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PHYSICAL REVIEW A VOLUME 57, NUMBER 1 JANUARY 1998
Few-cycle pulses in two-level media

Lee W. Caspersdn
The Institute of Optics, University of Rochester, Rochester, New York 14627-0186
(Received 4 August 1997

Techniques for producing, measuring, and applying ever shorter electromagnetic pulses are being developed
for incorporation in a variety of modern high-speed systems. In many cases these pulses are at most a few
cycles in length, and so-called half-cycle electromagnetic pulses are also widely employed. The interaction of
such pulses with two-level media is considered here in detail, and these media are basic to many of the
absorbing and amplifying configurations of optics and laser studies. Significant delays and distortion of the
resulting polarization and population pulses can occur, and nonlinear optical effects are also revealed. The
limitations of the parity, rate-equation, and rotating-wave approximations for the characterization of such
few-cycle interactions are also exploré&1050-29478)03201-6

PACS numbgs): 42.55.Ah, 42.60.Lh, 42.50.Gy

[. INTRODUCTION factor of 2 will be possible with the development of im-
proved dispersion-compensation scheriids and improve-

Some of the most basic problems in physics involve thements in the pulse compression results may also be expected.
interaction of electromagnetic fields with atoms or mol- Techniques for producing, measuring, and applying ul-
ecules. One fundamental starting point for such studies entrashort electromagnetic pulses are being developed for in-
ploys the Maxwell-Heaviside equations for the electromag-<orporation in a variety of modern high-speed systems. As
netic fields in combination with the Schidimger or Dirac an example of a fundamental application, short pulses are
equation for the atoms. For the high-frequency fields associsometimes used to manipulate atomic wave functions in test-
ated with transitions between atomic levels, it is usually pOSjng the predictions of guantum mechanim_ At a more
sible to treat the fields as harmonic in time and space, wittyractical level, fs pulses such as those described above have
an envelope that may vary slowly in time compared to amheen employed in the measurement and characterization of
optical cycle or _slowly in space compared _to a wavelengthine electronic properties of materials and devic®s How-
In these cases it has generally been possible to employ thg,e 4t the optical frequencies used, these pulses are some-
rotating-wave approximation in the atom equations and th"ﬁmes only a few cycles in length; and it is not always clear

slowly-varying-envelope approximations in the field equa-p,,, 1, interpret experimental data. Thus the period of a sinu-
tions. Sometimes the rate-equation approximation is also ap

. e : s Soidal wave is related to its wavelength by the formula
plicable. These approximations dramatically simplify most o o
calculations of practical relevance. Recently, however, theréo (fs)=~3\ (um), and this is 2.6 fs for a wavelength of 780
has been increasing interest in a class of field variations thatm. Comparing this result to the recent pulse-length data
does not fit so conveniently with these established approxisummarized above, one finds that the shortest optical pulses
mations. are only about two or three cycles in length. In such cases the
One of the persistent trends in laser studies has been ttields cannot readily be described as almost sinusoidal, and
development of systems capable of producing ever shortehe validity of standard approximations may be in doubt. The
optical pulses. Thus it has been possible, with colliding-pulselowly-varying-envelope derivative approximations, for ex-
mode-locked dye lasers, to directly obtain pulses that are asmple, require that the bandwidth associated with a transition
short as 27 fs in duration at a wavelength of about 630 nnibe small compared to the optical frequency. This condition is
[1]. Using pulse compression external to a colliding-pulsenot well satisfied for wide-band dye and titanium:sapphire
mode-locked dye laser cavity, it has been possible to shortelasers, and one should expect significant discrepancies be-
pulses centered at about 620 nm to a length of only about fween experimental results and the approximate theories for
fs [2]. With the invention of the self-mode-locked titanium: several amplifief10,11 and oscillator{12] configurations.
sapphire las€fi3], it became possible to obtain pulses shorterThe basic rotating-wave approximation would also fail in
than 10 fs without external pulse compression. Pulses ofuch systemgl3]. Even the typical nonlinear techniques em-
about 7.5 fs length have now been obtained directly fromployed to measure the pulse length may not always behave
these lasers at a wavelength of about 800 [din For still  as one would expect. Looked at more optimistically, there
shorter pulses, fiber-optic pulse compressors are useful, anday in these cases be new physical effects which would have
have led to the generation of pulses that are about 4.5 fs ibeen overlooked in conventional analyses.
duration at 780 nn{5,6]. For direct titanium:sapphire laser ~ Once a source for optical pulses of a few fs length has
systems, it is anticipated that a further shortening by about Been developed, nonlinear techniques can be employed to
obtain pulses of similar length but having either a higher or
lower carrier frequency. Clearly, the carrier frequency does
*Permanent address: Department of Electrical Engineering, Portaot have to be lowered far below the optical range before the
land State University, P.O. Box 751, Portland, OR 97207-0751. resulting pulses would appear to be less than one cycle
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in length. Thus, a 5-fs pulse at a wavelength of L%  these arguments can only be qualitative, it does seem that, as
would be about one cycle in duration, and at a wavelength ofthers have concluded, there may be significant regions of
3.0 um would qualify as a so-called half-cycle pulse with no practical parameter space where the two-level model would
significant field reversals during the pulse period. In suchHpe sufficient for the treatment of short-pulse interactions.
cases some of the standard approximations have no validity In addition to the two-level assumption, most previous
at all, and more fundamental methods are required for th&eatments employ further approximations in calculating the
treatment of the interaction of fields with atoms. One of the'€Sponse of an atomic medium to an applied field. The va-

most popular examples of such pulse down-shifting employgdity of these approximations is not always assured when the

few-fs pulses for the transient introduction of free carriersi€!d i in the form of a pulse only a few cycles in duration.

into a biased semiconductor. The resulting current pulse caﬁOr example, one aImpst universally emplqyed simplification
radiate sub-single-cycle THz/or mm wave pul§4]. Such Is known as the rotating-wave approximation, and the usual

pulses have recently found many applications, particularlyreason for employing this approximation is to achieve

again in the manipulation of atomic wave functidis]. greater analytical simplicity. The resulting models have more

A hasis in this studv i th t and slowly evolving variables, and the solution methods are al-
N empnasis In this study 1S on the resonant an near\7vays more straightforward. Thus it is a matter of consider-
resonant interaction of fs pulses with two-level media. To th

) Lo , o Meple practical importance to know the conditions under
extent that an interaction involves only a single transition, g,hich the rotating-wave approximation may be sufficiently

real atpm may pe a'pproximated as having only twq '?Velsaccurate for a particular application.
and this approximation has been widely employed in inter- Recently, some effects of few-cycle electromagnetic
preting and predicting observable phenomfgt-18. How-  pylses on the populations of two-level absorbing systems
ever, it is important to remark at least briefly on possiblenave been consideréd9,20. Here we will be treating gen-
limitations of the two-level model for representing short- eral dipole moment configurations, and we will establish a
pulse electromagnetic interactions with practical mediaframework for the description of two-level media with arbi-
While there may be some intrinsic mathematical interest irtrary inhomogeneous broadening. In addition to investigating
models like those to be developed here, we would also likehe evolution of the level populations, it will be of interest to
to believe that these models can correspond at least approxibserve the development of the oscillating polarization dur-
mately to actual physical systems. Thus, for example, iing and after the short excitation pulse, and the validity and
might be possible to find a system with two electromagneticonsequences of the rotating-wave-approximation for the
Ca”y Coup|ed energy levels that are far removed from a||characterization of few—cycle interactions is explored. Incon-
other states, but in practice energy levels are often more-oistent with that approximation, we find that there can be
less uniformly distributed. Also, the spectrum associatecdignificant delays and distortion of the polarization and
with very short pulses may have a width that is comparablé?oF)Ulat'O_” pulses that result from such mterag:ﬂon_s, and non-
to the underlying carrier frequency. For such cases one caff'ear optical effects are found. Other approximations exam-
ask whether two-level models might still sometimes be real—'ned mpludt_e the parity approximation and the rate-equation
o approximation.
istic. . . . .
There are some specific circumstances that are to bef A general semlclassmal model is brlefl){ develc_)ped in Sec.
avoided if one wishes to use a two-level approximation in aI for the dynamics of a laser medium hgvmg arbltra_lry levels
multilevel system. First, it is important that all of the fre- of_homogeneogs and mhomogeneous line _broademng. Use_ of
guency content of the input pulse be closddoless than if this starting point pr_owd_es a common ba5|§.for this analysis
there are no intermediate statéise energy spacing between and previous investigations qf laser '“SFab"'.t[é’ﬂl space
the two levels in the model. If this is not the case, then it is[lo’111 and time[12] derivative approximations, and the

possible that other levels will also be interacting with the'otating-wave approximatiofi.3]. The reduction of the gen-

field. In most of the examples given here the carrier fre_eral model to a simpler and more specific set of equations for

guency is at or below the transition frequency, and the specg homogeneously broadened medium interaciing with few-

tral broadening due to the pulse envelope is smaller than th cle p(lj.l|S|eS |sdd|scu_zszd_ mSSec.l\I/II. Ntérr:ﬁrlc(;;lllsolutlor&sdqf
carrier frequency. In this respect, then, these examples a € mode! are describec In Sec. 1V, and the delays and cis-

not inconsistent with the idea of a two-level model. tortiqns Qf the po!arization response i.n comparison 'to the
Another likely constraint on use of a two-level model is applied field are discussed. The limitations of the parity ap-

that the field amplitude must not be too large. In a Sy‘,s,[e’q)roximation in short-pulse systems is also discussed in Sec.

approximated as a two-level absorber, for example, absor Y. Under some conditions a rate-equation-like approxima-

tion of the field brings the atoms or molecules from the lon may be applicable even when the rotating-wave approxi-

ground state into the upper state. These excited-state atorﬁ%at'(?n is not, and th|§ S|tyat|9n is discussed in _Sec. V. The
might then be available for secondary excitation by somdOtating-wave approximation Is generally not valid for_few-
coherent or incoherent process to other higher-lying IevelsCyCIe pulses, as considered in _Se_c. Vi, and t_he physical ‘?f'
o to ionization. The efficiency of such processes depends ogcts of several parameter variations are briefly treated in
the amplitude of the field, and would be a serious concern i ec. Vil.

a significant fraction of the atoms in the model were brought

into the upper state and remained there in the continuing Il GENERAL MODEL

presence of the field. However, in most of our examples the

pulse field will be kept weak enough that only at most about In investigating the interaction of very short pulses with
20% of the population is brought to the upper level. Whilematerial systems, it is necessary at an early stage to restrict
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the classes of interaction to be considered. The reason favhere u=er is the dipole moment operator, artis the

such a restriction is, of course, the excessively vast and delectric field, assumed constant over the dimensions of the

verse array of possible physical effects that one would needtom. With these substitutions Eq®)—(4) become

to include for a truly complete model. As suggested by the
title, our main emphasis will be on interactions with media

. L d i
possessing two distinct energy states. When the frequency of P _ [(Ho+H")21p11+ (Ho+H')osp21
incident radiation is near resonance with a transition in a at h
localized ensemble of atoms or molecules, absorptions or — por(Ho+H") 11— pos(Ho+H' )1
emissions may be induced between the corresponding states.
The resulting redistribution of population can in turn change i
the dipole moment of the ensemble, and this time-dependent 77 [(E2—E1)part por E(p2o— p11)
dipole moment can contribute to the overall electromagnetic
field in the region of interest. On a larger scale this effect can = (22— 11 - Epail, (7)
lead to a time dependence of the macroscopic polarization,
including changes in the index of refraction and the loss or Ip i
gain. Behavior of this sort is well kn_own in solids, liquids, 722: -z [(Ho+H')21p10— por(Ho+H') 1]
and gases, and one purpose here will be to develop methods
for treating such resonant interactions when the electromag- i
netic pulses are only a few cycles in length. _ == E- (M0~ M21P12), 8
Our starting point for this semiclassical study will be the
usual density-matrix equatidr22]
P %P1 L o+ HY) oo pro Mo+ H )l
a— e 1) ot n 0 12P21~ P12l Mo 2
at h
i
where the right-hand side includes the commutator of the =~ 5 E-(marp1a— M12P21) - 9

matrix form of the Hamiltonian operatdt (between eigen-

functions of the unperturbed systemith the density matrix ]

p. As mentioned above, near-resonant interactions can oftéf these result&, andE, are the energy eigenvalues, and
be treated including only two strongly coupled energy statese have used the fact that the eigenfunctions of the back-
Transitions involving other states are regarded as being s@round HamiltoniarH, are an orthogonal set. It is usual to
far from resonance with the incident field that the inclusionreplace the energy difference by its frequency equivalent
of simple phenomenological relaxation terms provides an ad2 @, Where o is the center frequency of the transition.
equate description of their effects. In this familiar case EqWith this substitution, Eq(7) can be written

(1) represents four equations for the elements of the22

density matrix, and these equations can be written in exgp,, _ 1 i
panded form as ot~ i@t 7 (Baom pan) B |par— 5 a1 E(p2a— p10)-
10
dpa (10

i
N 4 [H21p11t Hoopor— poiH11— poHaal, (2
Equations(5) and (8)—(10) describe the behavior of the

Ip density matrix in terms of the applied electromagnetic field.
22

__! [Ho101— p2H 10l ©) From the density matrix it is possible to derive the polariza-
at h tion of an ensemble of atoms. The dipole moméatt the
_ ensemble average of the expectation value of the dipole mo-
‘9Lll: b [Hap21— p1oHad] (4) ment operatgrfor an atom can be written
at f '

ok p=tr(pm) = pr1pi1+ proMort porfiot paopoy. (1)
P12= P21 )

where the subscripts 2 and 1 refer, respectively, to théf this result for a single atom is integrated over a macro-
higher- and lower-energy states of the transition. Equatiorscopic ensemble of atoms, one obtains an expression for the
(5) is written using the fact that the density matrix is Her- polarization of the resonant medium. This polarization in
mitian. turn will contribute to the behavior of the overall electromag-
The Hamiltonian operator will now be separated into anetic field.
partH,, which depends only on the static background fields As noted previously, focusing this semiclassical analysis
experienced by an electron, and a paft which represents 0n transitions between only two energy states would gener-
the effects of the applied electromagnetic field. For the sysally require some phenomenological method of incorporating

tems of interest here, the interaction with the applied fieldransitions to and from other states of the system. A gener-
can be written in the form alization to include inhomogeneous broadening might some-

times be useful as well. Thus, we rewrite E¢. and (8)—

H'=—pu-E, (6) (10) in the more complete forms
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d 9 the polarization driving this equation can be related back to
(EJFU a_z> p21(v, @y, 0,0,2,t) the off-diagonal density matrix elements by
. [ 27 ([ (o [
= Iwa+%(ﬂ22_ﬂll)'E(Z!t)+'y P21(vaa101¢vzvt) P(Z,t):f f f f n(v!wa10!¢!zit)
o JoJoJ-=
B f% o1 E(Z,t)[porv, @, ,0,¢,2,t) X[ p11912(V, 04, 0,6,2,1) + po1p12v, 0,4, 0,6,2,1)

+ popo1(v, 0y, 0,0,2,1)

- 1 a’a'l H 1t y 12
Pl @e.0..2.0)] (12 T apas(v.00.0,$20]dv dw,dQ,  (17)

d

J
—+v —=|pav,0,,0,4,2,1)
(5'( 52) 2 wheren(v,w,,0,¢,2,t)dv do,dQ is the number of mol-

ecules per unit volume at positiarand timet having theirz

=N2(v,04,0,0,2,t) = y2p2v,0,,0,4,2,1) component of velocity between andv +dv, their intrinsic
i transition frequency between, and w,+dw,, and their
-7 E(z,t)-[ styopor(v, @, ,0,d,2,t) orientation within the solid angld(} about the(6,¢) direc-

tion. Equationg12)—(17) are a complete set from which the
(13) time and space dependences of the electric field and of the
atomic or molecular parameters can be determined, subject
to all applicable boundary conditions.
J d . . .
(—+v —>P11(v,wa,0,¢,z,t) The formalism that has been summarized above is some-
at 9z what more complicated than we will need for this particular
investigation, but it may also find use as a reference point for
=M(v,04,0,0,2,8) = y1p11(v, 0,4, 0,4,2,1) related studies. Our central purpose here will be to study the
response of a resonant medium in the case that the electro-
* Y2102V, 04, 0, 0,2,1) : e inifi -
magnetic pulse envelope varies significantly on a time scale
of an optical cycle. Complications of the model which do not

_”’21p12(vlwa!01¢!zrt)]y

i
+3 EzY: [m12p21(V, 04, 0,0,2,1) elucidate that particular topic will be set aside in the follow-
ing sections.
— p21Pp1AV, @, 0,4, Z,1) ], (14)
p1Av, @, ,0,0,2,t)=p5(v,0,,0,4,2,1)], (15) Ill. SPECIFIC MODEL

One important feature of the model described in Sec. Il is
wherey, and y, are t'he total .decay rates of Fhe upper andits inclusion of an arbitrary orientational distribution of the
lower levels, respectivelyy,, is the rate of direct decays i ansition dipoles. With this formalism one can calculate the
from level 2 to level 1,y is the decay rate of the off-diagonal 4nisqtropic gain distribution that results for arbitrary polar-
elements), and\, are the pumping rates, and the,”Otat'onizations of the pump and signal field&3]. On the other
c.c. means the complex conjugate of the preceding t€rmg5ng pending some particular application for such polariza-
The laser medium is assumed to have both Doppler and noRy,, effects, they are not required for an initial investigation
Doppler inhomogeneous broadening mechanisms, wihiB- ot fe\y-cycle pulse interactions. Thus it will now be assumed
ing thez component of the velocity, and, the center fre- ot the’ medium is orientationally homogeneous, or more
quency of the laser transition for members of an atomic ogpecifically that all of the matrix elements of the dipole mo-

molecular classy. The medium is also assumed to have anment gperator are parallel to the linearly polarized electric-
orientational distribution of transition moments, with the field vector.

spherical coordinateg and ¢ distinguishing the orientational If the dipole matrix elements of all of the atoms are par-

classes. _ _ _ _ allel to the field Eqs(12)—(17) reduce to the scalar set
To the density-matrix equations for the atomic or molecu-

lar populations and polarizations must be added an equation
for the electric field. The wave equation for the electric field/ » d
—|p2a(v,0,,Z,1)

of a linearly polarized wave in a laser medium can be written| — +v 9z
P?E(z,t) JE(z,1) %E(z,1) ?P(z,t)
T2 Mo T Mg g TR T . i
(16) == 'wa"‘g(Mzz_MlDE(Zat)*ﬂ’ p2(v,0,,2,t)

The permeabilityw,; and permittivity £; should be under- i

stood to include all of the magnetic and dielectric properties % prE(Z, ) pog(v,0,,2,t) — p11(v,0,,2,1)],

of the laser medium except for the polarizatiéz,t),

which is due to the lasing atoms or molecules. From(Ed). (18
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J L J
E % a_z pzz(U,(I)a ,Z,t)

i
=)\2(U1wa ,Z,t)_ ’)’2P22(U,wa ,Z,t)_ g E(th)

X[/’LIZPZl(vawavzvt)_/*LlelZ(vvwavzit)]y (19)

J N Jd ¢
E v a_z pll(U,(Ua,Z, )
:)\1(U,(l)a ,Z,t)_ ’)/lpll(viwa ,Z,t)+ )/21p22(v,wa ,Z,t)

i
+ 7 E(Z,O)[ m12021(v, @4 ,2,1) = p21p1Av, 0,4,Z,1) ],

(20)
plZ(ina1zit):p§1(v!wuuz!t)i (21)
IPE(z,1) JE(z,1) FE(zt)  PP(z1)
Tz Mm10 ot M1€1 g2 M
(22)

P(Z,t):f J' n(ana,zit)[/*Lllpll(ina1th)

0] — o0

+,(L21p12(l),(1)a,Z,t)+,lL12p21(U,(1)a,Z,t)

+ oopos(V,w,,2,t)dv do,. (23

Formally, this reduction has been achieved by requiring tha] f

the density distributionn(v,w,,0,¢,z,t) include a &
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plZ(Z!t):p,ch(th)l (27)

P(z,t)=n(z,t)[ s11p12(Z,1) + 21012 Z,1) + p12p21(Z,1)
+ poopAZ,1) ] (29)

This reduction has been achieved by requiring that the den-
sity distributionn(v,w,,z,t) include adéfunction factor in

the intrinsic center frequency and the velocity. This factor

has been multiplied by each of the four density-matrix equa-
tions. The resulting equations have been integrated over all
frequencies and velocities, and new pump and density-matrix
variables have been introduced reflecting the integrated form
of the old variables.

It would be usual in a calculation of this type to postulate
that the wave functions have parity. In this case the dipole
matrix elementsu,, and u,; would vanish in Eqs(24) and
(28) and their predecessors. In fact if the rotating-wave ap-
proximation were valid, one finds that the terms involving
Moo @anduqq in Eq. (24) would average to zero even without
a parity assumption, and the corresponding terms in(Zg).
could introduce only a slowly varyin@onoptical frequency
polarization component. Then, with suitable restrictions on
the pumping and decay processes, special cases of this model
would be compatible with standard homogeneously-
broadened-medium density-matrix formulatiori24,25.
However, one purpose of this study is to explore the re-
sponse of a laser medium in cases where the electromagnetic
fields vary too quickly for the rotating-wave approximation
to be applicable. Thus, it is of interest here to see what sorts
effects usually neglected terms like,, and w1, might
ply.

One of the simplest and most relevant applications of this

function angular factor. This factor has been multiplied byfor
each .Of the four den§|ty—matr|x equations. The resultlngrival of the electromagnetic pulse, is resting peacefully in its
equations have been integrated over all angles, and ne ound state. To explore this case, we will turn off the pump-
pump and density matrix variables have been introduced r ng rates & -\ ~0) and specializ,e the relaxation rates ac-
flecting the integrated form of the old variables. EquationsCording IO;/ =02 Y= 7. In this case Eqs(25) and (26)
(18)—(23) are still a complete set from which the time and ' -0+ 1S e '
space dependences of the electric field and of the atomic or
molecular parameters can in principle be determined.

As a next simplification, it will be assumed that the me-
dium is spectrally homogeneous. If all of the atoms have the
same intrinsic center frequencw (= wg), and Doppler ef-

malism is to a two-level medium which, prior to the ar-

0 i
7t P2AZ,t) == yopoAZ,t) — Py E(Z,0)[ m12p21(Z,1)

— 211 Z, D) ], (29

fects are unimportantu(=0), then Eqs(18)—(21) and (23)
reduce to

P o
7 po(Z,t)=—|iwo+ 7 (22— 1) E(Z, 1) + ¥ |p2r(z,t)

- uEZ Az~ pu(z D], (29

0 i
7 P2AZ, 1) =No(Z,1) = yopoAZ,t) — % E(zt)

X[ p12021(Z,t) — po1pa1AZ,1) ], (25
P i
rn p11(Z,) =N1(Z,t) = y1p11(Z, 1) + Y2102 Z,1) + 7 E(zt)

X[ 12021(Z,1) = p21p1AZ, 1) ], (26)

0 i
7t p11(Z,t) =+ yopoAZ,t) + 7 E(Z,0)[ m12p21(Z,1)

— M2p1AZ )] (30

It is now helpful to introduce a new parameter which
combines the off-diagonal density matrix elements with the
off-diagonal dipole moment matrix elements= w1501
[26]. With this substitution Eq924) and (28)—(30) become

J i
P 7(Z,t)=—|iwo+ 7 (p22— m1) E(Z,1) + v | 7(zZ,1)
i
7 121 E(Z, 1) poAZ,t) — p1a(Z,1)],

(31)
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d i P'(z,7)=pspt+ pmg[1+d(z,7) ]+ pr(z,7), (41
Epzz(zyt):_hpzz(zyt)_% E(z,)[n(z,t) — n*(z,1)], P '
(32
where we have introduced the normalized line-center fre-
i quencywy= wq/y [12], the normalized dipole moment dif-
—_— = — _ *
ot Pu(z) =+ y2p(z0)+ B[ 7(z1) = 7" (z.D)], ference wg= (u— 17/ (2), the normalized lower-state
(33 dipole momentug,= w11/, the normalized decay rate ratio
p=1valy, and the normalized polarizatioR’ =P/(nu).
P(z,t) =n(z,t)[ £1111(Z,1) + m22p2x(Z,1) + 7(Z,) The symbolg, andp; represent the real and imaginary parts
+ 0 (zt) (34) of the normalized off-diagonal density matrix element.
7 (z D), In Eq. (41) the static lower state dipole moment is repre-

where use has been made of the Hermitian character of th%ented by the symbqls,. The subscript sp here is intended

density and dipole moment matrices. An immediate implica® Stand for spontaneous polarization, and thug is the

tion of Egs.(31)—(34) is that the polarization is independent normalized static polarization that remains even when an
of the phase angle of the dipole moment matrix elemept atom or molecule is in its ground state. In our two-level
since this element only appears in a product with its comple>§y3tde_rf1 th'j grOLTd-itatedoccupatlog |\7Vhreprese_nted by the
conjugate. This must at least be true after any effects of°" itions (Z’_T)__ andp,(z,7) =0. €N isp IS NON-
initial conditions on the wave functions have died away, andZero the inevitable temperature dependence of this residual

as noted above the medium is assumed to have been unpépontaneous poIarizatiqn i.S called_pyroelectri{:ﬁy], _and in
turbed before the arrival of the electromagnetic pulse. cases where the polarization exhibits hysteresis it has been
It is also convenient to introduce the magnitude of thel€'Med ferroelectricity in analogy with the corresponding be-
havior of ferromagnetic medij@8]. For purposes of this dis-

off-diagonal dipole moment matrix element=| w4, a nor- : OO ; .
malized off-diagonal density matrix elemept=27/u, a  CUSSion a static dipole moment is not essential, and thus the
\ term ug, Will be dropped in our further discussions.

normalized electric fieldA=2uwE/y%, a probability differ-
enced=p,,—pq1, @ probability summ=p,,+p;4, and a
normalized timer= yt. With these definitions Eq931)—

(34) become IV. PARITY APPROXIMATION
J ® B A significant mathematical complication of the models
—p(z,t)=—|1+i O "LZZ—"L“A(Z, ) |p(z,7) developed here is th_at the dependeljt variables are functions
aT Y 2u of both space and time. As the various frequency compo-

—id(z,7)A(z,7) (35) nents that result from any nonlinear interactions will in gen-

eral have different phase velocities, the rigorous solutions to
P ¥ this model would seem to require the detailed specification
—d(z,7)=— 12 [d(z,7)+m(z,7)]+A(z,7)pi(z,7), of boundary conditions followed by complicated numerical
it Y solutions of the governing partial differential equations. The
(36) results of such calculations might be too specific to yield
general insights into the underlying physics. Fortunately,
p(Z,T)zn(Z,T)M['“_“[m(Z,T)_d(Z, N+ 22 ez, ) however, there may be some justification for focusing ini-
2u 2p tially on a much simpler problem.

As discussed above, the shortest pulses in an absolute

+d(217)]+pr(277)], (37)  sense have been obtained at wavelengths around 800 nm in

the near-infrared region of the spectrum, and those pulses are

) ) . several cycles in length. The more interesting cases of pulses
where the subscripts andi refer, respectively, to the real nat are less than a cycle in length have all occurred in the

and imaginary parts: It may be nqted that for a true two.—leveITHZ or mm region of the spectrum, where the pulses have
system in this notation the sum is always equal to unity. peen obtained by down shifting from the visible or near in-
These equations can now be simplified a little further andygred. The coherence length, which governs the distance
replaced by the real set over which harmonics might propagate with the same effec-
tive phase velocity as the fundamental frequency compo-
nents, scales as the wavelength and becomes quite large for
far-infrared or submillimeter wavelength experiments. This
means that phase matching usually does not present a serious
problem in such studies, and nonlinear interactions are likely
P to be limited by absorption rather than by phase mismatch
Z - / , [29]. As in previous studies, we will focus our interest on a
77 P2 T = =Pz ) F oot waA(z 1) Ipi(2,7), thin slab of material and disregard possible effects wéria-
(39  tions[19,20.

The response of a two-level medium to an arbitrarily
varying electromagnetic field is governed by E(&8)—(41).
For a localized medium, these equations become

0
52 P(Z =Pz )~ [0h+ reAZ T IPi(Z7)

—A(z,7)d(z,7), (38

J
E_d(Z,T):—p[1+d(Z,T)]+A(Z,T)pi(Z,T), (40
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FIG. 2. Population difference solutions for nonzero values of the
dipole moment difference.q including (a) wg=0.2 and(b) uq
=0.5. In these cases the population difference has higher harmonics
of the underlying field frequency.

a 0

underlying field oscillations. This Gaussian form for the
LI B B pulse envelope function is not chosen here for any compel-
ling physical reason, and other pulse shapes might be more
©0 appropriate for specific practical applications. The Gaussian
envelope does, however, resemble the pulses seen in some
P M ‘ L systems, and this is one of several shapes that have been
-5 -4 -3 -2 - employed in pulse propagation studies. The mathematical
K form of Eq. (46) does not, of course, mean that the pulses
actually look like modulated sine waves. Fof<<1/7g, little
oscillation occurs during the Gaussian pulse envelope, and
the pulse would look more like a simple half-cycle Gaussian.
With suitable parameter choices, E¢42)—(46) may be
solved for the interaction of a range of very short pulses with
two-level media. As a first step, we will consider briefly
some of the consequences of not making the parity approxi-
mation. A typical input cosinusoidal-Gaussian laser pulse
A(7) is shown in Fig. 1a). In this case the pulse parameters
d include the normalized amplitud&,=10.0, the normalized
ar pi(7)=—pi(7)—[wy+ ngA(T)]p,(7) —A(7)d(7), width 7,=1.0, and the normalized frequenay =5.0. Fig-
T (42) ure X(b) shows the real part of the normalized polarization
p;, that results when the pulse of Figalis incident on a
d system of atoms characterized by the normalized population
prpe Pr(7)=—p(7) +[wot ugA(7)Ipi(7), (43  decay rat,ep= 1.0 and the normalized intrinsic transition fre-
quency w,=10.0. The corresponding values of the imagi-
d nary part of the polarizatiop; and the population difference
—d(r)=—p[1+d(7)]+A(7)pi(7), (44) d(7) are shown in Figs. (t) and 1d), respectively. In this
dr example the normalized dipole moment differencgis set
, equal to zero, which is the appropriate value if the wave
P'(7)=ugl1+d(7)]+pi(7), 49 functions have parityor if z,,= 7). We see that for these
values the population of the upper state is increased sharply
whenever the field has either a positive or a negative maxi-
mum, and this fact will be discussed further below. The
slight general asymmetry in Fig(d) indicates some longer-
erm upper-state population accumulation.
If the wave functions lack parity, the response of the me-
dium becomes more complex. FiguréaRshows the time-
A(7)=A, exp— 2/ r3)cog w' 7), (46)  dependent population difference for the same parameter val-
ues as Fig. (M), except that in Fig. @) the dipole moment
whereA, is the normalized pulse-envelope amplituetg,is  difference isuy=0.2. In this case the population difference
the normalized ¥ half-width in time of the electric-field has more structure, including the gradual development of a
pulse envelope, ana’ is the normalized frequency of the higher harmonic of the underlying electromagnetic field fre-
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FIG. 1. Solutions of the density-matrix equations that result
when a cosinusoidal-Gaussian pulse of width=1.0, amplitude
Ay=10.0, and frequency’=5.0 is incident on a system of atoms
or molecules characterized by the population decay patel.0,
transition frequencyw,=10.0, and dipole moment differenqey
=0.0. The solutions includéa) the amplitudeA/A,, (b) the real
part of the polarizatiomp, , (c) the imaginary part of the polarization
pi , and(d) the population difference.

where the static lower state dipole momeny, has been
dropped.

To explore the implications of Eq$42)—(45), it is now
necessary to specify the mathematical form of the inciden
few-cycle electromagnetic pulse. We begin by considerin
symmetric sinusoidal-Gaussian pulses of the form
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guency. This behavior should probably not be considered
unexpected, since in both Eq42) and(43) the factoruq is
seen to introduce additional nonlinearities to the model. If  _
the dipole moment difference is increased further, the re- § 0
sponse becomes still more complicated, and an example is
shown in Fig. 2b) for the valueuy=0.5. It is clear that one PN R
area of potential interest relating to the parameigmvould -2 -
be nonlinear optics with few-cycle pulses.

As noted above, most studies of two-level atoms assume
that the wave functions do have parity. Thus, for simplicity
we will now setuy equal to zero for the remainder of this Y
study. In this limit Egs.(42)—(45) reduce to the simpler

&)
'
H
w
N
-
Ao
-‘.
N
w
'S
&)

model 1 .
-5 4 3 2 1 0 1 2 3 4 5
d T
47 PN =—Pi(7) = wgp () —A(nd(7), (47 P A
g7 Pr(D=—p(7)+ wopi(7), (48) ; ]
15--'4-13"2-'1-(')-1"2'-:;-;'5
d T
_d(T):_P[1+d7]+A(7)pi(T), (49 1 — T T T T T T T T T ]
dr - @ .
P'(7)=pi(7). (50 ot ]
This model will be the basis for all of the following consid- 1 T M L
erations. -5 -4 -3 -2 -1 0 1 2 3 4 °5
T

V. RATE-EQUATION-LIKE APPROXIMATION FIG. 3. Solutions for a sinusoidal-Gaussian input pulse with the

An interesting feature of the results noted in the previous@me parameter values as Fig. 1. As in Fig. 1 the population differ-
section is that ifug is equal to zero g,= 1), the upper- €Nceis enhanced by both the positive and negative polarity phases
state population tends to increase whenever the field has & the input pulse.
ther a positive or a negative maximum. This curious behav-
ior is not a consequence of the particular cosine-Gaussiaarguments provide an explanation for the double-frequency
pulse shape that was adopted for Figa)1To show this, the oscillations of the population difference in Figd3
corresponding results with a sine-Gaussian pulse are pre- The above interpretation relied on the fact that bath
sented in Fig. 3. The sine-Gaussian input pulse is shown iand w are large in this example. Interestingly, very similar
Fig. 3(@ and the associated population difference is showrresults are also obtained under what would seem to be quite
in Fig. 3(d) using all of same parameter values as in Fig. 1. ltdifferent conditions. We first observe that the real and imagi-
is clear from this comparison that, independent of the relanary polarization components tend to relax to zero in a time
tive phases of the wave and its envelope, the population ien the order of unity in these normalized units. If the driving
enhanced by both the positive and negative polarity phasegerms in these equations vary slowly enough on this time
of the input pulse. scale, it becomes a good approximation to set the time de-

The polarity independence can have a fairly simple interrivatives in the polarization equations equal to zero. For con-
pretation for certain operating conditions. For example, weventional longer-wavelength pulses, for example, this condi-
may suppose that the incident field pulse has a carrier wavéon might sometimes be well satisfied. This type of
that, like Eq.(46), is cosinusoidal in form. If the field is simplification is often known as adiabatic elimination, and in
intense(as in Fig. 1, whereA,=10.0, and the transition conventional rotating-wave-approximated optical systems
frequency is largéas in Fig. 1, wheren(,=10.0), it is helpful ~ the elimination of polarization variables is more commonly
to first guess that the real polarization will also be somewhactalled the rate-equation approximation. A systematic study
cosinusoida[which Fig. 1b) shows is the cagelt then fol-  of this type of approximation, and its more accurate versions,
lows from Eq.(47) that the imaginary polarization must be has recently been report¢&0].
somewhat sinusoidéivhich Fig. 1c) shows it ig. Then it is The applicability of the rate-equation-like approximation
clear from Eq(48) that, as postulated, the real polarization isthat has just been described may be shown by means of an
indeed somewhat cosinusoidal. The driving term in &§) example. In Fig. 4 is a plot of the equation solutions for the
must now be in the form of a cosine times a sine, whichsame conditions as for Fig. 1, except that the input pulse for
corresponds to a sine at twice the original frequency. FinallyFig. 4 is much longer and weaker. In particular, the pulse
Eq. (49 implies that the population difference will be modu- amplitude is here reduced #,=1.0, the pulse width is
lated according to a cosine function at twice the input fre-=10.0, and the frequency 8’ =0.5. It may be seen that in
guency, and this is exactly what is seen in Figd)1Similar  this case the real and imaginary polarization components are
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S
! d(7)=—p ex —J T2 te|dr
0
Zo . . o A2(7) 1.
] X ex mz‘l‘p d’|dr
.5
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whereC is an integration constant.

For some forms for the input pulse it would be possible to
simplify Eq. (54) analytically. However, the important aspect
of this equation for our present purposes is that the popula-
tion difference depends only on the square of the electric-
field amplitude rather than on the amplitude itself. In particu-
lar, the population difference is still driven upward during
both phases of the input field, in agreement with the plots
shown in Fig. 4d). This result is analogous to the more
conventional rate-equation approximations in which the
populations are driven by the electromagnetic intensities
rather than the fields. The distinction between these short-
pulse results and the conventional rate-equation approxima-
tion is, however, very significant. The intensity is not pro-
portional to the field squared, but only to the time average of
ST S B S EO A I I NP that quantity. This distinction has arisen in the present dis-
- 80- 40 - 30 -20 - 10 2 102030 40 cussion because we have not yet considered the rotating-
wave approximation. In contrast to all previous treatments

FIG. 4. Solutions for a cosinusoidal-Gaussian input pulse withVe are making(or at least considering makinghe rate-

the same parameter values as Fig. 1, except that the pulse amplitu§guation-like approximation before the rotating-wave ap-
is here reduced fromh,=10.0 toA,=1.0, the width is increased Proximation. Thus we wish to emphasize that these two ap-

from 7,=1.0 to 7,=10.0, and the frequency is reduced frami ~ Proximations rest on different assumptions, and, at least in

=5 to »’=0.5. In contrast to Fig. 1, the polarization componentsPrinciple, they are independent of each other. The rate-

are both in phase with the field. equation(-like) approximation requires that the field ampli-
tude envelopédor just the instantaneous figldnd the popu-

both approximately in phase with the driving field, and this islations vary slowly compared to the coherence decay time.
characteristic of adiabatic following behavior. Interestingly, On the other hand, the rotating-wave approximation, as will
the population difference is still modulated at twice the inputP€ discussed below, requires that the fields not be too strong
frequency, even though the conditions here are very differand that the polarization and population components vary
ent. slowly compared to an optical cycle. With very short pulses

If the left-hand sides of Eq¢47) and (48) are set equal to the_coherence decay time may be greater Fhan_or less than an
zero, the resulting algebraic equations can be solved for th@Ptical cycle, and thus these two approximations may be-
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polarization components. The results are come valid or invalid independently of each other.
pi(7)=— A(nd(7) (51) VI. ROTATING-WAVE APPROXIMATION
! 1+ wéz '

One of the most basic approximations in dealing with the
interaction of light with atoms is, for historical reasons,

woA(7)d(7) known as the rotating-wave approximation, and this approxi-
1+—w62 (52 mation has long been recogniz¢82]. The rotating-wave
approximation is generally found to be valid as long as the
optical fields are not too intense, and the polarization and
population components do not vary significantly within an
optical cycle. Thus, especially in cases of very high intensi-
ties [13] or very short pulse$19,20, the validity of the

p(7)=—

When Eq.(51) is substituted into Eq(49), one obtains the
differential equation

d A?(7) approximation may be in doubt. Our emphasis here is on
a7 4D+ Tz teldn)=—p. (53 electromagnetic pulses that are at most a few cycles in
0

length, and it is appropriate to consider the adaptations of our
model that might be necessary to test this approximation.
The formal integral of this equation can be written[a§] As a starting point, we rewrite Eq&}7)—(49) in the form
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d
52 P(D=—p(7)—iwp(n)~iA(Dd(r), (5

d

g7 d(n=—p[1+d(n) ]+ A(n)pi(7), (56)

As noted above, we could begin here instead with BB~

(44), in which the parity approximation has not been made,

but the rotating-wave approximation as generalized to our
non-parity-approximated model is readily seen to eliminate
the effects of the nonzero diagonal dipole matrix elements.
Thus, the inclusion of these dipole terms would obscure
other fundamental questions about the effects of the approxi-
mation, and for brevity we start with the parity-approximated

LU
-_—
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~
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'
o f[TTTT

o Ll

model.

To be specific, we assume that the field and polarization

can be written in the forms

N
-
4 aol
-
N
W
N

(c)

|

A(7)=Ag(7)COS ' 7) :
e |

= [explio’ 7)+exp —iw'7)], (57 . e —
@ .
P(7)=po(T)EXN —iw'T). (58) o0 F .
With these substitutions, and division by the negative expo- E I E
nential, Eqs(55) and (56) take the forms -1 '4' '3 '2 — é : 1' = 3 "‘ 5

T

d
47 Po(M=—Po(7) +i(w’—wg)Po(7)

. Ao(7)d(7)

—i L [exp(2iw' 1) +1],

2

Ao(7)Poi(T)
4

Ag(7)Por(7)
4

d
5 d()=—p[1+d(n]+

+exp(—2iw’ 7)]+i

—exp—2iw’'7)],

where the subscripts andi on the polarization amplitude

again denote the real and imaginary parts.

(59

[2+exp2iw’T)

[exp2iw’T)

(60)

FIG. 5. Solutions for the same parameter values as Fig. 1 but
with the rotating-wave-approximation. This approximation elimi-
nates frequency harmonics from the variables.

equations, and in seeking either analytical or numerical so-
lutions one need only be concerned in these equations with
the envelope functions for the electric field and polarization.
For the very short pulse envelopes of interest here, the va-
lidity of the rotating-wave approximation is not always as-
sured.

It is interesting to note the very close resemblance in form
between Eqsi47)—(49) (before the approximatigrand Egs.
(61)—(63) (after the approximation The most fundamental
difference is that in the general set one is dealing with the

The rotating-wave approximation now consists of timeabsolute frequency of the transitiasp,, whereas in the ap-
averaging and thus dropping all the oscillating exponentiaproximate set only the difference between that frequency and

terms. Within this approximation Eq§59) and(60) can be

written in the real forms

d Ao(7)d(7)

ar Poi(7)=—Poi(7) + (@' — wg)Por () —

(61)
d ! ’
a7 Por(7)==Por(7) = (&’ = o) Poi(7), (62)
d d(T)Z—p[l-l-d(T)]-l-w. (63)

dr 2

the assumed carrier frequenay’(— w;) appears. Because of
this similarity the solution methods for the two sets are iden-
tical. To obtain a rigorous comparison between the predic-
tions of the two models, it is only necessary in the approxi-
mate set to transform the results back to the original field
variables.

A set of solutions to Eq€61)—(63) are given in Fig. 5. In
this figure the plotted variables again inclu@® the input
field amplitudeA(7), (b) the real part of the polarization
p;(7), (c) the imaginary part of the polarizatiqn(7), and
(d) the population differencé(7). The parameters used in
these plots include the peak amplitudg=10.0, the width
70=1.0, the population decay rate=1.0, the frequency

The advantage of the rotating-wave approximation for long-w’=5.0, and the transition frequeney,=10.0. Since these
pulse or cw electromagnetic waves is, of course, that thparameter values are the same as those employed in obtain-
rapidly varying functions have all been eliminated from theing Fig. 1, the two sets of results may be compared directly.
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It is clear from this comparison that the rotating-wave ap-
proximation eliminates frequency harmonics from the vari- L S
ables, and its simplifying effects on the population difference @

are particularly conspicuous. Interestingly, the rate-equation- <o
like approximation discussed above can retain this faster
structure. However, for many values of the governing param-
eters in few-cycle interactions neither of these approxima-
tions permits an accurate representation of the actual popu-
lation and polarization dynamics.
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VIl. OTHER PARAMETER VARIATIONS =0

For any potentially realistic model for the interaction of
light with atoms, there must be many parameters to match
with experimental conditions. That is true in the present case,
but except for the diagonal dipole matrix elements we have
not focused on the consequences of different values for these
parameters. In this section we will consider some of these =0
parameters very briefly, and for the most part it will be
straightforward to interpret their implications physically. T NP -
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One parameter that can be understood almost indepen- 5 -4 08 -2 -1 012 3 48
dently from other aspects of the model is the decay rate ratio 1 e et 1
p=7v>lvy. To illustrate the effects gh, we compare typical (@) ]
solutions of Eqs(47)—(49) that differ only in the adopted E ]
value for that parameter. The normalized amplitude pulse =o0r ]
and other parameters used in Fig. 1 are also the basis for the E ,/\/w 3
results given in Fig. 6. The decay rate ratie 1 was used in e Ls S PR
obtaining the population difference curve in Figd)j, and T

the corresponding population difference results for smaller

vglues ofp including p=0.5, 0.2, O'l.’ and 0.0 are plotted ir} FIG. 6. Solutions for the population difference using the same
Fig. 6. These results have the straightforward interpretatioparameter values as Fig. 1, except that the decay rate ratio takes on
that with smaller values of the decay rate ratio the populatiofihe values(a) p=0.5, (b) p=0.2, (c) p=0.1, andp=0.0. With

collects in the upper state for a longer period of time. Insmaller values of the decay rate ratio, the population collects in the
many practical media the population decay lifetime is muchupper state.
longer than the phase-coherence time, so this simplest pos-

sible requiremenip=0 would often be very realistic for parameter. The other parameters used in Fig. 1 are retained.
short-pulse applications. =0, Eqd. (49) may be replaced The amplitudeA,=10.0 was used in obtaining the results
by shown in Fig. 1, and the corresponding population difference
d results for the smaller values,=5.0 and 2.0 are plotted in
_ Fig. 8. It is clear from the figure that, as one would expect,
dr d(n)=A(7)pi(7). 64) smaller values of the amplitude leave the upper state with a
lower population.
Another parameter of interest is the transition frequency.
To illustrate the effects ok}, we compare typical solutions
of Egs.(47)—(49) that differ mainly in the adopted value for Vill. DISCUSSION

that parameter. The normalized amplitude pulse and other In this work we have undertaken a Systematic investiga-
parameters used in Fig. 1 are retained. The transition freton of the interaction of very short electromagnetic pulses
quencyw,=10.0 was used in obtaining the results shown inwith two-level media. The pulses under consideration are
Fig. 1, and the corresponding population difference resultenly a few cycles in length, or may even be less than a single
for the smaller valuanj=5.0 are plotted in Fig. 7. In this cycle. For pulses of such lengths many of the standard tech-
case the driving field is essentially at the resonance for thaiques and approximations are of doubtful validity. As a
transition, and to obtain a comparable vertical scale the fielfoundation for this work and possible future studies, a formal
amplitude has been reduced from 10.0 to 2.0. We see that aemiclassical model was briefly developed including most of
resonance there is a longer delay in the development artie line broadening and decay processes that one would ever
decay of the polarization oscillations, and also a mucHikely be interested in for amplifier or absorber investiga-
greater sensitivity to the input field. tions.

Another parameter of particular interest is the pulse am- For the detailed results discussed here, we have focused
plitude. This is one of the parameters that bears on the vasn the special case of a two-level absorber in which the
lidity of using a two-level model for a real optical medium. lower level of the transition is the ground state. With this
To illustrate the effects of,, we compare typical solutions example together with the more general models, it would be
of Egs. (47)—(49) that differ in the adopted value for that straightforward to compute and sometimes intuit the behav-
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_F . FIG. 8. Solutions for the population difference using the same
a0 - i parameter values as Fig. 1, except that the input pulse amplitude is
- . reduced tqa) Ay=5.0 and(b) A;=2.0. As expected, smaller pulses

B lead to lower populations with little other consequence.

pulses, both of these approximations may fail to give a sat-
isfactory description of the interactions. We have suggested
that a rate-equation-like approximation may sometimes be
applicable even when the rotating-wave approximation is
not. The standard rate-equation approximation requires that
e NP avdiune. S the field envelope and populations vary negligibly within the
oTr e phase-coherence time, while the rotating-wave approxima-
tion requires that the polarization amplitudes and populations
vary negligibly within an optical cycle. In very short-pulse
FIG. 7. Solutions for the population difference using the sameinteractions the coherence time might be greater than a pe-
parameter values as Fig. 1, except that the transition frequency h4iod of the electromagnetic field as in typical optical cases, or
been reduced from}=10.0 towy="5.0 (near a resonance with the it might in principle be less than the period for THz or other
pulse, and the pulse amplitude has been reduced #gm 10.0to  very low-frequency waves. Our rate-equation-like approxi-
Ap=2.0. The development and decay of the variables is slower neanation involves the elimination of the polarization variables
resonance, and sensitivity to the input field is increased. in a model which retains the absolute amplitude and phase of
, . the optical pulse.
ior of other cases of pote_:ntlal interest. Among t_he reSL_JIts We have also reported solutions for the problem of the
presented here are a semiclassical formalism for interactiongeraction of electromagnetic pulses with atoms for cases in
with media in which the diagonal elements of the dipoleyich the rotating-wave approximation is and is not applied.
moment matrix are not equal to zero. For very short pulSegyithqut this approximation the population difference typi-
these elements may have a strong effect on the polarizatiotyy has substantial variations at twice the frequency of the
and population response of a two-level medium, while fory.ing field, and such extra harmonic content also appears

longer pulses describable with the rotating-wave approximay, the polarization components. With the application of the

tion these matrix elements have no effect on the 'nteraCt'o'?otating-wave approximation the fine structure necessarily

dynamics. vanishes, and this discrepancy confirms the invalidity of the

_One of the most common approximations in studying the,ating-wave approximation for seemingly reasonable pa-
interaction of electromagnetic fields with atoms is commonly,; eter values in very short-pulse systems.

referred to as the rate-equation approximation. In this ap-

proximation, polarization variables are adiabatically elimi- ACKNOWLEDGMENTS

nated from the overall governing model. Always in the past
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