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Few-cycle pulses in two-level media

Lee W. Casperson*
The Institute of Optics, University of Rochester, Rochester, New York 14627-0186

~Received 4 August 1997!

Techniques for producing, measuring, and applying ever shorter electromagnetic pulses are being developed
for incorporation in a variety of modern high-speed systems. In many cases these pulses are at most a few
cycles in length, and so-called half-cycle electromagnetic pulses are also widely employed. The interaction of
such pulses with two-level media is considered here in detail, and these media are basic to many of the
absorbing and amplifying configurations of optics and laser studies. Significant delays and distortion of the
resulting polarization and population pulses can occur, and nonlinear optical effects are also revealed. The
limitations of the parity, rate-equation, and rotating-wave approximations for the characterization of such
few-cycle interactions are also explored.@S1050-2947~98!03201-6#

PACS number~s!: 42.55.Ah, 42.60.Lh, 42.50.Gy

I. INTRODUCTION

Some of the most basic problems in physics involve the
interaction of electromagnetic fields with atoms or mol-
ecules. One fundamental starting point for such studies em-
ploys the Maxwell-Heaviside equations for the electromag-
netic fields in combination with the Schro¨dinger or Dirac
equation for the atoms. For the high-frequency fields associ-
ated with transitions between atomic levels, it is usually pos-
sible to treat the fields as harmonic in time and space, with
an envelope that may vary slowly in time compared to an
optical cycle or slowly in space compared to a wavelength.
In these cases it has generally been possible to employ the
rotating-wave approximation in the atom equations and the
slowly-varying-envelope approximations in the field equa-
tions. Sometimes the rate-equation approximation is also ap-
plicable. These approximations dramatically simplify most
calculations of practical relevance. Recently, however, there
has been increasing interest in a class of field variations that
does not fit so conveniently with these established approxi-
mations.

One of the persistent trends in laser studies has been the
development of systems capable of producing ever shorter
optical pulses. Thus it has been possible, with colliding-pulse
mode-locked dye lasers, to directly obtain pulses that are as
short as 27 fs in duration at a wavelength of about 630 nm
@1#. Using pulse compression external to a colliding-pulse
mode-locked dye laser cavity, it has been possible to shorten
pulses centered at about 620 nm to a length of only about 6
fs @2#. With the invention of the self-mode-locked titanium:
sapphire laser@3#, it became possible to obtain pulses shorter
than 10 fs without external pulse compression. Pulses of
about 7.5 fs length have now been obtained directly from
these lasers at a wavelength of about 800 nm@4#. For still
shorter pulses, fiber-optic pulse compressors are useful, and
have led to the generation of pulses that are about 4.5 fs in
duration at 780 nm@5,6#. For direct titanium:sapphire laser
systems, it is anticipated that a further shortening by about a

factor of 2 will be possible with the development of im-
proved dispersion-compensation schemes@7#, and improve-
ments in the pulse compression results may also be expected.

Techniques for producing, measuring, and applying ul-
trashort electromagnetic pulses are being developed for in-
corporation in a variety of modern high-speed systems. As
an example of a fundamental application, short pulses are
sometimes used to manipulate atomic wave functions in test-
ing the predictions of quantum mechanics@8#. At a more
practical level, fs pulses such as those described above have
been employed in the measurement and characterization of
the electronic properties of materials and devices@9#. How-
ever, at the optical frequencies used, these pulses are some-
times only a few cycles in length; and it is not always clear
how to interpret experimental data. Thus the period of a sinu-
soidal wave is related to its wavelength by the formula

t0 ~fs!'10
3 l ~mm!, and this is 2.6 fs for a wavelength of 780

nm. Comparing this result to the recent pulse-length data
summarized above, one finds that the shortest optical pulses
are only about two or three cycles in length. In such cases the
fields cannot readily be described as almost sinusoidal, and
the validity of standard approximations may be in doubt. The
slowly-varying-envelope derivative approximations, for ex-
ample, require that the bandwidth associated with a transition
be small compared to the optical frequency. This condition is
not well satisfied for wide-band dye and titanium:sapphire
lasers, and one should expect significant discrepancies be-
tween experimental results and the approximate theories for
several amplifier@10,11# and oscillator@12# configurations.
The basic rotating-wave approximation would also fail in
such systems@13#. Even the typical nonlinear techniques em-
ployed to measure the pulse length may not always behave
as one would expect. Looked at more optimistically, there
may in these cases be new physical effects which would have
been overlooked in conventional analyses.

Once a source for optical pulses of a few fs length has
been developed, nonlinear techniques can be employed to
obtain pulses of similar length but having either a higher or
lower carrier frequency. Clearly, the carrier frequency does
not have to be lowered far below the optical range before the
resulting pulses would appear to be less than one cycle
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in length. Thus, a 5-fs pulse at a wavelength of 1.5mm
would be about one cycle in duration, and at a wavelength of
3.0 mm would qualify as a so-called half-cycle pulse with no
significant field reversals during the pulse period. In such
cases some of the standard approximations have no validity
at all, and more fundamental methods are required for the
treatment of the interaction of fields with atoms. One of the
most popular examples of such pulse down-shifting employs
few-fs pulses for the transient introduction of free carriers
into a biased semiconductor. The resulting current pulse can
radiate sub-single-cycle THz/or mm wave pulses@14#. Such
pulses have recently found many applications, particularly
again in the manipulation of atomic wave functions@15#.

An emphasis in this study is on the resonant and near-
resonant interaction of fs pulses with two-level media. To the
extent that an interaction involves only a single transition, a
real atom may be approximated as having only two levels,
and this approximation has been widely employed in inter-
preting and predicting observable phenomena@16–18#. How-
ever, it is important to remark at least briefly on possible
limitations of the two-level model for representing short-
pulse electromagnetic interactions with practical media.
While there may be some intrinsic mathematical interest in
models like those to be developed here, we would also like
to believe that these models can correspond at least approxi-
mately to actual physical systems. Thus, for example, it
might be possible to find a system with two electromagneti-
cally coupled energy levels that are far removed from all
other states, but in practice energy levels are often more-or-
less uniformly distributed. Also, the spectrum associated
with very short pulses may have a width that is comparable
to the underlying carrier frequency. For such cases one can
ask whether two-level models might still sometimes be real-
istic.

There are some specific circumstances that are to be
avoided if one wishes to use a two-level approximation in a
multilevel system. First, it is important that all of the fre-
quency content of the input pulse be close to~or less than if
there are no intermediate states! the energy spacing between
the two levels in the model. If this is not the case, then it is
possible that other levels will also be interacting with the
field. In most of the examples given here the carrier fre-
quency is at or below the transition frequency, and the spec-
tral broadening due to the pulse envelope is smaller than the
carrier frequency. In this respect, then, these examples are
not inconsistent with the idea of a two-level model.

Another likely constraint on use of a two-level model is
that the field amplitude must not be too large. In a system
approximated as a two-level absorber, for example, absorp-
tion of the field brings the atoms or molecules from the
ground state into the upper state. These excited-state atoms
might then be available for secondary excitation by some
coherent or incoherent process to other higher-lying levels,
or to ionization. The efficiency of such processes depends on
the amplitude of the field, and would be a serious concern if
a significant fraction of the atoms in the model were brought
into the upper state and remained there in the continuing
presence of the field. However, in most of our examples the
pulse field will be kept weak enough that only at most about
20% of the population is brought to the upper level. While

these arguments can only be qualitative, it does seem that, as
others have concluded, there may be significant regions of
practical parameter space where the two-level model would
be sufficient for the treatment of short-pulse interactions.

In addition to the two-level assumption, most previous
treatments employ further approximations in calculating the
response of an atomic medium to an applied field. The va-
lidity of these approximations is not always assured when the
field is in the form of a pulse only a few cycles in duration.
For example, one almost universally employed simplification
is known as the rotating-wave approximation, and the usual
reason for employing this approximation is to achieve
greater analytical simplicity. The resulting models have more
slowly evolving variables, and the solution methods are al-
ways more straightforward. Thus it is a matter of consider-
able practical importance to know the conditions under
which the rotating-wave approximation may be sufficiently
accurate for a particular application.

Recently, some effects of few-cycle electromagnetic
pulses on the populations of two-level absorbing systems
have been considered@19,20#. Here we will be treating gen-
eral dipole moment configurations, and we will establish a
framework for the description of two-level media with arbi-
trary inhomogeneous broadening. In addition to investigating
the evolution of the level populations, it will be of interest to
observe the development of the oscillating polarization dur-
ing and after the short excitation pulse, and the validity and
consequences of the rotating-wave-approximation for the
characterization of few-cycle interactions is explored. Incon-
sistent with that approximation, we find that there can be
significant delays and distortion of the polarization and
population pulses that result from such interactions, and non-
linear optical effects are found. Other approximations exam-
ined include the parity approximation and the rate-equation
approximation.

A general semiclassical model is briefly developed in Sec.
II for the dynamics of a laser medium having arbitrary levels
of homogeneous and inhomogeneous line broadening. Use of
this starting point provides a common basis for this analysis
and previous investigations of laser instabilities@21#, space
@10,11# and time @12# derivative approximations, and the
rotating-wave approximation@13#. The reduction of the gen-
eral model to a simpler and more specific set of equations for
a homogeneously broadened medium interacting with few-
cycle pulses is discussed in Sec. III. Numerical solutions of
the model are described in Sec. IV, and the delays and dis-
tortions of the polarization response in comparison to the
applied field are discussed. The limitations of the parity ap-
proximation in short-pulse systems is also discussed in Sec.
IV. Under some conditions a rate-equation-like approxima-
tion may be applicable even when the rotating-wave approxi-
mation is not, and this situation is discussed in Sec. V. The
rotating-wave approximation is generally not valid for few-
cycle pulses, as considered in Sec. VI, and the physical ef-
fects of several parameter variations are briefly treated in
Sec. VII.

II. GENERAL MODEL

In investigating the interaction of very short pulses with
material systems, it is necessary at an early stage to restrict
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the classes of interaction to be considered. The reason for
such a restriction is, of course, the excessively vast and di-
verse array of possible physical effects that one would need
to include for a truly complete model. As suggested by the
title, our main emphasis will be on interactions with media
possessing two distinct energy states. When the frequency of
incident radiation is near resonance with a transition in a
localized ensemble of atoms or molecules, absorptions or
emissions may be induced between the corresponding states.
The resulting redistribution of population can in turn change
the dipole moment of the ensemble, and this time-dependent
dipole moment can contribute to the overall electromagnetic
field in the region of interest. On a larger scale this effect can
lead to a time dependence of the macroscopic polarization,
including changes in the index of refraction and the loss or
gain. Behavior of this sort is well known in solids, liquids,
and gases, and one purpose here will be to develop methods
for treating such resonant interactions when the electromag-
netic pulses are only a few cycles in length.

Our starting point for this semiclassical study will be the
usual density-matrix equation@22#

]r̃

]t
52

i

\
@H̃,r̃ #, ~1!

where the right-hand side includes the commutator of the
matrix form of the Hamiltonian operatorH ~between eigen-
functions of the unperturbed system! with the density matrix
r. As mentioned above, near-resonant interactions can often
be treated including only two strongly coupled energy states.
Transitions involving other states are regarded as being so
far from resonance with the incident field that the inclusion
of simple phenomenological relaxation terms provides an ad-
equate description of their effects. In this familiar case Eq.
~1! represents four equations for the elements of the 232
density matrix, and these equations can be written in ex-
panded form as

]r21

]t
52

i

\
@H21r111H22r212r21H112r22H21#, ~2!

]r22

]t
52

i

\
@H21r122r21H12#, ~3!

]r11

]t
52

i

\
@H12r212r12H21#, ~4!

r125r21* , ~5!

where the subscripts 2 and 1 refer, respectively, to the
higher- and lower-energy states of the transition. Equation
~5! is written using the fact that the density matrix is Her-
mitian.

The Hamiltonian operator will now be separated into a
partH0 , which depends only on the static background fields
experienced by an electron, and a partH8, which represents
the effects of the applied electromagnetic field. For the sys-
tems of interest here, the interaction with the applied field
can be written in the form

H852m•E, ~6!

where m5er is the dipole moment operator, andE is the
electric field, assumed constant over the dimensions of the
atom. With these substitutions Eqs.~2!–~4! become

]r21

]t
52

i

\
@~H01H8!21r111~H01H8!22r21

2r21~H01H8!112r22~H01H8!21#

52
i

\
@~E22E1!r211m21•E~r222r11!

2~m222m11!•Er21#, ~7!

]r22

]t
52

i

\
@~H01H8!21r122r21~H01H8!12#

52
i

\
E•~m12r212m21r12!, ~8!

]r11

]t
52

i

\
@~H01H8!12r212r12~H01H8!21#

52
i

\
E•~m21r122m12r21!. ~9!

In these resultsE2 and E1 are the energy eigenvalues, and
we have used the fact that the eigenfunctions of the back-
ground HamiltonianH0 are an orthogonal set. It is usual to
replace the energy difference by its frequency equivalent
\v0 , where v0 is the center frequency of the transition.
With this substitution, Eq.~7! can be written

]r21

]t
52 i Fv01

1

\
~m222m11!•EGr212

i

\
m21•E~r222r11!.

~10!

Equations~5! and ~8!–~10! describe the behavior of the
density matrix in terms of the applied electromagnetic field.
From the density matrix it is possible to derive the polariza-
tion of an ensemble of atoms. The dipole moment~or the
ensemble average of the expectation value of the dipole mo-
ment operator! for an atom can be written

p5tr~ r̃m̃!5r11m111r12m211r21m121r22m22. ~11!

If this result for a single atom is integrated over a macro-
scopic ensemble of atoms, one obtains an expression for the
polarization of the resonant medium. This polarization in
turn will contribute to the behavior of the overall electromag-
netic field.

As noted previously, focusing this semiclassical analysis
on transitions between only two energy states would gener-
ally require some phenomenological method of incorporating
transitions to and from other states of the system. A gener-
alization to include inhomogeneous broadening might some-
times be useful as well. Thus, we rewrite Eqs.~5! and ~8!–
~10! in the more complete forms
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S ]

]t
1v

]

]zD r21~v,va ,u,f,z,t !

52F iva1
i

\
~m222m11!•E~z,t !1gGr21~v,va ,u,f,z,t !

2
i

\
m21•E~z,t !@r22~v,va ,u,f,z,t !

2r11~v,va ,u,f,z,t !#, ~12!

S ]

]t
1v

]

]zD r22~v,va ,u,f,z,t !

5l2~v,va ,u,f,z,t !2g2r22~v,va ,u,f,z,t !

2
i

\
E~z,t !•@m12r21~v,va ,u,f,z,t !

2m21r12~v,va ,u,f,z,t !#, ~13!

S ]

]t
1v

]

]zD r11~v,va ,u,f,z,t !

5l1~v,va ,u,f,z,t !2g1r11~v,va ,u,f,z,t !

1g21r22~v,va ,u,f,z,t !

1
i

\
E~z,t !•@m12r21~v,va ,u,f,z,t !

2m21r12~v,va ,u,f,z,t !#, ~14!

r12~v,va ,u,f,z,t !5r21* ~v,va ,u,f,z,t !], ~15!

whereg2 and g1 are the total decay rates of the upper and
lower levels, respectively,g21 is the rate of direct decays
from level 2 to level 1,g is the decay rate of the off-diagonal
elements,l2 andl1 are the pumping rates, and the notation
c.c. means the complex conjugate of the preceding terms.
The laser medium is assumed to have both Doppler and non-
Doppler inhomogeneous broadening mechanisms, withv be-
ing thez component of the velocity, andva the center fre-
quency of the laser transition for members of an atomic or
molecular classa. The medium is also assumed to have an
orientational distribution of transition moments, with the
spherical coordinatesu andf distinguishing the orientational
classes.

To the density-matrix equations for the atomic or molecu-
lar populations and polarizations must be added an equation
for the electric field. The wave equation for the electric field
of a linearly polarized wave in a laser medium can be written

]2E~z,t !

]z2 2m1s
]E~z,t !

]t
2m1«1

]2E~z,t !

]t2 5m1

]2P~z,t !

]t2 .

~16!

The permeabilitym1 and permittivity «1 should be under-
stood to include all of the magnetic and dielectric properties
of the laser medium except for the polarizationP(z,t),
which is due to the lasing atoms or molecules. From Eq.~11!

the polarization driving this equation can be related back to
the off-diagonal density matrix elements by

P~z,t !5E
0

2pE
0

pE
0

`E
2`

`

n~v,va ,u,f,z,t !

3@m11r11~v,va ,u,f,z,t !1m21r12~v,va ,u,f,z,t !

1m12r21~v,va ,u,f,z,t !

1m22r22~v,va ,u,f,z,t !#dv dvadV, ~17!

where n(v,va ,u,f,z,t)dv dvadV is the number of mol-
ecules per unit volume at positionz and timet having theirz
component of velocity betweenv andv1dv, their intrinsic
transition frequency betweenva and va1dva , and their
orientation within the solid angledV about the~u,f! direc-
tion. Equations~12!–~17! are a complete set from which the
time and space dependences of the electric field and of the
atomic or molecular parameters can be determined, subject
to all applicable boundary conditions.

The formalism that has been summarized above is some-
what more complicated than we will need for this particular
investigation, but it may also find use as a reference point for
related studies. Our central purpose here will be to study the
response of a resonant medium in the case that the electro-
magnetic pulse envelope varies significantly on a time scale
of an optical cycle. Complications of the model which do not
elucidate that particular topic will be set aside in the follow-
ing sections.

III. SPECIFIC MODEL

One important feature of the model described in Sec. II is
its inclusion of an arbitrary orientational distribution of the
transition dipoles. With this formalism one can calculate the
anisotropic gain distribution that results for arbitrary polar-
izations of the pump and signal fields@23#. On the other
hand, pending some particular application for such polariza-
tion effects, they are not required for an initial investigation
of few-cycle pulse interactions. Thus it will now be assumed
that the medium is orientationally homogeneous, or more
specifically that all of the matrix elements of the dipole mo-
ment operator are parallel to the linearly polarized electric-
field vector.

If the dipole matrix elements of all of the atoms are par-
allel to the field Eqs.~12!–~17! reduce to the scalar set

S ]

]t
1v

]

]zD r21~v,va ,z,t !

52F iva1
i

\
~m222m11!E~z,t !1gGr21~v,va ,z,t !

2
i

\
m21E~z,t !@r22~v,va ,z,t !2r11~v,va ,z,t !#,

~18!
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S ]

]t
1v

]

]zD r22~v,va ,z,t !

5l2~v,va ,z,t !2g2r22~v,va ,z,t !2
i

\
E~z,t !

3@m12r21~v,va ,z,t !2m21r12~v,va ,z,t !#, ~19!

S ]

]t
1v

]

]zD r11~v,va ,z,t !

5l1~v,va ,z,t !2g1r11~v,va ,z,t !1g21r22~v,va ,z,t !

1
i

\
E~z,t !@m12r21~v,va ,z,t !2m21r12~v,va ,z,t !#,

~20!

r12~v,va ,z,t !5r21* ~v,va ,z,t !, ~21!

]2E~z,t !

]z2 2m1s
]E~z,t !

]t
2m1«1

]2E~z,t !

]t2 5m1

]2P~z,t !

]t2 ,

~22!

P~z,t !5E
0

`E
2`

`

n~v,va,z,t !@m11r11~v,va ,z,t !

1m21r12~v,va ,z,t !1m12r21~v,va ,z,t !

1m22r22~v,va ,z,t !#dv dva . ~23!

Formally, this reduction has been achieved by requiring that
the density distributionn(v,va ,u,f,z,t) include a d-
function angular factor. This factor has been multiplied by
each of the four density-matrix equations. The resulting
equations have been integrated over all angles, and new
pump and density matrix variables have been introduced re-
flecting the integrated form of the old variables. Equations
~18!–~23! are still a complete set from which the time and
space dependences of the electric field and of the atomic or
molecular parameters can in principle be determined.

As a next simplification, it will be assumed that the me-
dium is spectrally homogeneous. If all of the atoms have the
same intrinsic center frequency (va5v0), and Doppler ef-
fects are unimportant (v50), then Eqs.~18!–~21! and ~23!
reduce to

]

]t
r21~z,t !52F iv01

i

\
~m222m11!E~z,t !1gGr21~z,t !

2
i

\
m21E~z,t !@r22~z,t !2r11~z,t !#, ~24!

]

]t
r22~z,t !5l2~z,t !2g2r22~z,t !2

i

\
E~z,t !

3@m12r21~z,t !2m21r12~z,t !#, ~25!

]

]t
r11~z,t !5l1~z,t !2g1r11~z,t !1g21r22~z,t !1

i

\
E~z,t !

3@m12r21~z,t !2m21r12~z,t !#, ~26!

r12~z,t !5r21* ~z,t !, ~27!

P~z,t !5n~z,t !@m11r11~z,t !1m21r12~z,t !1m12r21~z,t !

1m22r22~z,t !#. ~28!

This reduction has been achieved by requiring that the den-
sity distributionn(v,va ,z,t) include ad-function factor in
the intrinsic center frequency and the velocity. This factor
has been multiplied by each of the four density-matrix equa-
tions. The resulting equations have been integrated over all
frequencies and velocities, and new pump and density-matrix
variables have been introduced reflecting the integrated form
of the old variables.

It would be usual in a calculation of this type to postulate
that the wave functions have parity. In this case the dipole
matrix elementsm22 andm11 would vanish in Eqs.~24! and
~28! and their predecessors. In fact if the rotating-wave ap-
proximation were valid, one finds that the terms involving
m22 andm11 in Eq. ~24! would average to zero even without
a parity assumption, and the corresponding terms in Eq.~28!
could introduce only a slowly varying~nonoptical frequency!
polarization component. Then, with suitable restrictions on
the pumping and decay processes, special cases of this model
would be compatible with standard homogeneously-
broadened-medium density-matrix formulations@24,25#.
However, one purpose of this study is to explore the re-
sponse of a laser medium in cases where the electromagnetic
fields vary too quickly for the rotating-wave approximation
to be applicable. Thus, it is of interest here to see what sorts
of effects usually neglected terms likem22 and m11 might
imply.

One of the simplest and most relevant applications of this
formalism is to a two-level medium which, prior to the ar-
rival of the electromagnetic pulse, is resting peacefully in its
ground state. To explore this case, we will turn off the pump-
ing rates (l15l250) and specialize the relaxation rates ac-
cording tog150, g215g2 . In this case Eqs.~25! and ~26!
reduce to

]

]t
r22~z,t !52g2r22~z,t !2

i

\
E~z,t !@m12r21~z,t !

2m21r12~z,t !#, ~29!

]

]t
r11~z,t !51g2r22~z,t !1

i

\
E~z,t !@m12r21~z,t !

2m21r12~z,t !#. ~30!

It is now helpful to introduce a new parameter which
combines the off-diagonal density matrix elements with the
off-diagonal dipole moment matrix elementsh5m12r21
@26#. With this substitution Eqs.~24! and ~28!–~30! become

]

]t
h~z,t !52F iv01

i

\
~m222m11!E~z,t !1gGh~z,t !

2
i

\
m12m21E~z,t !@r22~z,t !2r11~z,t !#,

~31!
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]

]t
r22~z,t !52g2r22~z,t !2

i

\
E~z,t !@h~z,t !2h* ~z,t !#,

~32!

]

]t
r11~z,t !51g2r22~z,t !1

i

\
E~z,t !@h~z,t !2h* ~z,t !#,

~33!

P~z,t !5n~z,t !@m11r11~z,t !1m22r22~z,t !1h~z,t !

1h* ~z,t !#, ~34!

where use has been made of the Hermitian character of the
density and dipole moment matrices. An immediate implica-
tion of Eqs.~31!–~34! is that the polarization is independent
of the phase angle of the dipole moment matrix elementm12,
since this element only appears in a product with its complex
conjugate. This must at least be true after any effects of
initial conditions on the wave functions have died away, and
as noted above the medium is assumed to have been unper-
turbed before the arrival of the electromagnetic pulse.

It is also convenient to introduce the magnitude of the
off-diagonal dipole moment matrix elementm5um12u, a nor-
malized off-diagonal density matrix elementp52h/m, a
normalized electric fieldA52mE/g\, a probability differ-
enced5r222r11, a probability summ5r221r11, and a
normalized timet5gt. With these definitions Eqs.~31!–
~34! become

]

]t
p~z,t !52F11 i

v0

g
1 i

m222m11

2m
A~z,t!Gp~z,t!

2 id~z,t!A~z,t!. ~35!

]

]t
d~z,t!52

g2

g
@d~z,t!1m~z,t!#1A~z,t!pi~z,t!,

~36!

P~z,t!5n~z,t!mH m11

2m
@m~z,t!2d~z,t!#1

m22

2m
@m~z,t!

1d~z,t!#1pr~z,t!J , ~37!

where the subscriptsr and i refer, respectively, to the real
and imaginary parts. It may be noted that for a true two-level
system in this notation the summ is always equal to unity.
These equations can now be simplified a little further and
replaced by the real set

]

]t
pi~z,t!52pi~z,t!2@v081mdA~z,t!#pr~z,t!

2A~z,t!d~z,t!, ~38!

]

]t
pr~z,t!52pr~z,t!1@v081mdA~z,t!#pi~z,t!,

~39!

]

]t
d~z,t!52r@11d~z,t!#1A~z,t!pi~z,t!, ~40!

P8~z,t!5msp1md@11d~z,t!#1pr~z,t!, ~41!

where we have introduced the normalized line-center fre-
quencyv085v0 /g @12#, the normalized dipole moment dif-
ferencemd5(m222m11)/(2m), the normalized lower-state
dipole momentmsp5m11/m, the normalized decay rate ratio
r5ga /g, and the normalized polarizationP85P/(nm).
The symbolspr andpi represent the real and imaginary parts
of the normalized off-diagonal density matrix element.

In Eq. ~41! the static lower state dipole moment is repre-
sented by the symbolmsp. The subscript sp here is intended
to stand for spontaneous polarization, and thusmsp is the
normalized static polarization that remains even when an
atom or molecule is in its ground state. In our two-level
system this ground-state occupation is represented by the
conditionsd(z,t)521 and pr(z,t)50. Whenmsp is non-
zero, the inevitable temperature dependence of this residual
spontaneous polarization is called pyroelectricity@27#, and in
cases where the polarization exhibits hysteresis it has been
termed ferroelectricity in analogy with the corresponding be-
havior of ferromagnetic media@28#. For purposes of this dis-
cussion a static dipole moment is not essential, and thus the
term msp will be dropped in our further discussions.

IV. PARITY APPROXIMATION

A significant mathematical complication of the models
developed here is that the dependent variables are functions
of both space and time. As the various frequency compo-
nents that result from any nonlinear interactions will in gen-
eral have different phase velocities, the rigorous solutions to
this model would seem to require the detailed specification
of boundary conditions followed by complicated numerical
solutions of the governing partial differential equations. The
results of such calculations might be too specific to yield
general insights into the underlying physics. Fortunately,
however, there may be some justification for focusing ini-
tially on a much simpler problem.

As discussed above, the shortest pulses in an absolute
sense have been obtained at wavelengths around 800 nm in
the near-infrared region of the spectrum, and those pulses are
several cycles in length. The more interesting cases of pulses
that are less than a cycle in length have all occurred in the
THz or mm region of the spectrum, where the pulses have
been obtained by down shifting from the visible or near in-
frared. The coherence length, which governs the distance
over which harmonics might propagate with the same effec-
tive phase velocity as the fundamental frequency compo-
nents, scales as the wavelength and becomes quite large for
far-infrared or submillimeter wavelength experiments. This
means that phase matching usually does not present a serious
problem in such studies, and nonlinear interactions are likely
to be limited by absorption rather than by phase mismatch
@29#. As in previous studies, we will focus our interest on a
thin slab of material and disregard possible effects ofz varia-
tions @19,20#.

The response of a two-level medium to an arbitrarily
varying electromagnetic field is governed by Eqs.~38!–~41!.
For a localized medium, these equations become
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d

dt
pi~t!52pi~t!2@v081mdA~t!#pr~t!2A~t!d~t!,

~42!

d

dt
pr~t!52pr~t!1@v081mdA~t!#pi~t!, ~43!

d

dt
d~t!52r@11d~t!#1A~t!pi~t!, ~44!

P8~t!5md@11d~t!#1pr~t!, ~45!

where the static lower state dipole momentmsp has been
dropped.

To explore the implications of Eqs.~42!–~45!, it is now
necessary to specify the mathematical form of the incident
few-cycle electromagnetic pulse. We begin by considering
symmetric sinusoidal-Gaussian pulses of the form

A~t!5A0 exp~2t2/t0
2!cos~v8t!, ~46!

whereA0 is the normalized pulse-envelope amplitude,t0 is
the normalized 1/e half-width in time of the electric-field
pulse envelope, andv8 is the normalized frequency of the

underlying field oscillations. This Gaussian form for the
pulse envelope function is not chosen here for any compel-
ling physical reason, and other pulse shapes might be more
appropriate for specific practical applications. The Gaussian
envelope does, however, resemble the pulses seen in some
systems, and this is one of several shapes that have been
employed in pulse propagation studies. The mathematical
form of Eq. ~46! does not, of course, mean that the pulses
actually look like modulated sine waves. Forv8,1/t0 , little
oscillation occurs during the Gaussian pulse envelope, and
the pulse would look more like a simple half-cycle Gaussian.

With suitable parameter choices, Eqs.~42!–~46! may be
solved for the interaction of a range of very short pulses with
two-level media. As a first step, we will consider briefly
some of the consequences of not making the parity approxi-
mation. A typical input cosinusoidal-Gaussian laser pulse
A(t) is shown in Fig. 1~a!. In this case the pulse parameters
include the normalized amplitudeA0510.0, the normalized
width t051.0, and the normalized frequencyv855.0. Fig-
ure 1~b! shows the real part of the normalized polarization
pr , that results when the pulse of Fig. 1~a! is incident on a
system of atoms characterized by the normalized population
decay rater51.0 and the normalized intrinsic transition fre-
quencyv08510.0. The corresponding values of the imagi-
nary part of the polarizationpi and the population difference
d(t) are shown in Figs. 1~c! and 1~d!, respectively. In this
example the normalized dipole moment differencemd is set
equal to zero, which is the appropriate value if the wave
functions have parity~or if m225m11!. We see that for these
values the population of the upper state is increased sharply
whenever the field has either a positive or a negative maxi-
mum, and this fact will be discussed further below. The
slight general asymmetry in Fig. 1~d! indicates some longer-
term upper-state population accumulation.

If the wave functions lack parity, the response of the me-
dium becomes more complex. Figure 2~a! shows the time-
dependent population difference for the same parameter val-
ues as Fig. 1~d!, except that in Fig. 2~a! the dipole moment
difference ismd50.2. In this case the population difference
has more structure, including the gradual development of a
higher harmonic of the underlying electromagnetic field fre-

FIG. 1. Solutions of the density-matrix equations that result
when a cosinusoidal-Gaussian pulse of widtht0851.0, amplitude
A0510.0, and frequencyv855.0 is incident on a system of atoms
or molecules characterized by the population decay rater51.0,
transition frequencyv08510.0, and dipole moment differencemd

50.0. The solutions include~a! the amplitudeA/A0 , ~b! the real
part of the polarizationpr , ~c! the imaginary part of the polarization
pi , and~d! the population differenced.

FIG. 2. Population difference solutions for nonzero values of the
dipole moment differencemd including ~a! md50.2 and ~b! md

50.5. In these cases the population difference has higher harmonics
of the underlying field frequency.
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quency. This behavior should probably not be considered
unexpected, since in both Eqs.~42! and~43! the factormd is
seen to introduce additional nonlinearities to the model. If
the dipole moment difference is increased further, the re-
sponse becomes still more complicated, and an example is
shown in Fig. 2~b! for the valuemd50.5. It is clear that one
area of potential interest relating to the parametermd would
be nonlinear optics with few-cycle pulses.

As noted above, most studies of two-level atoms assume
that the wave functions do have parity. Thus, for simplicity
we will now setmd equal to zero for the remainder of this
study. In this limit Eqs.~42!–~45! reduce to the simpler
model

d

dt
pi~t!52pi~t!2v08pr~t!2A~t!d~t!, ~47!

d

dt
pr~t!52pr~t!1v08pi~t!, ~48!

d

dt
d~t!52r@11dt#1A~t!pi~t!, ~49!

P8~t!5pr~t!. ~50!

This model will be the basis for all of the following consid-
erations.

V. RATE-EQUATION-LIKE APPROXIMATION

An interesting feature of the results noted in the previous
section is that ifmd is equal to zero (m225m11), the upper-
state population tends to increase whenever the field has ei-
ther a positive or a negative maximum. This curious behav-
ior is not a consequence of the particular cosine-Gaussian
pulse shape that was adopted for Fig. 1~a!. To show this, the
corresponding results with a sine-Gaussian pulse are pre-
sented in Fig. 3. The sine-Gaussian input pulse is shown in
Fig. 3~a! and the associated population difference is shown
in Fig. 3~d! using all of same parameter values as in Fig. 1. It
is clear from this comparison that, independent of the rela-
tive phases of the wave and its envelope, the population is
enhanced by both the positive and negative polarity phases
of the input pulse.

The polarity independence can have a fairly simple inter-
pretation for certain operating conditions. For example, we
may suppose that the incident field pulse has a carrier wave
that, like Eq. ~46!, is cosinusoidal in form. If the field is
intense~as in Fig. 1, whereA0510.0!, and the transition
frequency is large~as in Fig. 1, wherev08510.0!, it is helpful
to first guess that the real polarization will also be somewhat
cosinusoidal@which Fig. 1~b! shows is the case#. It then fol-
lows from Eq.~47! that the imaginary polarization must be
somewhat sinusoidal@which Fig. 1~c! shows it is#. Then it is
clear from Eq.~48! that, as postulated, the real polarization is
indeed somewhat cosinusoidal. The driving term in Eq.~49!
must now be in the form of a cosine times a sine, which
corresponds to a sine at twice the original frequency. Finally,
Eq. ~49! implies that the population difference will be modu-
lated according to a cosine function at twice the input fre-
quency, and this is exactly what is seen in Fig. 1~d!. Similar

arguments provide an explanation for the double-frequency
oscillations of the population difference in Fig. 3~d!.

The above interpretation relied on the fact that bothA0

andv08 are large in this example. Interestingly, very similar
results are also obtained under what would seem to be quite
different conditions. We first observe that the real and imagi-
nary polarization components tend to relax to zero in a time
on the order of unity in these normalized units. If the driving
terms in these equations vary slowly enough on this time
scale, it becomes a good approximation to set the time de-
rivatives in the polarization equations equal to zero. For con-
ventional longer-wavelength pulses, for example, this condi-
tion might sometimes be well satisfied. This type of
simplification is often known as adiabatic elimination, and in
conventional rotating-wave-approximated optical systems
the elimination of polarization variables is more commonly
called the rate-equation approximation. A systematic study
of this type of approximation, and its more accurate versions,
has recently been reported@30#.

The applicability of the rate-equation-like approximation
that has just been described may be shown by means of an
example. In Fig. 4 is a plot of the equation solutions for the
same conditions as for Fig. 1, except that the input pulse for
Fig. 4 is much longer and weaker. In particular, the pulse
amplitude is here reduced toA051.0, the pulse width ist0
510.0, and the frequency isv850.5. It may be seen that in
this case the real and imaginary polarization components are

FIG. 3. Solutions for a sinusoidal-Gaussian input pulse with the
same parameter values as Fig. 1. As in Fig. 1 the population differ-
ence is enhanced by both the positive and negative polarity phases
of the input pulse.
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both approximately in phase with the driving field, and this is
characteristic of adiabatic following behavior. Interestingly,
the population difference is still modulated at twice the input
frequency, even though the conditions here are very differ-
ent.

If the left-hand sides of Eqs.~47! and~48! are set equal to
zero, the resulting algebraic equations can be solved for the
polarization components. The results are

pi~t!52
A~t!d~t!

11v08
2 , ~51!

pr~t!52
v08A~t!d~t!

11v08
2 . ~52!

When Eq.~51! is substituted into Eq.~49!, one obtains the
differential equation

d

dt
d~t!1S A2~t!

11v08
2 1r Dd~t!52r. ~53!

The formal integral of this equation can be written as@31#

d~t!52r expF2E tS A2~t8!

11v08
2 1r Ddt8G

3E t

expF E t8S A2~t9!

11v08
2 1r Ddt9Gdt8

1C expF2E tS A2~t8!

11v08
2 1r Ddt8G , ~54!

whereC is an integration constant.
For some forms for the input pulse it would be possible to

simplify Eq. ~54! analytically. However, the important aspect
of this equation for our present purposes is that the popula-
tion difference depends only on the square of the electric-
field amplitude rather than on the amplitude itself. In particu-
lar, the population difference is still driven upward during
both phases of the input field, in agreement with the plots
shown in Fig. 4~d!. This result is analogous to the more
conventional rate-equation approximations in which the
populations are driven by the electromagnetic intensities
rather than the fields. The distinction between these short-
pulse results and the conventional rate-equation approxima-
tion is, however, very significant. The intensity is not pro-
portional to the field squared, but only to the time average of
that quantity. This distinction has arisen in the present dis-
cussion because we have not yet considered the rotating-
wave approximation. In contrast to all previous treatments
we are making~or at least considering making! the rate-
equation-like approximation before the rotating-wave ap-
proximation. Thus we wish to emphasize that these two ap-
proximations rest on different assumptions, and, at least in
principle, they are independent of each other. The rate-
equation~-like! approximation requires that the field ampli-
tude envelope~or just the instantaneous field! and the popu-
lations vary slowly compared to the coherence decay time.
On the other hand, the rotating-wave approximation, as will
be discussed below, requires that the fields not be too strong
and that the polarization and population components vary
slowly compared to an optical cycle. With very short pulses
the coherence decay time may be greater than or less than an
optical cycle, and thus these two approximations may be-
come valid or invalid independently of each other.

VI. ROTATING-WAVE APPROXIMATION

One of the most basic approximations in dealing with the
interaction of light with atoms is, for historical reasons,
known as the rotating-wave approximation, and this approxi-
mation has long been recognized@32#. The rotating-wave
approximation is generally found to be valid as long as the
optical fields are not too intense, and the polarization and
population components do not vary significantly within an
optical cycle. Thus, especially in cases of very high intensi-
ties @13# or very short pulses@19,20#, the validity of the
approximation may be in doubt. Our emphasis here is on
electromagnetic pulses that are at most a few cycles in
length, and it is appropriate to consider the adaptations of our
model that might be necessary to test this approximation.

As a starting point, we rewrite Eqs.~47!–~49! in the form

FIG. 4. Solutions for a cosinusoidal-Gaussian input pulse with
the same parameter values as Fig. 1, except that the pulse amplitude
is here reduced fromA0510.0 toA051.0, the width is increased
from t051.0 to t0510.0, and the frequency is reduced fromv8
55 to v850.5. In contrast to Fig. 1, the polarization components
are both in phase with the field.
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d

dt
p~t!52p~t!2 iv08p~t!2 iA~t!d~t!, ~55!

d

dt
d~t!52r@11d~t!#1A~t!pi~t!, ~56!

As noted above, we could begin here instead with Eqs.~42!–
~44!, in which the parity approximation has not been made,
but the rotating-wave approximation as generalized to our
non-parity-approximated model is readily seen to eliminate
the effects of the nonzero diagonal dipole matrix elements.
Thus, the inclusion of these dipole terms would obscure
other fundamental questions about the effects of the approxi-
mation, and for brevity we start with the parity-approximated
model.

To be specific, we assume that the field and polarization
can be written in the forms

A~t!5A0~t!cos~v8t!

5
A0~t!

2
@exp~ iv8t!1exp~2 iv8t!#, ~57!

p~t!5p0~t!exp~2 iv8t!. ~58!

With these substitutions, and division by the negative expo-
nential, Eqs.~55! and ~56! take the forms

d

dt
p0~t!52p0~t!1 i ~v82v08!p0~t!

2 i
A0~t!d~t!

2
@exp~2iv8t!11#, ~59!

d

dt
d~t!52r@11d~t!#1

A0~t!p0i~t!

4
@21exp~2iv8t!

1exp~22iv8t!#1 i
A0~t!p0r~t!

4
@exp~2iv8t!

2exp~22iv8t!#, ~60!

where the subscriptsr and i on the polarization amplitude
again denote the real and imaginary parts.

The rotating-wave approximation now consists of time
averaging and thus dropping all the oscillating exponential
terms. Within this approximation Eqs.~59! and ~60! can be
written in the real forms

d

dt
p0i~t!52p0i~t!1~v82v08!p0r~t!2

A0~t!d~t!

2
,

~61!

d

dt
p0r~t!52p0r~t!2~v82v08!p0i~t!, ~62!

d

dt
d~t!52r@11d~t!#1

A0~t!p0i~t!

2
. ~63!

The advantage of the rotating-wave approximation for long-
pulse or cw electromagnetic waves is, of course, that the
rapidly varying functions have all been eliminated from the

equations, and in seeking either analytical or numerical so-
lutions one need only be concerned in these equations with
the envelope functions for the electric field and polarization.
For the very short pulse envelopes of interest here, the va-
lidity of the rotating-wave approximation is not always as-
sured.

It is interesting to note the very close resemblance in form
between Eqs.~47!–~49! ~before the approximation! and Eqs.
~61!–~63! ~after the approximation!. The most fundamental
difference is that in the general set one is dealing with the
absolute frequency of the transitionv08 , whereas in the ap-
proximate set only the difference between that frequency and
the assumed carrier frequency (v82v08) appears. Because of
this similarity the solution methods for the two sets are iden-
tical. To obtain a rigorous comparison between the predic-
tions of the two models, it is only necessary in the approxi-
mate set to transform the results back to the original field
variables.

A set of solutions to Eqs.~61!–~63! are given in Fig. 5. In
this figure the plotted variables again include~a! the input
field amplitudeA(t), ~b! the real part of the polarization
pr(t), ~c! the imaginary part of the polarizationpi(t), and
~d! the population differenced(t). The parameters used in
these plots include the peak amplitudeA0510.0, the width
t051.0, the population decay rater51.0, the frequency
v855.0, and the transition frequencyv08510.0. Since these
parameter values are the same as those employed in obtain-
ing Fig. 1, the two sets of results may be compared directly.

FIG. 5. Solutions for the same parameter values as Fig. 1 but
with the rotating-wave-approximation. This approximation elimi-
nates frequency harmonics from the variables.
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It is clear from this comparison that the rotating-wave ap-
proximation eliminates frequency harmonics from the vari-
ables, and its simplifying effects on the population difference
are particularly conspicuous. Interestingly, the rate-equation-
like approximation discussed above can retain this faster
structure. However, for many values of the governing param-
eters in few-cycle interactions neither of these approxima-
tions permits an accurate representation of the actual popu-
lation and polarization dynamics.

VII. OTHER PARAMETER VARIATIONS

For any potentially realistic model for the interaction of
light with atoms, there must be many parameters to match
with experimental conditions. That is true in the present case,
but except for the diagonal dipole matrix elements we have
not focused on the consequences of different values for these
parameters. In this section we will consider some of these
parameters very briefly, and for the most part it will be
straightforward to interpret their implications physically.

One parameter that can be understood almost indepen-
dently from other aspects of the model is the decay rate ratio
r5g2 /g. To illustrate the effects ofr, we compare typical
solutions of Eqs.~47!–~49! that differ only in the adopted
value for that parameter. The normalized amplitude pulse
and other parameters used in Fig. 1 are also the basis for the
results given in Fig. 6. The decay rate ratior51 was used in
obtaining the population difference curve in Fig. 1~d!, and
the corresponding population difference results for smaller
values ofr including r50.5, 0.2, 0.1, and 0.0 are plotted in
Fig. 6. These results have the straightforward interpretation
that with smaller values of the decay rate ratio the population
collects in the upper state for a longer period of time. In
many practical media the population decay lifetime is much
longer than the phase-coherence time, so this simplest pos-
sible requirementr50 would often be very realistic for
short-pulse applications. Ifr50, Eq. ~49! may be replaced
by

d

dt
d~t!5A~t!pi~t!. ~64!

Another parameter of interest is the transition frequency.
To illustrate the effects ofv08 , we compare typical solutions
of Eqs.~47!–~49! that differ mainly in the adopted value for
that parameter. The normalized amplitude pulse and other
parameters used in Fig. 1 are retained. The transition fre-
quencyv08510.0 was used in obtaining the results shown in
Fig. 1, and the corresponding population difference results
for the smaller valuev0855.0 are plotted in Fig. 7. In this
case the driving field is essentially at the resonance for the
transition, and to obtain a comparable vertical scale the field
amplitude has been reduced from 10.0 to 2.0. We see that at
resonance there is a longer delay in the development and
decay of the polarization oscillations, and also a much
greater sensitivity to the input field.

Another parameter of particular interest is the pulse am-
plitude. This is one of the parameters that bears on the va-
lidity of using a two-level model for a real optical medium.
To illustrate the effects ofA0 , we compare typical solutions
of Eqs. ~47!–~49! that differ in the adopted value for that

parameter. The other parameters used in Fig. 1 are retained.
The amplitudeA0510.0 was used in obtaining the results
shown in Fig. 1, and the corresponding population difference
results for the smaller valuesA055.0 and 2.0 are plotted in
Fig. 8. It is clear from the figure that, as one would expect,
smaller values of the amplitude leave the upper state with a
lower population.

VIII. DISCUSSION

In this work we have undertaken a systematic investiga-
tion of the interaction of very short electromagnetic pulses
with two-level media. The pulses under consideration are
only a few cycles in length, or may even be less than a single
cycle. For pulses of such lengths many of the standard tech-
niques and approximations are of doubtful validity. As a
foundation for this work and possible future studies, a formal
semiclassical model was briefly developed including most of
the line broadening and decay processes that one would ever
likely be interested in for amplifier or absorber investiga-
tions.

For the detailed results discussed here, we have focused
on the special case of a two-level absorber in which the
lower level of the transition is the ground state. With this
example together with the more general models, it would be
straightforward to compute and sometimes intuit the behav-

FIG. 6. Solutions for the population difference using the same
parameter values as Fig. 1, except that the decay rate ratio takes on
the values~a! r50.5, ~b! r50.2, ~c! r50.1, andr50.0. With
smaller values of the decay rate ratio, the population collects in the
upper state.
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ior of other cases of potential interest. Among the results
presented here are a semiclassical formalism for interactions
with media in which the diagonal elements of the dipole
moment matrix are not equal to zero. For very short pulses
these elements may have a strong effect on the polarization
and population response of a two-level medium, while for
longer pulses describable with the rotating-wave approxima-
tion these matrix elements have no effect on the interaction
dynamics.

One of the most common approximations in studying the
interaction of electromagnetic fields with atoms is commonly
referred to as the rate-equation approximation. In this ap-
proximation, polarization variables are adiabatically elimi-
nated from the overall governing model. Always in the past
this approximation has been made subsequent to the even
more universally employed rotating-wave approximation.
However, in the context of interactions with very short

pulses, both of these approximations may fail to give a sat-
isfactory description of the interactions. We have suggested
that a rate-equation-like approximation may sometimes be
applicable even when the rotating-wave approximation is
not. The standard rate-equation approximation requires that
the field envelope and populations vary negligibly within the
phase-coherence time, while the rotating-wave approxima-
tion requires that the polarization amplitudes and populations
vary negligibly within an optical cycle. In very short-pulse
interactions the coherence time might be greater than a pe-
riod of the electromagnetic field as in typical optical cases, or
it might in principle be less than the period for THz or other
very low-frequency waves. Our rate-equation-like approxi-
mation involves the elimination of the polarization variables
in a model which retains the absolute amplitude and phase of
the optical pulse.

We have also reported solutions for the problem of the
interaction of electromagnetic pulses with atoms for cases in
which the rotating-wave approximation is and is not applied.
Without this approximation the population difference typi-
cally has substantial variations at twice the frequency of the
driving field, and such extra harmonic content also appears
in the polarization components. With the application of the
rotating-wave approximation the fine structure necessarily
vanishes, and this discrepancy confirms the invalidity of the
rotating-wave approximation for seemingly reasonable pa-
rameter values in very short-pulse systems.
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FIG. 7. Solutions for the population difference using the same
parameter values as Fig. 1, except that the transition frequency has
been reduced fromv08510.0 tov0855.0 ~near a resonance with the
pulse!, and the pulse amplitude has been reduced fromA0510.0 to
A052.0. The development and decay of the variables is slower near
resonance, and sensitivity to the input field is increased.

FIG. 8. Solutions for the population difference using the same
parameter values as Fig. 1, except that the input pulse amplitude is
reduced to~a! A055.0 and~b! A052.0. As expected, smaller pulses
lead to lower populations with little other consequence.
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