNTAIN,1 HASSAN J. BASAGIC IV,1 SPENCER NIEBUHR2

1Department of Geology, Portland State University, Portland, OR 97201, USA
2Polar Geospatial Center, University of Minnesota, St. Paul, MN 55108, USA

Correspondence: Andrew G. Fountain <andrew@pdx.edu>

ABSTRACT. The McMurdo Dry Valleys are a cold, dry polar desert and the alpine glaciers therein exhibit
small annual and seasonal mass balances, often <±0.06 m w.e. Typically, winter is the accumulation
season, but significant snow storms can occur any time of year occasionally making summer the accu-
mulation season. The yearly equilibrium line altitude is poorly correlated with mass balance because
the elevation gradient of mass balance on each glacier can change dramatically from year to year.
Most likely, winds redistribute the light snowfall disrupting the normal gradient of increasing mass
balance with elevation. Reconstructed cumulative mass balance shows that the glaciers have lost <2 m
w.e. over the past half century and area changes show minimal retreat. In most cases these changes
are less than the uncertainty and the glaciers are considered in equilibrium. Since 2000, however, the
glaciers have lost mass despite relatively stable summer air temperatures suggesting a different
mechanism in play. Whether this trend is a harbinger of future changes or a temporary excursion is
unclear.

KEYWORDS: Antarctica, glaciers, mass balance

1. INTRODUCTION
The glaciers of Taylor Valley, McMurdo Dry Valleys (MDV),
have been shown to be in equilibrium with the current
climate over the period, 1993–2001 (Fountain and others,
2006). This finding is unusual in the global assessment of
glacier stability because the majority of glaciers during that
time period were not only receding, as they have over
much of the past century, but their retreat was accelerating
(Kaser and others, 2006; Lemke and others, 2007). The differ-
ing behavior is due to the below freezing summer air tem-
peratures in the MDV and the cooling trend in the decade
of the 1990s (Doran and others, 2002b; Thompson and
Solomon, 2002). In this report we update the measured
mass-balance record to 2013 and reconstruct the time
series back to 1965 to evaluate whether changes we
observe in recent decades differ from previous decades.
This is important for distinguishing temporary variations
from long-term trends and how the climate, as expressed
by glacier variations, may be changing. Finally, because so
few programs have monitored the mass balance of polar gla-
ciers, we examine whether some of the basic concepts for
evaluating the balance of temperate glaciers apply to polar
glaciers.

The MDV are the largest ice-free expanse in Antarctica,
∼4500 km2 (Levy, 2012) (Fig. 1). The Trans Antarctic
Range blocks the flow of the East Antarctic ice sheet into
the valleys and the precipitation shadow cast by the range
reduces snowfall, minimizing local glacier growth
(Fountain and others, 2010). The landscape is characterized
by broad expanses of a sandy gravel matrix with frequent
exposures of bedrock, particularly along the valley walls.
Alpine glaciers descend from the local mountain ranges,
the largest of which reach the valley floor. A few outlet gla-
ciers of the East Antarctic ice sheet make their way into the
valleys terminating in the western margins. Average annual
air temperatures vary between −15 and −30 °C across the
valleys and summer temperatures commonly hover a few

degrees below freezing. Meltwater from the glaciers feed
ephemeral streams, which flow for ∼6–10 weeks a year
(McKnight and others, 1999) before discharging into
enclosed perennially ice-covered lakes. Little snow falls in
the valley bottom; the largest values are found at the coast,
typically >0.05 m w.e. a−1, with smaller values away from
the coast (Fountain and others, 2010). Most of the snow
accumulation sublimates before melting (Chinn, 1993;
Eveland and others, 2012). Consequently, glacial melt is
the most important source of water to the streams and lakes
in the valleys. The glaciers act as frozen reservoirs of water,
liberated when energy is available, feeding the streams,
lakes and supporting the microbial life that inhabits all land-
scape elements (Fountain and others, 1999; Gooseff and
others, 2011). Therefore, knowing the current stability of
these glaciers is also important for understanding the hydro-
logical functioning of this polar landscape and the microbial
ecosystem that it supports.

The alpine glaciers of the MDV are polar glaciers frozen to
the bed, consequently all meltwater is from surface melt (Bull
and Carnein, 1970; Cuffey and others, 2000; Fountain and
others, 2006). The accumulation zone is blanketed with
dry snow and firn with thin ice layers from brief episodic
melt events. The ablation zone is typically snow-free year-
round because episodic snow accumulations are often
swept away by winter winds. The glaciers terminate in tall
(∼20 m) cliffs, typical of polar glaciers at high latitudes or ele-
vations (Bull and Carnein, 1970; Mölg and others, 2008).
Larger glaciers reach the valley floor forming a fan-like
lobe that accommodates much of the ablation zone.

Mass balance is controlled by snow accumulation and ab-
lation like glaciers elsewhere. Unlike glaciers in temperate
regions, however, the mass balance regime is not entirely
defined by season (Chinn, 1981; Fountain and others,
2006). Snow accumulates any time of year and, from time
to time, summer is the accumulation season and winter
is the ablation season. Ablation occurs continually as
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sublimation, accounting for all ablation in winter and often
>50% in summer (Lewis and others, 1998; Hoffman and
others, 2008, 2016). During the summer, snow typically sub-
limates instead of melting because the below-freezing air
temperatures and windy environment keep the surface cool
and solar heating is minimized by snow’s high albedo
(Fountain and others, 2010). Ice too does not readily melt
and the icy ablation zones are commonly dry to the touch.
Surprisingly, most melt seems to occur in the subsurface
due to a solid-state greenhouse effect (Brandt and Warren,
1993; Fountain and others, 2004a; Hoffman and others,
2008, 2016). Solar radiation is transmitted into the ice
where it is absorbed faster than heat conducted out of the
ice causing internal melt. Glacial runoff is common in
December and January, with a peak melt period of about
4 weeks long from mid-December to mid-January coinciding
with the period of maximum solar radiation (Hoffman and
others, 2008, 2016). We define summer as the 3-month
period from November–January, which brackets both peak
glacial runoff (ablation) and our summer mass-balance mea-
surements. Winter is the remaining 9 months. Generally, the
magnitudes of summer and winter ablation are equivalent al-
though the rates are much higher in summer than winter
(Fountain and others, 2006). The response time of these
glaciers is slow, ∼103 a, based on the magnitude of annual
mass change at the terminus, ∼10−1 m a−1, and the
average ∼102 m thickness of the glaciers (Johannesson and
others, 1989; Fountain and others, 2004b).

Scientific studies of glaciers in the Dry Valleys (Fig. 1)
started in 1961 with the investigation of three glaciers in

Wright Valley (Calkin, 1964) followed by a study on the
Meserve Glacier (Bull and Carnein, 1970). In the summer
of 1969/70 the New Zealand Antarctic Program (NZAP)
established the first long-term glacier monitoring program
as part of their annual hydrological surveys (Chinn, 1980).
The program included mass-balance measurements on
seven glaciers in Wright and Victoria valleys and repeatedly
photographed terminus positions on these and other glaciers
from fixed markers on the landscape (Chinn and Cumming,
1983). After more than a decade of measurements the last
were made in the 1982/83 season. Ten years later the Long
Term Ecological Research project (LTER) of the United
States National Science Foundation initiated a long-term
program of physical and biological measurements in
neighboring Taylor Valley that included mass-balance
measurements on two glaciers, and ablation-zone-only mea-
surements on four other glaciers (Fountain and others, 2006).
Both NZAP (Chinn and Cumming, 1983) and LTER (Fountain
and others, 2004b) programs photographed glacier terminus
positions. In addition, snow pits have provided data on
annual snow accumulation for the past 50 a (Welch, 1993;
Witherow and others, 2006; Bertler and others, 2006).

2. METHODS
Wemonitoredmass balance on two glaciers, Commonwealth
and Howard. Commonwealth Glacier flows southward from
the Asgard Range and has an area of 52.2 km2 with elevation
ranging from ∼50 m a.s.l. to a little over 1200 m a.s.l.,
with the upper 400 m being steep (>30°), thin ice with

Fig. 1. Satellite image of the McMurdo Dry Valleys, showing the study glaciers (labelled) and the Lake Hoare weather station (yellow dot). The
image is from the Landsat Image Mosaic of Antarctica (http://lima.usgs.gov/index.php) and dates to1999–2002.
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many rocky outcrops, which probably contributes little to the
main glacial accumulation zone that reaches 800 m. The
Howard Glacier is across the valley, inland, and 6 km from
Commonwealth Glacier. It flows northward from the Kukri
Hills. It has an area of 8.3 km2 and ranges in elevation
from ∼300 m a.s.l. to a little over 1000 m a.s.l. Mass
balance was estimated using a conventional field approach
(Ostrem and Brugman, 1991; Fountain and others, 2006).
Changes in surface height were measured against bamboo
poles drilled 2 m into the glacier. The poles were measured
twice each season, at the beginning and end of summer. If
the surface was snow, its density was measured to a depth
twice that of the height change since last measurement,
and if the surface was ice its density was assumed to be
890 kg m−3 (LaChapelle, 1959). From these measurements
the mass balance was calculated at each stake. The small
magnitude of snow accumulation and ice ablation on the gla-
ciers allowed us to re-measure the same stakes for almost a
decade before having to reset the stake.

To estimate mass balance a piece-wise linear regression
was applied between the measurements at each pole and
elevation with a 95% confidence interval to estimate uncer-
tainty. The mass balance and uncertainty estimates for each
50 m elevation interval were multiplied by the area of the
interval and summed over the glacier. Dividing by the area
of the glacier yielded the specific mass balance. Details of
the procedure can be found in Fountain and others (2006).
Specific start dates of the measurements in November and
end dates in January can vary by a week or so. Annual
values are reported on a November–November, ‘austral
spring’, cycle to match the mass balance year in the northern
Hemisphere for ease of comparison. This approach nominal-
ly violates the convention of reporting mass balance over the
interval of time between successive minima of mass balance
in autumn (Cogley and others, 2011). Because seasonal
glacier mass balance in the MDV does not easily conform
to expectations of net mass loss in summer and net mass
gain in winter (Chinn, 1980; Fountain and others, 2006), a
strict application of the convention renders mass balance
‘years’ meaningless and for practical reasons a choice is
made to define the annual cycle.

2.1. Terminus change
We quantified terminus change (advance/retreat) of three
glaciers, Commonwealth, Howard and Canada to detect
any length changes. Previous studies, using oblique ground-
based photographs, show the alpine glaciers in MDV advan-
cing or retreating slightly (Chinn and Cumming, 1983;
Chinn, 1998; Fountain and others, 2004b). These measure-
ments, however, are point measures and do not account for
changes along the entire fan-like shape of the glacier
termini. Unlike many temperate alpine glaciers that have a
relatively narrow terminus the larger alpine glaciers of the
MDV, particularly in Taylor Valley, spread on reaching the
valley floor forming a lobate ablation zone (Fig. 1). We
used vertical aerial and satellite imagery to assess changes
in extent along the entire terminus. Including Canada
Glacier in this assessment provides us an opportunity to
compare the results of ground-based photographic assess-
ments (Fountain and others, 2004b) against results from ver-
tical imagery.

Aerial photographs were geo-registered using near-nadir
Quickbird multispectral satellite imagery, ∼1 m resolution,

provided by the National Geospatial-Intelligence Agency
commercial imagery program. The satellite imagery was
terrain corrected to the 30 m Advanced Spaceborne
Thermal Emission and Reflection Radiometer Global
Digital Elevation Model version 1 [ASTER-GDEM] and used
ground control points collected by the Antarctic Geospatial
Information Center in the 2008/09 Survey. The aerial photo-
graphs are registered to the recent satellite images used for
change detection. Air photo registration relied on ground
control points consisting of permanent features (e.g.
boulders, bedrock) present in both the photographs and sat-
ellite images. The region of interest was the glacier termini so
the points were chosen on the valley floor near the terminus
of each glacier. Landscapes with low relief required fewer
control points whereas extreme relief required many more.
Control points were added to the registration process until
the uncertainty between images no longer changed signifi-
cantly; the number required ranged from 50 to 150. The rela-
tive registration error between the satellite image and aerial
photographs was within 2 pixels.

The terminus perimeter, defined as the contact between
the ice and ground, was digitized from one side of the
glacier to the other at a scale of 1:500. The location of the
starting and ending points were identical for each pair of
images and located where the glacier begins to fan outwards.
To calculate the magnitude of terminus change points were
spaced at ∼10 m intervals along the perimeter defined in
the older image. At each point, a line normal to the perimeter
was drawn to the perimeter in the younger image and the dis-
tance between intersections calculated.

2.2. Mass-balance reconstruction
To estimate glacier mass balance prior to field measurements
we apply a multiple linear regression model. Studies of tem-
perate glaciers have used summer air temperature as an
index of ablation and winter precipitation as an index of
mass accumulation (e.g. Tangborn, 1980; Greuell, 1992).
Our linear regressions utilized local meteorological measure-
ments at Lake Hoare station, recorded since 1988 (Clow and
others, 1988; Doran and others, 2002a), and for prior years
back to 1957 air temperatures from Scott Base on Ross
Island, 100 km away. No time series of precipitation mea-
surements is available although we tested the utility of a
proxy measure of snow accumulation derived from snow
pits on the glaciers. In addition, we also tested stream dis-
charge, a proxy measure of summer ablation.

The local meteorological data from Lake Hoare Station
were downloaded from the McMurdo Dry Valley Long
Term Ecological Project (http://www.mcmlter.org) and air
temperatures at Scott Base were downloaded from the
National Climate Database of the National Institute of
Water and Atmospheric Research of New Zealand (http://
www.cliflo.niwa.co.nz). Mean summer air temperature was
calculated by averaging the daily values from November–
January, which bracket the months of December and
January, which account for 90% of the meltwater runoff
(Ebnet and others, 2005) and most of the variability in
summer ablation (Hoffman and others, 2016). Estimates of
snow accumulation are derived from snow pits on several
glaciers including Commonwealth (Witherow and others,
2006), Newall (Welch, 1993) and the Baldwin Valley
Glacier (Bertler and others, 2006). For stream discharge we
used the longest record on the continent (since 1969), the
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Onyx River in neighboring Wright Valley (Chinn, 1981;
Gooseff and others, 2007a). Unfortunately, water loss to
the hyporheic zone along the river banks and evaporation
prior to reaching the gauging site complicates the discharge
record (Cozzetto and others, 2006; Gooseff and others,
2007b).

3. RESULTS AND ANALYSIS
Mass-balance measurements have been made at
Commonwealth and Howard glaciers for 20 years, 1993–
2013, the longest in the MDV and perhaps the longest record
for an alpine glacier in Antarctica (Table A1). Specific mass
balance at any stake on either glacier is ∼±0.1 m w.e. Mass
balance increases with elevation for both glaciers but
Commonwealth Glacier exhibits a decrease above 500 m a.s.l.
(Fig. 2). At low elevations the mass balance is more variable
than at higher elevations, probably resulting from episodic
snow accumulations in either summer or winter seasons.
Annual balances between the two glaciers are similar with
generally positive balances in the 1990s and generally nega-
tive since 2000 (Fig. 3). The summer balances were typically
negative, but not always, and vice versa for winter. The
large negative spike in summer/annual mass balance for
2002 is caused by a 3-week warm period during late
December 2001 to early January 2002 (Foreman and others,
2004; Doran and others, 2008).

Correlations between seasonal and annual mass balance
for Commonwealth Glacier indicate that summer (r= 0.80)
is better correlated with annual than winter (0.55); for
Howard Glacier, summer balance is slightly less correlated
(r= 0.58) with annual than winter (0.67). If the big negative
year of 2002 is removed the correlation between summer
and annual at Howard Glacier weaken significantly
(r= 0.24) and the winter correlation increases significantly
(0.79). Similarly for Commonwealth Glacier, the correlation
with summer decreases (r= 0.51) and the correlation with
winter increases (r= 0.69). No trend in mass balance was sig-
nificant for either glacier, although peak positive mass
balance of both glaciers decreased from the start of the mea-
surement in 1993 to ∼2000.

The correlation of annual balance between the two gla-
ciers is good (r= 0.88) with a much better correlation
between summer balances (r= 0.96) compared with winter
(r= 0.83). If the extreme melt summer of 2002 is removed,
the correlations are smaller for both annual and summer bal-
ances, 0.78 and 0.88 respectively. Regressing the mass
balance of Howard Glacier against Commonwealth for
annual, summer and winter values, assuming a linear rela-
tionship, yields an r2 (intercept) of 0.77 (−0.008 m w.e.),
0.91 (0 m w.e.) and 0.70 (−0.12 m w.e.) respectively. This
indicates Howard Glacier has an annual balance typically
0.008 m w.e. less than Commonwealth and caused by the
difference in winter balance.

To better track mass change over time the cumulative sum
of annual balances for each glacier was calculated (Fig. 4).
Clearly, the glaciers have lost mass since measurements
began. Over the period of record, the glaciers gained mass
in the 1990s, achieved equilibrium for a few years, then
lost mass over the remaining record starting the big melt
summer of 2002.

The equilibrium-line altitude (ELA) and accumulation area
ratios (AAR) are tabulated (Table A2). For Howard Glacier a
few ELA values had to be estimated because they were at an
altitude greater than the highest stake on the glacier. In these
cases the ELA was estimated from extrapolation of the mass-
balance curve to higher elevations. The ELA (standard devi-
ation) for Commonwealth Glacier is 384 m a.s.l. (83 m); for
Howard Glacier 837 m a.s.l. (137 m). The large difference
between these glaciers, which are only ∼6 km apart, is due
to the spatial gradients in precipitation and energy balance
that cause the ELAs to rise rapidly with distance from the
ocean (Fountain and others, 1999, 2010). The relation
between ELA and annual mass balance exhibits a slope at
Howard Glacier (−293 m (m w.e.)−1), twice that for
Commonwealth (−143 m (m w.e.)−1; Figure 5). The correl-
ation coefficients for the two regressions are about the
same, r2∼ 0.49. The yearly change in ELA is not correlated
between glaciers (not shown), so that an increase in ELA at
one glacier is not necessarily mirrored at the other glacier,
despite the highly correlated mass balances between the gla-
ciers. The AAR (standard deviation) for Commonwealth

Fig. 2. Mean glacier mass balance (1993–2013) with elevation for Commonwealth and Howard glaciers (left). Horizontal error bars are one
standard deviation. Lines are piecewise linear regression fits used to estimate mass balance for the entire glacier. Glacier area elevation
distribution (right) at 50 m elevation intervals.
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Glacier is 0.77 (0.06); for Howard Glacier, 0.49 (0.23). Like
the ELA, the yearly variation is not consistent between
glaciers.

3.1. Estimating past mass balance
To reconstruct annual mass balance from meteorological
variables and proxy measures we used both linear and
multiple linear regressions. Unfortunately none of the
proxy measures were useful. Either their time series did
not overlap sufficiently with measurements of mass
balance or the correlation was statistically insignificant.
The best statistically significant correlation included
summer (November–January) degree-days and summer
average shortwave radiation at Lake Hoare station in

Taylor Valley (Fig. 1),

Ba-c ¼ 492:815� 1:795R� 1:893Td; r2 ¼ 0:71 ð1Þ

Ba-h ¼ 323:034 � 1:203R � 1:386Td; r2 ¼ 0:52 ð2Þ

where Ba is the annual balance, c for Commonwealth
Glacier, h for Howard Glacier, R is mean shortwave radi-
ation (W m−2), and Td is summer total degree-days. The
degree–day is the sum of temperatures above 0°C
divided by the number of measurement intervals in a
day. Temperatures are measured every 15 minutes. For
slopes in Eqn (1) the t (degrees of freedom) and p-values
of the regression coefficients are, t(17)=−4.254, p= <
0.001; t(17)=−4.190, p= <0.001 respectively; and for

Fig. 3. Annual and seasonal mass balances for Commonwealth and Howard glaciers, Taylor Valley. Note that the year is the ‘end year’ of the
measurements such that the year 2002 includes summer measurements of 2001/02 and winter measurements of 2002.

Fig. 4. Cumulative mass balance for Howard and Commonwealth
glaciers. The 95% uncertainty is indicated by the shaded area for
Commonwealth (darker) and Howard (lighter). Where the two
uncertainties overlap is colored with an intermediate grey.

Fig. 5. Equilibrium line altitude and annual mass balance for
Commonwealth and Howard glaciers, 1994–2013. The squares
are for Howard Glacier, the open squares are estimated values.
The lines are linear regressions.
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Eqn (2), t(17)=−2.721, p= 0015; t(17)=−2.930, p=
0.009. These measurements were used to extend the
mass balance record back to 1988, the start of continuous
meteorological measurements at Lake Hoare station.

For the period prior to 1988 we used air temperatures from
Scott Base and the only statistically significant correlation
with mass balance was using summer degree days. The tem-
perature record began in 1957, however daily observations
were only available starting in October 1964, so the mass
balance was reconstructed back to 1965. The daily obser-
vations of minimum and maximum temperatures were aver-
aged to estimate the daily mean. The number of degree-days
over the summer was calculated by summing daily mean
temperatures >0°C. Summer degree-day temperatures at
Scott Base correlates very well with temperatures at Lake
Hoare, r2= 0.78. The resulting linear regressions are,

Ba-c ¼ 23:221 � 9:833Td�s, r2 ¼ 0:52 ð3Þ

Ba-h ¼ 6:588� 6:521Td�s, r2 ¼ 0:34 ð4Þ

where, Td-s is summer total degree-days for Scott Base. For
the slope in Eqn (3), t(18)=−4.42, p= 0.0003; and for Eqn
(4), t(18)=−3.07, p= 0.0066.

The relatively high-correlation results from the outlier of
very negative mass balance caused by extreme summer
melt in 2001/02 (Fig. 6). The figure shown is for the linear
regressions, Eqns (1) and (2), which are similar to the
results of Eqns (3) and (4). In any case, that air tempera-
ture alone does so well is a bit surprising. However, the
temperature-based regression cannot adequately predict pre-
cipitation (accumulation) as Figure 7 suggests. The regression
under-predicts years of positive mass balance. Comparison
of snow accumulation from snow pits to degree-days at
Scott Base revealed no correlation, as expected.

The reconstructed mass-balance record shows an overall
small negative mass balance for both glaciers, except for
the mid-late 1980s when extremely high temperatures
suggest much melt loss from the glaciers (Fig. 8). In the
early 1990s mass balances were positive but a decreasing
trend has continued since that time.

Over the entire 48 a period from 1965 to 2013, the cumu-
lative mass change for Howard and Commonwealth glaciers
is −1.6 and −1.2 m w.e. respectively. We consider these
values to be over-estimates of the mass loss, due to the

reliance on temperature-based regression that under-predict
years of mass gain from snowfall.

An attempt was made to reconstruct the mass balance of
Heimdall Glacier, the longest monitored glacier (12 years,
1971–82) of the NZAP program (Chinn, 1980; Chinn and
Cumming, 1983). The hope was to predict mass balance to
include the period of the LTER measurements and compare
magnitudes and trends. We re-calculated the mass balance
for the Heimdall Glacier, using our methods, for the first 5
years of record, then calculated the mass balance for the
last 5 years, which had not been completed originally.
Unfortunately, no significant regressions were found
between the mass balance and environmental variables
and the comparison between glaciers was not attempted.

3.2. Changes in glacier extent
Vertical imagery of the MDV was available as early as 1956,
acquired by the US Geological Survey, with image quality
improving in later photographic missions. We chose black
and white 1957 imagery for Canada Glacier and 1975
imagery for Commonwealth and Howard glaciers. These
were the earliest photos with good texture, contrast and
minimal snow cover. The image positives were scanned at
400 dots inch−1 (157 dots cm−1), but spatial resolution varies
between images due to differing flight line altitudes. The reso-
lution for 1957 is 0.9 m and for 1975, 1.8 m. We used 2007
Quickbird-02 multispectral imagery (1 m spatial resolution)
for Canada and Commonwealth glaciers and 2013
Worldview-02 imagery (0.5 m spatial resolution) for Howard
Glacier. The temporal range for Commonwealth Glacier was
32 years (1975–2007), for Howard Glacier, 38 years (1975–
2013) and for Canada Glacier, 50 years (1957–2007).

The perimeter of a glacier terminus was defined by dis-
criminating between the lighter pixels of snow and ice on
the glacier and the dark pixels of the bedrock and gravelly
soil of the adjacent valley floor. The uncertainty, including
both co-registration of the images and interpretation of the
glacier perimeter, is ∼ ±2 m under optimal conditions.
Defining the perimeter, however, could be challenging.
Shadows and contrast of some photos made it difficult to

Fig. 6. The prediction of glacier mass balance from Eqns (1) and (2),
which are linear regressions using summer degree-days and solar
radiation at Lake Hoare. The dashed line is a 1:1 line.

Fig. 7. Cumulative sum of annual mass balance, predicted
(dashed) and measured (solid) for Commonwealth and Howard
glaciers.
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distinguish the edge of the ice apron, a deposit of partly
melted ice debris at the cliff base of most glaciers in the
MDV, from the edge of the ice cliff. In some cases, the
offset between image nadir and ice cliff obscured the ice/
ground contact such that the perimeter was defined by the
top edge of the cliff rather than the bottom. Finally, the
edge of the glacier was often rounded making the precise de-
lineation of the terminus cliff position ambiguous. In these
circumstances the uncertainty can be high as 17 m.

Results showed advances and retreats occurring along the
perimeter on all three glaciers (Fig. 9). The range was greatest
along the perimeter of Commonwealth Glacier, ±59 m, with
the largest uncertainty associated with the advance. Even
Howard Glacier, the smallest of the three glaciers, showed
a range of −30 m to +17 m. Estimates of terminus change
at Canada Glacier are similar to estimates from the ground-
based photographs. The vertical imagery spans a 50 year
interval and brackets the 23 year (1972–95) span of the
ground-based photographs (Fountain and others, 2004b).
For the northwest (southeast) tip of the glacier the vertical
imagery estimate changes of +12 m ± 4 m (+5 m ± 7 m),
whereas the ground-based photos estimated a change of
+17 m ± 2 m (+1.9 m ± 0.4 m), respectively. Averaging
changes along the entire perimeter the terminus change for
Commonwealth was −3 m ± 7 m, Howard −10 m ± 5 m,
and for Canada −4 m ± 8 m (Table 1). The change is no dif-
ferent from zero for the two largest glaciers, Commonwealth
and Canada, and a small retreat for Howard Glacier.

4. DISCUSSION AND SUMMARY
Annual and seasonal glacier mass balances in the MDV are
small (>± 0.06 m w.e.), consistent with the cold dry
climate of a polar desert and with previous studies (Bull
and Carnein, 1970; Chinn, 1980; Fountain and others,
1996). The seasonality of ablation and accumulation is
similar to that of temperate glaciers, snow accumulation
dominates in winter and ablation dominates in summer.
However, a single snowfall event in summer, or lack of
winter snow, can dominate the mass balance in that season
(Chinn, 1980; Fountain and others, 2006). The importance
of each season to annual balance may differ between glaciers
despite their proximity. Commonwealth Glacier is more sen-
sitive to summer balance whereas Howard Glacier is more
sensitive to winter. This difference is probably due to the
area-elevation distribution of each glacier. Commonwealth
Glacier reaches a lower elevation and maintains a large
area (∼20% of total) below 325 m a.s.l. whereas Howard
Glacier is a higher glacier with its lowest elevation at 325
m a.s.l. (Fig. 2). Consequently higher summer air tempera-
tures subject a larger fractional area of Commonwealth
Glacier to greater sublimation and melt compared with
Howard Glacier (Hoffman and others, 2016). When the
extreme melt summer of 2001/02 is removed the correlation
between summer and annual balance decreases significantly
for both glaciers – Howard shows no significant correlation
whereas it is still significant for Commonwealth. This under-
scores the importance of low-elevation glacier regions to the

Fig. 8. Reconstructed glacier mass balance for Commonwealth and Howard glaciers (top and middle panels). The solid line is the measured
balance, the dashed curve is reconstructed from the degree-day and shortwave radiation models, Eqns (1) and (2); and the dotted line is the
reconstruction from degree-day models alone, Eqns (3) and (4). The bottom panel is the total number of summer degree-days from Scott Base.
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mass balance of Commonwealth Glacier. It may be tempting
to exclude the summer of 2002 as an outlier, however, as the
temperature record shows (Fig. 3), warm summers occur epi-
sodically and are an important feature of the MDV climate.

The correlation of annual and seasonal balances between
the glaciers is high, which is reassuring for two glaciers only
∼6 km apart in an open valley. This supports the notion that
regional climate variations control the overall variability

Fig. 9. Plan view images of Canada, Howard and Commonwealth glaciers (2007, 2013, 2007 respectively) showing advance-retreat. All
images are at the same scale and are the satellite images for each. Terminus change for each glacier is shown to the right of the image.
The black curve is the measured change and the grey shading is the uncertainty. The change is relative to the earliest terminus position
such that positive is advance. The plotted distance along the terminus is in a clockwise direction relative to each image as indicated by
the arrows and ‘x’s on the images indicating the start and end of the measurements respectively.

Table 1. Glacier terminus change

Glacier Year Area Time Advance Retreat Average

km2 years m m m

Canada 1957–2007 34.0 50 31 ± 5 −47 ± 5 −4 ± 8
Commonwealth 1975–2007 52.2 32 59 ± 34 −59 ± 7 −3 ± 7
Howard 1975–2013 8.3 38 18 ± 2 −30 ± 2 −10 ± 5

Year indicates when the aerial (older) and satellite (younger) imagery were taken. Area is the area of the glacier in 1971 based on the US Geological Survey maps.
Time is the interval in years between imagery. Advance is the maximum advance of any point along the terminus. Retreat is the maximum retreat. Average is the
average change along the entire terminus.
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whereas local setting controls the magnitude of the response
(Walters and Meier, 1989; Bitz and Battisti, 1999; Vuille and
others, 2008; Basagic and Fountain, 2011). Both the correl-
ation and regression values are much higher for summer bal-
ances than for winter indicating that the meteorological
controls on ablation are similar between glaciers. The
intercept for the regression between summer balances is
zero indicating a well-mixed heat content of the summer at-
mosphere over the short distance between the two glaciers.
This inference is predicated on the association of summer
air temperature with summer ablation (Tangborn, 1980;
Dana and others, 2002; Ebnet and others, 2005; Hock,
2005). Winter balances were less well correlated, probably
due to the spatial variation of snowfall and effects of wind re-
distribution between glaciers. The negative intercept for the
regression between winter balances of −0.12 m w.e. indi-
cates that Howard Glacier receives less snow accumulation,
consistent with the spatial gradient of snow fall and energy
balance in the valley (Fountain and others, 1999, 2010).
The differences in mass balance between glaciers are prob-
ably due to the local vagaries of area/elevation distribution,
precipitation and wind redistribution.

Systematic ELA differences between the glaciers results
from strong precipitation and temperature gradients in the
valleys (Fountain and others, 1999). The poor correlations
between ELA and annual mass balances (r2∼ 0.49) is surpris-
ing because this correlation is typically excellent for temper-
ate glaciers (Armstrong, 1989; Paterson, 2000), polythermal
glaciers (Holmlund and others, 2005) and polar glaciers
(Hagen and Liestøl, 1990). The plot of ELA and balance
(Fig. 5) shows that for the same mass balance the ELA can
change by 100–200 m, and the year to year variations in
ELA between the two glaciers are not correlated (not
shown) despite highly correlated balances. This is due to
the highly variable mass-balance gradient with elevation,
which not only changes significantly from year to year, but
also may change in sign in the upper elevations. For
example, the mass balance with elevation plots for Howard
and Commonwealth glaciers in Fig. 2 could represent the
same glacier on different years. In fact, on Howard Glacier,
the zone of zero mass balance, which otherwise defines
the ELA, can adopt a longitudinal profile spanning over
100 m in elevation range. This has been observed on other
glaciers in the region (e.g. Fig. 29 of Chinn and Dickson,
1986). For most glaciers in other environments, the mass-
balance gradient with elevation is roughly constant from
year to year, with only the offset changes resulting in a posi-
tive or negative mass balance (Meier and Tangborn, 1965;
Kuhn, 1984; Greuell, 1992). We hypothesize that the tem-
porally variable gradient in the MDV results from the wind re-
distribution of the low snowfall. Field observations and stake
measurements document bare ice regions up wind of the dir-
ection of the high-speed drainage winds and snow accumu-
lation downwind suggesting patterns of snow erosion and
deposition by wind. A characteristic feature of the MDV is
the high-velocity drainage winds, particularly in winter,
that descend from the East Antarctic ice sheet into the
valleys reaching velocities of 30 m s−1 (Doran and others,
2002a, b; Nylen and others, 2004; Speirs and others,
2010). The wind also enhances sublimation, which repre-
sents about half of the total ablation from these glaciers
(Fountain and others, 2006; Hoffman and others, 2012).
An extreme form of wind-redistribution and sublimation
process is evidenced by the presence of blue ice areas on

the ice sheet. Although elevation changes vary little (<10 m)
over horizontal distances of kilometers, the accumulation
zone transitions into an ablation zone (blue ice) due to
wind erosion of snow and ablation of ice (Whillans and
Cassidy, 1983). In the mountainous terrain of the MDV,
wind effects are such that the higher elevation head of a
glacier may be an ablation zone as well as the lower eleva-
tion terminus.

In temperate regions, the gradient of ablation with eleva-
tion is an important factor in establishing the gradient in
mass balance. In summer, air temperatures are commonly
above freezing and melting at the terminus of a glacier may
be an order of magnitude larger than at the top of the
glacier, caused by warmer temperatures at lower elevations
and a lowering of albedo when the snowpack disappears, re-
vealing the darker ice underneath (Hock, 2005, Meier and
Tangborn, 1965; Ostrem and Brugman, 1991). The MDV
air temperatures are commonly below freezing and ablation
is dominated by sublimation, a less efficient ablative process
compared with melt, which is weakly dependent on tem-
perature (Neumann and others, 2009; Cuffey and Paterson,
2010). Given the relatively small elevation ranges (<800
m) of the measured glaciers, air temperature differences
over that range do not exceed 8°C at the dry adiabatic
lapse rate, consequently ablation differences are small.
Therefore, the gradient of ablation via sublimation only
weakly enforces an increasing mass balance with elevation.

The trend since 1993 of measured mass balance on
Commonwealth and Howard glaciers generally show
mass accumulation prior to 1999 and mass loss after the
big melt summer of 2001/02 (Fig. 4). Inspection of the sea-
sonal mass balance (Fig. 3) shows that after 2001 the
annual mass loss is due to the small, sometimes negative,
winter mass balances that, over a period of a few years,
sum to near zero, whereas the summer mass balances have
been generally negative. The cause of the small winter bal-
ances is unknown. Valley floor measurements of wind
speed, perhaps a proxy for snow erosion and transport from
the glaciers, show no trend. The trend of increasingly nega-
tive summer mass balances after 2005 is also a puzzle.
Although the number of degree-days is generally increasing
(Fig. 8), the trend is not significant. Hoffman and others
(2016) found that after 2001/02 their energy balance
model, using meteorological stations on four glaciers in
Taylor Valley, underestimated ablation at lower elevations
within the ablation zones. By reducing the albedo, measured
at the meteorological station, they found slightly an excellent
match between modeled and measured ablation. They
contend that increased surface sediment in those regions
can explain the increased ablation. We speculate that the
cause of the negative summer mass balances is due to the
increased sediment and is linked to the big melt summer of
2001/02. During that event a surface layer, several tens of
cm thick, was melted off the ablation zone of the glaciers re-
vealing subsurface sediment trapped in cryoconite holes.
Snow in the summers of 2003 and 2004 shielded the ice
surface from extensive melting. Since that time the sediment
redistributed over the ablation zone reducing the albedo and
increasing melt. Perhaps the summer ablation is becoming
more sensitive to air temperature due to lower albedo ice.

The multiple linear regression analysis showed that glacier
mass balance is well correlated (negatively) with air tempera-
ture, as has been shown elsewhere, and therefore it should be
no surprise here (Dyurgerov, 2001). These results differ from
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Chinn (1981) who suggested a positive correlation between
air temperature and mass balance. The mass balance for
Howard and Commonwealth glaciers was reconstructed for
a 48 year period starting in 1965 using a linear correlation
with temperature at Scott Base for the first 23 years, a multiple
linear correlation with locally measured air temperature and
shortwave radiation for the next 5 years and field measure-
ments for the last 20 years. Results show generally small
mass balances except for the mid-1980s when large negative
balances occurred associated with high summer air tempera-
tures. Since 1965 the cumulative mass loss is estimated to be
−1.6 m and −1.2 m w.e., averaged over the glacier surface,
for Howard and Commonwealth glaciers respectively. These
small changes over nearly half a century are well within the
uncertainty of the regressions. Furthermore, a temperature-
based regression is insensitive to periods of snow accumula-
tion, as shown in Fig. 7, making our estimated cumulative
mass loss an overestimate, so that the glaciers are closer to
equilibrium than implied by our results. Therefore, we infer
no mass change of the glaciers for the past half century.

Changes in glacier extent were examined for three glaciers
to provide another perspective of glacier change. Over the
past 32–50 years, depending on the glacier, the net change
for all glaciers was retreat. The magitude of retreat,
however, was small (<5 m) and less than the uncertainty at
Commonwealth and Canada, the two largest glaciers. We
therefore conclude that these glaciers have not changed sig-
nificantly. HowardGlacier exhibited a larger retreat, of−10 m,
and twice its uncertainty. Whether this retreat is a long-term
(∼10 ka) response to conditions in the distant past or a re-
sponse to the net mass loss of <−1.6 m w.e. over the past
48 years is unclear. It is doubtful that the current retreat is
due to the small (and over-estimated) mass loss estimated
for the past 48 years. Given the slow response time of the
glacier, we conjecture that the current retreat is a response
to conditions in the distant past. That similar behavior is
not observed in the other two glaciers results from differences
in response times.

Our evidence of glacier stability stands in contrast to most
glaciers globally (Jacob and others, 2012) and results from
the low temperatures and overall stability of the Antarctic
climate (Doran and others, 2002a, b; Thompson and
Solomon, 2002). This stability and lack of major advance is
supported by the geologic record (Wilch and others, 1993).
That the glaciers appear to be losing mass in the recent
decade may be merely a short-term trend with unclear
long-term implications. Indeed, the small variations in mass
balance in this polar desert and the associated uncertainty
suggest the glaciers may be even closer to stability than we
indicate.

The changes in extent for Canada Glacier compare favor-
ably with point estimates from hand-held ground-based pho-
tography. Over 23/24 a (1972/73–1996) two locations on
Canada Glacier advanced by 2 and 17 m (Fountain and
others, 2004b). At about the same locations the vertical
imagery showed −1 m ± 4 m and 20 m ± 5 m of change.
Point measurements at other glaciers showed similar
changes. At Suess Glacier, next to Canada Glacier the
change was −2 and −5 m over a 24 year period (Fountain
and others, 2004b). Measurements at 12 different glaciers
over a 10–13 year period showed changes in extent of −2
m to +8 m; Meserve Glacier, over a 30 a span (1966–96),
changed by –8 m but the entire retreat was accomplished
in the first 20 a (Chinn, 1998). Outside the MDV, the large

outlet glaciers in the McMurdo Sound region show no detec-
tible change (>60 m) from 1973/74 to 2001 (Ferrigno and
others, 2010).

For fan-shaped ablation zones we questioned whether
changes in extent were uniform along their termini; the
answer is important for glacier change studies based on
point measurements of extent (Chinn, 1989; Fountain and
others, 2004b). Our results show that the changes were
quite variable along the termini and surprisingly large,
±tens of meters, and we conclude that point measures may
not necessarily reflect average net change of a glacier with
a fan-shaped ablation zone. It may be coincidence but
some retreat occurred on the west-facing terminus of all
three glaciers and we speculate that drainage winds may
be the cause. High-speed winter drainage winds transport
and deposit sediment on the windward (west-facing) seg-
ments of the termini locally enchance summer ablation.
Also, the drainage winds warm adiabatically as they
descend into the valley (Doran and others, 2002a, b; Nylen
and others, 2004; Speirs and others, 2010) rapidly ablating
the glaciers (Hoffman and others, accepted), particularly
the windward segments.

5. CONCLUSIONS
The cold dry climate of the McMurdo Dry Valleys limit the
magnitude of the seasonal and annual balances to values typ-
ically <±0.06 m w. e. Although winter is typically the accu-
mulation season, a single large snowfall can dominate the
accumulation for a season sometimes making summer the
accumulation season, and if little snowfall occurs in winter
it can be the ablation season. Mass balance increases with
elevation like glaciers elsewhere, but the gradient can
change dramatically from year to year due to wind redistrib-
uting the low snow accumulation. Consequently, the year to
year ELA is poorly correlated with mass balance.

Mass balance increased during the 1990s, associated with
a cooling trend in the region (Doran and others, 2002a, b).
Since 2002, after the ‘big melt’ summer of 2001/02, glaciers
have lost mass due to the lack of consistently positive winter
mass balance (sometimes negative) and increasingly nega-
tive summer balances. Annual glacier mass was reasonably
correlated with locally measured shortwave radiation and
air temperature, expressed as degree-days; and an accept-
able correlation with air temperature alone (degree-days)
at Scott Base, ∼100 km away. Reconstructing the mass
balance record back to 1965 shows generally small balances
except for mid 1980s when the balances were quite negative
and coincided with high air temperatures. The cumulative
mass change over the past half century (since 1965) is
<−2 m w.e. averaged over the surface of the glaciers and
the uncertainty suggests the cumulative value is no different
than zero. Furthermore, the regression is relatively insensitive
to periods of positive mass balance and a more robust model
would yield a cumulative change closer to zero.

Changes in glacier extent were measured at three glaciers.
For the two largest, Commonwealth and Canada, both had
retreated but measurement uncertainty suggests the change
is no different from zero. Howard Glacier also retreated,
−10 m over 38 a, and the change is significant. The retreat
is an unlikely response to the small mass loss over the
same time period and more likely a response to conditions
in the past 103 years based on glacier response time. The
change in extent was variable along the fan-shaped termini
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of these glaciers. Each terminus had some parts that
advanced and others that retreated within a total net
change of retreat. This behavior calls into question the use
of ground-based photographs and point measurements for
assessing the activity of glaciers with fan-shaped termini.

Our reconstructed half-century of glacier mass balance
supports the long term perspective (105 years) of glacial sta-
bility and relatively small variations determined from the
geologic record. The glacial stability within the MDV con-
trasts with the rapid mass loss of alpine glaciers in the temper-
ate regions of the planet.
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APPENDIX 1

Table A1. Specific mass balance of Commonwealth, Howard and Heimdall glaciers for annual, summer and winter balances

Year Annual ± Summer ± Winter ±

Commonwealth Glacier. Area 52.2 km2

1994 0.004 0.027 −0.032 0.015 0.036 0.023
1995 0.052 0.029 0.001 0.014 0.051 0.026
1996 −0.021 0.025 −0.007 0.011 −0.014 0.022
1997 0.036 0.025 0.027 0.017 0.009 0.018
1998 0.031 0.032 −0.01 0.009 0.041 0.031
1999 −0.016 0.033 −0.021 0.027 0.005 0.018
2000 −0.01 0.029 −0.024 0.023 0.014 0.018
2001 −0.004 0.025 −0.006 0.01 0.002 0.022
2002 −0.135 0.11 −0.132 0.103 −0.003 0.036
2003 0.017 0.029 0.006 0.014 0.011 0.025
2004 −0.025 0.039 0.011 0.015 −0.036 0.036
2005 −0.036 0.067 −0.009 0.047 −0.027 0.048
2006 0.032 0.055 −0.02 0.021 0.052 0.051
2007 −0.033 0.041 −0.03 0.029 −0.003 0.029
2008 −0.007 0.026 −0.002 0.019 −0.005 0.017
2009 −0.048 0.04 −0.048 0.025 0 0.031
2010 0.01 0.03 0.008 0.019 0.001 0.023
2011 −0.019 0.108 −0.053 0.106 0.034 0.029
2012 −0.012 0.039 −0.025 0.02 0.012 0.033
2013 0.026 0.034

Howard Glacier. Area 8.3 km2

1994 0.014 0.047 −0.019 0.037 0.033 0.028
1995 0.042 0.064 0.005 0.047 0.037 0.044
1996 −0.036 0.044 0 0.037 −0.036 0.025
1997 0.021 0.044 0.008 0.027 0.013 0.035
1998 0.004 0.054 −0.008 0.022 0.012 0.05
1999 0.012 0.041 −0.014 0.022 0.026 0.035
2000 −0.033 0.031 −0.024 0.021 −0.009 0.023
2001 −0.015 0.029 −0.001 0.013 −0.014 0.026
2002 −0.099 0.078 −0.087 0.062 −0.012 0.048
2003 −0.019 0.068 −0.002 0.062 −0.017 0.029
2004 −0.031 0.033 0.016 0.021 −0.047 0.026
2005 −0.028 0.118 0.012 0.021 −0.04 0.116
2006 0.024 0.042 −0.007 0.025 0.031 0.033
2007 −0.062 0.068 −0.027 0.036 −0.035 0.058
2008 −0.019 0.029 −0.004 0.018 −0.015 0.022
2009 −0.022 0.055 −0.042 0.027 0.02 0.048
2010 −0.012 0.038 0.005 0.025 −0.018 0.028
2011 −0.021 0.053 −0.047 0.034 0.024 0.041
2012 −0.028 0.057 −0.017 0.048 −0.012 0.031
2013 0.027 0.075

Units are in m w.e. ‘Year’ represents the summer (November–January) and the winter of that year (February–October). For the balance year 1995, it is the sum of
the summer November 1994–January 1995 and winter of February–October 1995.

13Fountain and others: Glaciers in equilibrium, McMurdo Dry Valleys, Antarctica

http://dx.doi.org/10.1017/jog.2016.86
Downloaded from http:/www.cambridge.org/core. Portland State Library, on 26 Sep 2016 at 22:11:35, subject to the Cambridge Core terms of use, available at http:/www.cambridge.org/core/terms.

http://dx.doi.org/10.1017/jog.2016.86
http:/www.cambridge.org/core
http:/www.cambridge.org/core/terms


MS received 27 November 2015 and accepted in revised form 14 June 2016

Table A2. Annual mass balance (Ba) in m w.e., ELA (m a.s.l.) and accumulation area ratio (AAR) for Commonwealth and Howard glaciers

Commonwealth Howard

Ba ELA Ba ELA
Year M M AAR M M AAR

1994 0.004 363 0.78 0.014 810 0.62
1995 0.052 363 0.78 0.042 634 0.81
1996 −0.021 376 0.78 −0.036 995 0.11
1997 0.036 297 0.82 0.021 422 0.91
1998 0.031 325 0.81 0.004 822 0.60
1999 −0.016 391 0.77 0.012 840 0.57
2000 −0.01 429 0.75 −0.033 960 0.19
2001 −0.004 372 0.78 −0.015 895 0.42
2002 −0.135 622 0.59 −0.099 904 0.38
2003 0.017 402 0.76 −0.019 898 0.40
2004 −0.025 549 0.66 −0.031 995 0.11
2005 −0.036 466 0.72 −0.028 895 0.42
2006 0.032 365 0.78 0.024 774 0.68
2007 −0.033 295 0.83 −0.062 995 0.11
2008 −0.007 294 0.83 −0.019 840 0.57
2009 −0.048 414 0.75 −0.022 850 0.54
2010 0.01 365 0.78 −0.012 850 0.54
2011 −0.019 330 0.81 −0.021 850 0.54
2012 −0.012 339 0.80 −0.028 850 0.54
2013 0.026 330 0.81 0.027 656 0.80
Average −0.008 384 0.77 −0.014 837 0.49
Std Dev 0.040 83 0.06 0.033 137 0.23

Bold values of ELA represent extrapolations above the highest measurement on the glacier.
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