
Portland State University Portland State University 

PDXScholar PDXScholar 

Mathematics and Statistics Faculty 
Publications and Presentations 

Fariborz Maseeh Department of Mathematics 
and Statistics 

3-2014 

Conditional Tests on Basins of Attraction with Finite Conditional Tests on Basins of Attraction with Finite 

Fields Fields 

Ian H. Dinwoodie 
Portland State University 

Follow this and additional works at: https://pdxscholar.library.pdx.edu/mth_fac 

 Part of the Applied Mathematics Commons, and the Mathematics Commons 

Let us know how access to this document benefits you. 

Citation Details Citation Details 
Dinwoodie, I. (2014). Conditional Tests on Basins of Attraction with Finite Fields. Methodology & 
Computing In Applied Probability, 16(1), 161-168. doi:10.1007/s11009-012-9304-9 

This Post-Print is brought to you for free and open access. It has been accepted for inclusion in Mathematics and 
Statistics Faculty Publications and Presentations by an authorized administrator of PDXScholar. Please contact us 
if we can make this document more accessible: pdxscholar@pdx.edu. 

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/mth_fac
https://pdxscholar.library.pdx.edu/mth_fac
https://pdxscholar.library.pdx.edu/mth
https://pdxscholar.library.pdx.edu/mth
https://pdxscholar.library.pdx.edu/mth_fac?utm_source=pdxscholar.library.pdx.edu%2Fmth_fac%2F103&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/115?utm_source=pdxscholar.library.pdx.edu%2Fmth_fac%2F103&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/174?utm_source=pdxscholar.library.pdx.edu%2Fmth_fac%2F103&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/mth_fac/103
mailto:pdxscholar@pdx.edu


CONDITIONAL TESTS ON BASINS OF ATTRACTION WITH FINITE FIELDS

IAN H DINWOODIE
PORTLAND STATE UNIVERSITY

ABSTRACT. An iterative method is given for computing the polynomials that vanish on
the basin of attraction of a steady state in discrete polynomial dynamics with finite field
coefficients. The algorithm is applied to dynamics of a T cell survival network where it is
used to compare transition maps conditional on a basin of attraction.

1. INTRODUCTION

Complex biological networks have been modeled as discrete dynamical systems for the
purposes of understanding interactions and determining steady state solutions. Logical or
Boolean models, the most intuitive, have been successfullyused in biology for decades
([1], [10], [13], [18], [20], [21], [22], [23]). Also, extensions to discrete states with more
than two levels have been of interest, as exemplified in [8] and [12], so that on-off states
may be refined to low-medium-high for example, as was used in the discretization of con-
tinuous data in [17]. Such states may be thought of as “categorical" or “ordinal" variables,
but also as elements of a finite field for purposes of computation.

Many studies (see [1], [12], [16]) emphasize the importanceof determining steady states
and their basins of attraction – the configurations that eventually lead to the steady state.
One reason is that some network configurations may exist in a mathematical model but
be biologically impossible or be characteristic of rare or uninteresting mutations. Further-
more, interesting basins of attraction may be a very small fraction of the entire state space,
as shown for example in [1] in a logical model ofDrosophilagenes. Such thin sets in a
large state space can be hard to access and study.

This paper is about a method to do computations within the basin of attraction for a
steady state. The method is based on representing the basin through its ideal, a set of
multivariate polynomials that vanish on the basin. This representation can be very effi-
cient, a point which we discuss in the beginning of Section 3,but in some examples it may
be computationally hard and not be feasible. The results arepresented for polynomials
with coefficients in any finite field that serves to code the levels of each network node.
The reason for using finite fields is that in certain cases the dynamics will be presented in
finite field operations (see [8]), and discrete dynamics can be written this way very gener-
ally to take advantage of computational efficiencies using finite fields. The mathematical
foundations are more interesting with finite fields, becausethere are issues of existence of
roots of polynomials with coefficients in a field that is not algebraically closed that must
be addressed to get a valid algorithm. However, the method can also work over fields of
characteristic 0 if desired where levels can be purely categorical.
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We illustrate on examples of six and eleven nodes in Section 3. There we will compute
the conditional probability that two transition maps are identical, conditional on the basin
of attraction of a steady state.

2. ALGORITHM

Consider a state spaceΩ := {s = (s1, . . . ,sd),sj ∈ K} = Kd, a d-fold product of any
finite field K. The fieldK could beF2 = {0,1} with operations addition modulo 2 (xor
in logical notation) and multiplication like real numbers (and in logical notation). Other
standard examples areFp = {0,1, . . . , p−1} with operations modulo the prime numberp.
Let κ = |K|, the number of elements inK.

Let F = (F1, . . . ,Fd) be a transition map or transition function or update function onΩ,
whereFj : Ω → K andF : Ω → Ω. This map is deterministic, it is the simplified algebraic
or logical model of interactions from one time step to the next. In practice, the transition
function will depend on what period of time (in seconds say) corresponds to one update
or application ofF , as longer time intervals allow for lengthier feedback and regulatory
effects. The “early eventsτ = 1" choice as in [19] precludes longer feedback mechanisms
and gives greater determinism than the longer “late eventsτ = 2" option.

A steady statep = (p1, . . . , pd) ∈ Ω has the defining property thatF(p) = p. Define the
set of points that eventually lead to a steady statep:

Bp := ∪∞
k=1{s : Fk(s) = p}

whereFk is thek-fold composition of the mapF .
It will be convenient to use twice as many indeterminates as the number of coordi-

natesd. Define the ring of polynomialsR= K[x1, . . . ,xd,y1, . . . ,yd]. A way to studyBp is
through the set of polynomials that vanish on all points inBp, that is its ideal, and the algo-
rithm below essentially does the construction without numerically solving for preimages
successively.

Define the univariate polynomial

fK(x) = ∏
s∈K

(x−s).(1)

The polynomialfK will be important for getting a 0-dimensional radical idealand extend-
ing solutions after variable elimination. The following exercise shows thatfK is separable
in common terminology.

Lemma 2.1. With f′K the formal derivative of fK , gcd( fK , f ′K) = 1.

Proof. Suppose the gcdg is not 1. Then one of the linear termsx−s0 in fK must divideg,
and also dividef ′K . Hencex− s0 must divide∏s6=s0

(x− s) = f ′K −∑s6=s0 ∏t 6=s(x− t). But
this is a contradiction, sincex−s0 is prime. ¤

Define ideals

IK = 〈 fK(x1), . . . , fK(xd), fK(y1), . . . , fK(yd)〉

Fyx = 〈F1(y)−x1, . . . ,Fd(y)−xd〉

Fxy = 〈F1(x)−y1, . . . ,Fd(x)−yd〉

Iyp = 〈y1− p1, . . . ,yd − pd〉

I1 = (Fxy+ Iyp+ IK)∩K[x1, . . . ,xd].
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Now define recursively a sequence of idealsI2, I3, I4, . . . by

J = (Fyx+ Ii + IK)∩K[y1, . . . ,yd](2)

Ii+1 = (Fxy+J+ IK)∩K[x1, . . . ,xd], i = 1,2,3, . . .(3)

Next we state a counting lemma. The dim notation refers to thedimension of the quotient
ideal as a vector space overK.

Lemma 2.2. Consider the ideal IKi ⊂ R generated by Ii + IK , i = 1,2,3, . . . Then IKi is a
radical ideal, and

dimR/IK
i = κd · |{s ∈ Kd : F2i−1(s) = p}|.

Proof. The idealIK
i is zero-dimensional, because it has at most|K|d roots in the algebraic

closure ofK. Then by Seidenberg’s Lemma ([11], p.250), it is radical, since for each index
j both fK(x j) and fK(y j) belong to the ideal, and Lemma 2.1 gives the required condition
on fK . Now Theorem 3.7.9 of [11] shows that the number of solutionsto polynomials in
IK
i is exactly dimR/IK

i . It remains to show that the solutions toIK
i correspond exactly to

points in{s ∈ Kd : F2i−1(s) = p}×Kd. This we will prove by induction oni.
For i = 1 we consider the idealI1. Let (s,p′) ∈ K2d, for any pointp′ ∈ Kd, but with

F(s) = p. ThenFj(s)−y j = 0,y j − p j = 0, fK(sj) = 0, fK(p′j) = 0, j = 1, . . .d, so all poly-

nomials inI1 vanish at the pair(s,p′) ∈ K2d . For the converse, we apply the extension
theorem to the algebraic closurēK of K. Suppose(t,p′) ∈ K2d is a solution to all poly-
nomials inIK

1 . Thent ∈ Kd solves all equations inI1. The extension theorem applied to
the algebraic closure of̄K of K ([4], p. 25) says thatt can be matched with the rest of a
solutionp⋆ ∈ K̄d such that the concatenation(t,p⋆) solves all equations inFxy+ Iyp+ IK .
The equations inIK make the coordinates ofp⋆ lie in K, thus the pair(t,p⋆)∈K2d. Finally,
the polynomialsIyp forcep⋆ = p, so in factFj(t) = p j , j = 1, . . . ,d. Thus any pair(t,p′)

that solves all polynomials inIK
1 gives the pointt ∈ Kd with F(t) = p.

To continue the induction, note that the univariate polynomials that generateIK make
extended solutions in̄Kd continue inKd. Thus the variable elimination does not add any
unwanted partial solutions, and points in{s : F2i−1(s) = p} each correspond toκd pairs
(s,p′) that solve the equations inIK

i .
¤

Theorem 2.1 says to stop the iteration when dimR/(Ii + IK) repeats in order to get the
polynomials that vanish on the basin of attractionBp.

Theorem 2.1. Let IKi = Ii + IK ⊂ R, i = 1,2,3, . . . There exists i⋆ < ∞ such thatdimR/IK
i⋆ =

dimR/IK
i⋆+1, and for such an integer

|Bp| = κ−ddimR/IK
i⋆ .

Proof. By Lemma 2.2, the sequencedi := dimR/IK
i is nondecreasing and counts statess

that hit the steady statep at or before iteration 2i−1. Since the setBp is finite, the sequence
di cannot increase wheni ≥ κ2d, soi⋆ ≤ κ2d.

Now supposedi+1 = di . This implies that{s : F2i−1(s) = p}= {s : F2i+1(s) = p}, since
the first is always contained in the second. IfBp 6= {s : F2i−1(s) = p}, there would exist
a point s⋆ ∈ Bp with F2i−1(s⋆) 6= p. Let k > 0 be the first integer such thatFk(s⋆) ∈

{s : F2i−1(s) = p}. If k = 1, thens⋆ ∈ {s : F2i+1(s) = p} \ {s : F2i−1(s) = p}, since
F2i−1(F(s⋆)) = p, which contradictsdi+1 = di ; if k > 1, thenFk−2(s⋆) ∈ {s : F2i+1(s) =
p}\{s : F2i−1(s) = p} also contradictingdi+1 = di . ThusBp must be{s : F2i−1(s) = p}.

¤
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3. VOLUME COMPARISONS ONBASINS OFATTRACTION

Here we present an application of the method of Section 2 to the comparison of two
update functions. The goal is to compare two hypothetical explanations of the dynamics
of a network.

Recall that the use of ideals for studying 0-dimensional varieties in statistics was de-
veloped by Riccomagno, Pistone, and Wynn [14]. Their motivation was to understand
statistical models defined on an experimental design (a set of points), and the “design
ideal" was useful because different term orders gave different models with identifiable pa-
rameters. For us the goal is nearly the reverse. We are seeking the “design" points – the
variety that is the basin of attraction – first by computing its ideal. Then counting can
be done with dimensions of quotient spaces. Note that pointsin Kd can be represented
as roots of a set of polynomials sometimes very efficiently. For example, the binary full
factorial design ind dimensionsD := {0,1}d has idealI01 = 〈x2

1 − x1, . . . ,x2
d − xd〉 with

coefficient fieldF2 = {0,1} (in which field "-" is the same as "+"). That is, onlyd polyno-
mials are required to define 2d design points. With simple transition maps onΩ = D like
F1(s) = s1,Fj(s) = sj−1, j = 2, . . . ,d, there are two steady states0 and1, and their basins
of attraction can be described with one polynomial each,〈x1〉 for the basin of attraction for
0 and〈x1−1〉 for 1, in addition to the aboved polynomials inI01. If d, which represents
the number of nodes in the network, is on the order of 20, then there are 220 = 1048576
states but the basins of attraction are easily computed and can be described with just 21
polynomials. Examples like this are why the algebraic representation can be efficient.
Other examples may be hard with algebra, as the worst case complexity of the Groebner
basis calculations necessary for the algebraic method indicates that some examples may
be impossible. Bayer and Mumford [2] discuss computationalissues, with reference to
work on 0-dimensional ideals that bounds the worst possiblecase complexity in terms of
the degrees of the given polynomialsD and the number of coordinatesd – the complexity
may grow as a polynomial inDd, and the degreeD correspond roughly to the number of
“input" nodes that figure in the coordinate map so more highlycoupled systems will give
harder calculations.

Let F andG be two possible transition functions for the same network. They may come
from two different studies of the literature of interaction, or from two machine learning
algorithms applied to the same or different data. Our main question is how to compare
them. In particular, if the data is observational data on a biological network, its states
will not be arbitrary but rather related to a natural or wild-type steady state. Thus a good
comparison should be conditional on the basin of attractionBp of a steady statep for an
accepted or null hypothesis modelF :

q : = P({s : F(s) = G(s)} | Bp) = E(IF=G | Bp)(4)

where the probability distributionP on statess in Ω is uniform. This can be seen as an
expected utility for a conditional distribution. Other distributions may also be of interest.
This computation is related to the notion of volume test thatbegan in [9] and has modern
variations including the development in [6]. However, the orginal work of Hotelling was
based on a rigorous development of a likelihood ratio test ina regression problem. The
work of Diaconis and Efron is not founded in the same way on a likelihood ratio test, it is
rather a concert of methods related to overdispersion and conditional inference that leads
to a uniform distribution on constrained tables. Our interest in q comes from the focus of
biologists on steady states and their biological significance.
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The definition of conditional probability gives

q =
|{F = G}∩Bp|

|Bp|
.

Then by Theorem 2.1 this can be computed as

q =
dim R/[IF−G + IK

i⋆ ]

dim R/IK
i⋆

(5)

wherei⋆ is an index after stopping the iteration, andIF−G is the ideal given by

IF−G := 〈F1(x)−G1(x),F2(x)−G2(x), . . . ,Fd(x)−Gd(x)〉 ⊂ R.

For comparing the maps on coordinate 1 alone, one can use justone differenceIF1−G1 =
〈F1(x)−G1(x)〉 in place ofIF−G. Many other exact conditional comparisons are possible
in the same framework, the key is the set of polynomialsIK

i⋆ .

Example 1. Here we consider an example from [16]. The model is logical, so we use
the fieldF2. An updatex1 or x2 is written as a polynomial in the formx1+x2+x1 ·x2, and
x1 and x2 is writtenx1 · x2. The polynomial defined at (1) isfK(x) = x2 + x. In the table
below is described a mapF ond = 6 dimensions taken from Table 1 of [16].

node update indeterminate
S1P S1P* = NOT (Ceramide OR Apoptosis) x1
FLIP FLIP* = NOT (DISC OR Apoptosis) x2
Fas Fas* = NOT (S1P OR Apoptosis) x3
Ceramide Ceramide* = Fas AND NOT (S1P OR Apoptosis) x4
DISC DISC* = (Ceramide OR (Fas AND NOT FLIP)) AND NOT Apoptosis x5
Apoptosis Apoptosis* = DISC OR Apoptosis x6

This dynamic model has two steady states, a disease steady statepD=1 1 0 0 0 0, and a
normal steady statepN= 0 0 0 0 0 1. Define a second mapG to be the same asF except on
the last coordinate, whereG6(x) = 1 consistent with the normal steady state. The algebraic
computations are easily done in Singular [5], using the elimination libraryelim.lib for
the intersection in steps (2) and (3) andvdim for computing the dimensions of the quotient
ideals. The results are

P(F = G | BpN) = 24/59= 41%

P(F = G | BpD) = 0/5 = 0%

with i⋆ equal to 2 and 3 for the two basins.
Example 2. Consider an 11-node T cell signalling model relevant to the network of

[17]. The signalling logical model described below has foursteady states

0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 1 1 1 1 1 1
1 1 0 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1.

The calculations are terminated withi⋆ at 4, 2, 3, and 2 iterations for the corresponding
basins of attraction, and each basin counts 512 states.

The dynamics for this model are defined precisely by
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node logical update polynomial
raf=x1 PKA or PKC x8 +x9 +x8x9

mek=x2 raf or PKA or PKC 1− (1−x1)(1−x8)(1−x9)
plcg=x3 plcg x3

PIP2=x4 plcg or PIP3 x3 +x5 +x3x5

PIP3=x5 PIP3 x5

erk=x6 mek or PKA x2 +x8 +x2x8

akts=x7 PIP3 or erk or PKA 1− (1−x8)(1−x6)(1−x5)
PKA=x8 PKC x9

PKC=x9 plcg or PIP2 x3 +x4 +x3x4

P38=x10 PKA or PKC x8 +x9 +x8x9

JNK=x11 PKA or PKC x8 +x9 +x8x9

These maps are derived from the interaction diagram Figure 2of [24], where incoming
directed nodes are combined by logical disjunction, that istheor operation. Other dynam-
ics are also compatible with known interactions in this network and the algebraic method
presented here applies to all.

The experimental paper [17] remarks on the influence of PKC onPKA, reporting an un-
expected influence based on Bayesian analysis of their experimental data of flow cytometry
from 9 perturbations. We used tree classification [15] on their data, concatenating the nine
experimental data files and discretizing to two states usinga kmeans clustering method
on the logarithm of responses, then using one time lag for ‘autoregression’ or more pre-
cisely autoclassification. The result in logical form for PKA was PKA∨ (plcg∧ !PKA),
in polynomial from writtenx8 +x3 · (1−x8). Substituting this map for coordinate 8 in the
above dynamical model, a conditional comparison on the foursteady states shows a value
q = 524288/1048576= .5 on each basin of attraction, showing significant disagreement.
Also, random forests ([3]) were used to study variable importance for the tree classification
method, and the variable PKC was not important in the model for predicting PKA, in fact
appearing last in order of importance. Therefore we cannot see the influence of PKC on
PKA in the data. However, the discretization step can be donein many ways (see [7] for a
discussion of methods for biochemical networks). Other methods may be more appropri-
ate than kmeans clustering for this application, and could also lead to somewhat different
conclusions.
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