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Abstract. Measurements of the effect of water uptake on

particulate light extinction or scattering made at two loca-

tions during the 2010 Carbonaceous Aerosols and Radia-

tive Effects Study (CARES) study around Sacramento, CA

are reported. The observed influence of water uptake, char-

acterized through the dimensionless optical hygroscopicity

parameter γ , is compared with calculations constrained by

observed particle size distributions and size-dependent parti-

cle composition. A closure assessment has been carried out

that allowed for determination of the average hygroscopic

growth factors (GFs) at 85 % relative humidity and the di-

mensionless hygroscopicity parameter κ for oxygenated or-

ganic aerosol (OA) and for supermicron particles (defined

here as particles with aerodynamic diameters between 1 and

2.5 microns), yielding κ = 0.1–0.15 and 0.9–1.0, respec-

tively. The derived range of oxygenated OA κ values are in

line with previous observations. The relatively large values

for supermicron particles is consistent with substantial con-

tributions of sea-salt-containing particles in this size range.

Analysis of time-dependent variations in the supermicron

particle hygroscopicity suggest that atmospheric processing,

specifically chloride displacement by nitrate and the accumu-

lation of secondary organics on supermicron particles, can

lead to substantial depression of the observed GF.

1 Introduction

It is well established that atmospheric particles can have a

strong influence on climate through their direct effect: scat-

tering and absorption of solar and terrestrial radiation. Mod-

els must incorporate the net counteracting effects of cooling

due to light scattering by particles and warming due to light

absorption by greenhouse gases and particles to be successful

at predicting global mean temperature. Uncertainties associ-

ated with climate forcing by particles remain sizable, and the

negative forcing may be comparable to the collective posi-

tive radiative forcing from greenhouse gases (IPCC, 2013).

Refinements of the linkage between the end results of mod-

els and measurements – particulate optical effects on the cli-

mate system as observed by in situ, ground-based, remote,

and satellite measurements – and the presumptive sources of

the particles are desirable to allow prediction of the effects of

regulatory and other changes in future emissions.

Global climate models cannot currently fully represent

the complex mixing state of particles indicated by in situ

measurements. Therefore, such models typically utilize com-

positionally ensemble-averaged particle types with defined

size distributions to represent the contributions from various

sources. At the other extreme, some detailed models used for

regional climate modeling and air quality simulation account

Published by Copernicus Publications on behalf of the European Geosciences Union.
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more explicitly for particle dynamics, aging and mixing state

(e.g., Riemer et al., 2010; Zaveri et al., 2010). In both sim-

ple and complex models, the extent of particulate water is

determined by the local atmospheric relative humidity (RH)

and the particle composition, the latter of which controls the

particle hygroscopicity.

Particle composition is variable in space and time. Ambi-

ent measurements of submicron particle (i.e., particles with

diameters< 1 µm) chemical composition indicate that both

organic and inorganic components contribute substantially to

the overall submicron particle burden (Jimenez et al., 2009).

Compared to the major inorganic components, the proper-

ties of organic particulate matter – including hygroscopicity

– are not as well established and are additionally much more

variable. Much atmospheric organic particulate matter, or or-

ganic aerosol (OA), is secondary in origin, meaning that it is

produced through chemical reactions. There are fewer stud-

ies that have explicitly investigated the hygroscopicity of am-

bient supermicron particles, i.e., those with diameters> 1 µm

(e.g., Hegg et al., 2008; Zhang et al., 2014).

One common method used to characterize particle hygro-

scopicity is through comparison between the light extinction

or scattering coefficients (bext and bscat, in Mm−1) measured

at low (dry) and high relative humidity (RH). The extinction

or scattering enhancement factors, fext(RH) and fscat(RH),

are defined as the ratio between the bext or bscat measured

at the high and low RH values. There are many measure-

ments of f (RH) reported in the literature, often focusing on

differences in observed f (RH) values between air masses

containing different aerosol types (e.g., marine and urban)

(e.g., Carrico et al., 2003; Massoli et al., 2009; Titos et al.,

2014; Zhang et al., 2014; Zieger et al., 2010, 2013). Yet

new, quantitative assessments of the relationship(s) between

particle composition and f (RH), and how these differ be-

tween different regions, remain necessary given that use of

some of the most widely used aerosol optical models (e.g.,

OPAC) can still lead to substantial model/measurement dis-

crepancies (Zieger et al., 2013). In particular, there remains

a need to better understand the hygroscopic properties of OA

and supermicron particles. In this study, the connections be-

tween particle composition, hygroscopicity, and optical prop-

erties (specifically scattering and extinction) are examined

through optical closure based on observations made during

the 2010 Carbonaceous Aerosols and Radiative Effects Study

(CARES) field intensive (Zaveri et al., 2012). In particular,

the observations are utilized to determine the hygroscopicity

of specific particulate constituents, namely the oxygenated

fraction of OA, termed OOA, and of supermicron particles.

2 CARES campaign

During June of 2010, a variety of aerosol and gas-phase

species, as well as meteorological and radiative properties

were measured as part of the CARES field intensive cam-

paign in the Sacramento/Central Valley region of Califor-

nia (Zaveri et al., 2012). The CARES study was designed

to take advantage of a persistent southwesterly flow pattern

that transports pollutants from the Sacramento urban core

and nearby Bay Area across the mostly agricultural areas in

the Central Valley toward the forested foothills of the Sierra

Nevada mountains (Fast et al., 2012). Two heavily instru-

mented ground sites were used to capture the evolution of the

urban plume: one located just to the northeast of Sacramento,

denoted T0, and one in the foothills of the Sierra Nevada in

Cool, CA, referred to as T1 (Zaveri et al., 2012). Aircraft

were also used to directly monitor the transport during pe-

riods predicted to have favorable meteorology. The results

presented in this work are based on measurements obtained

only at the two ground sites.

Much of the campaign was characterized by daytime west-

east transport between the T0 and T1 sites, although there

were occasional disruptions to the generalized flow pattern

by shifts to northerly/northwesterly flow (Fast et al., 2012;

Zaveri et al., 2012). The analysis here focuses primarily on

periods with T0→T1 transport, but data from the entire

campaign are considered. At least one of these periods (near

the end of June) exhibits multi-day recirculation, either as a

result of a daytime upslope/nocturnal downslope flow pattern

or involving air mass lofting followed by subsidence near the

west side of the valley. The recirculation period produced an

extensively processed organic aerosol (Setyan et al., 2012).

3 Experimental

3.1 Sampling

Instruments were housed in dual, air-conditioned construc-

tion trailers with common aerosol and gas-phase manifolds.

The detailed specifications of the aerosol inlet system are

provided in Zaveri et al. (2012). Briefly, a high-throughput

pump pulled air into a stainless steel aerosol inlet positioned

between and above the trailers. The aerosol flow was split

between the trailers and within the trailers into two separate

3/4 inch stainless manifolds connected to high-flow return

pumps. Each aerosol instrument station accessed the mani-

fold through a 1/4 inch centerline pick-off using the instru-

ment’s pumping system. No intentional size selection was

incorporated into the aerosol sampling mast or manifold sys-

tem, but some of the instruments used size fractionation at

their individual sampling points, as noted below.

3.2 Optical property measurements

3.2.1 Cavity ring down-photoacoustic spectrometer

Light extinction coefficients were measured at T0 at 405

and 532 nm using the UC Davis two-wavelength cavity

ring down-photoacoustic spectrometer (CRD-PAS) instru-

ment from 16–29 June 2010 (Langridge et al., 2011). Only

Atmos. Chem. Phys., 15, 4045–4061, 2015 www.atmos-chem-phys.net/15/4045/2015/
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data from the 532 nm CRD channels are used here, averaged

to 10 min. Four 532 nm channels were operated: low RH

(∼ 25 %), mid RH (∼ 75 %), high RH (∼ 85 %) and a gas-

phase, filtered channel (at low RH). The gas-phase channel

was used to correct for contributions from NO2 and O3 ab-

sorption. Gas-phase absorption was noticeable prior to the in-

troduction of a guaiacol+NaOH denuder on 21 June, which

successfully removed NO2; after this point the gas-phase ab-

sorption was zero. The estimated precision-based uncertainty

for the bext at 532 nm, as determined from an Allan Vari-

ance analysis, was 0.27 Mm−1 (1σ , 2.2 s) or 0.05 Mm−1 (1σ ,

60 s average). The CRD-PAS sampled behind a PM2.5 (aero-

dynamic diameter< 2.5 µm) URG Teflon-coated aluminum

cyclone. Sampled particles were dried to ∼ 25 % RH in a

flow-through Nafion dyer, after which the flow was split and

two of the channels were re-humidified using custom flow-

through humidifiers. A time-series of the RH in the high-RH

channel is shown in Fig. S4 in the Supplement. Relative hu-

midity and temperature were measured within the CRD cav-

ities by Vaisala sensors (HMP70) that were calibrated with

saturated salt solutions before the campaign, giving an esti-

mated absolute accuracy of ±2 %.

3.2.2 Nephelometer/humidigraph

Light scattering by particles at multiple RH values was mea-

sured at the T1 site using a “humidigraph” (Pekour et al.,

2012). The humidigraph is comprised of three nephelometers

(Aurora Nephelometer, Model 1000) that measure bscat at

525 nm at one low and two higher RH values. Data were ac-

quired at 1 Hz from 8–27 June 2010 and averaged to 10 min.

No intentional size cut was applied, although based on the

configuration of the aerosol inlet it is unlikely that parti-

cles much larger than ∼ 3 µm were sampled. No truncation

correction has been applied to the observations. Based on

the relationships provided in Müller et al. (2009) that relate

the magnitude of the truncation correction to the scattering

Ångström exponent, and calculations of the Ångström expo-

nent based on the observed size distributions, the truncation

correction for the Aurora nephelometer should be about 4 %.

The influence of the truncation correction on the observed

fsca(RH) will, however, be much smaller than 4 % because

it will approximately cancel when taking the ratio between

the wet and dry particle scattering; we estimate that not ac-

counting for instrument truncation will have influenced the

fsca(RH) values by < 1 %.

The instruments were operated with one of two distinct

configurations. In one (8–17 June), the three nephelome-

ters were operated in parallel, with the aerosol stream be-

ing split and sampled respectively (i) through a Nafion dryer

(low RH), (ii) without alteration (mid RH), and (iii) through

a water-cooled line (high RH). In the second configuration

(21–27 June), the entire aerosol stream was first humidified,

after which 1/3 of the flow was split to a high-RH neph-

elometer and the remaining flow was passed through a Nafion

dryer, after which 1/2 of this flow was directed to a mid-RH

nephelometer while the remaining flow was passed through

a second Nafion drier and on to a low-RH nephelometer.

The second configuration provided for more useful ranges of

RH (since the original configuration often resulted in near-

coincidence of the low and ambient RH channels) and as-

sured that salt-like aerosols would be on the high RH branch

(efflorescence) of the hysteresis curve. A time-series of the

RH in the high-RH channel is shown in Fig. S4; the average

value during the second configuration was 72 %± 9 %, with

the range resulting from large diurnal temperature swings in

the trailer. The average low RH was 29 %± 4 %. Measure-

ments made using the second configuration are used in the

primary analysis below, although results from 15 June (using

the initial configuration) will be considered as a specific case

study. The RH, temperature and pressure were measured in-

dependently by sensors within each of the nephelometers.

3.2.3 Hygroscopicity characterization

The low and highest RH bext and bscat observations at T0 and

T1, respectively, have been used to determine a time-series

of f (RH). The f (RH) values have been converted to the di-

mensionless extinction or scattering hygroscopicity parame-

ters (Massoli et al., 2009; Quinn et al., 2005), γext and γscat,

as

γ =−
ln
[
f (RH)

]
ln
[

100−RHlow

100−RHhigh

] . (1)

The use of γ assumes a power-law dependence of extinction

and scattering on RH, which arises mostly from the increase

in particle size with water uptake. γ also implicitly assumes

continuous water uptake. Whereas f (RH) is dependent on

the absolute RH values, γ is reasonably independent of RH

and thus provides a more robust characterization of the fun-

damental particle hygroscopicity.

3.3 Particle composition measurements

3.3.1 Ensemble aerosol mass spectrometry

Mass concentrations of submicron non-refractory particulate

matter (NR-PM) were measured at both T0 and T1 using

Aerodyne high resolution time-of-flight aerosol mass spec-

trometers (HR-ToF-AMS, henceforth AMS) (Canagaratna et

al., 2007; DeCarlo et al., 2006). NR-PM components mea-

sured by the AMS include the major inorganic species sul-

fate, nitrate and ammonium (along with some forms of chlo-

rine), and OA. The AMS measures ensemble-average par-

ticle composition for particles with vacuum aerodynamic

diameters (dp,va) between ∼ 30 and 1000 nm. At T1, size-

dependent composition was also measured. Assuming spher-

ical particles, dp,va is related to the particle mobility diam-

eter (dp,m) through particle density ρp (assuming spherical

www.atmos-chem-phys.net/15/4045/2015/ Atmos. Chem. Phys., 15, 4045–4061, 2015
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particles) (DeCarlo et al., 2004). A dp,va= 1000 nm corre-

sponds to a dp,m of 670 nm for ρp= 1.5 g cm−3 and 500 nm

for ρp= 2 g cm−3. The calculation of optical properties de-

pends on geometric (physical) diameter, which for spheri-

cal particles is equal to dp,m and not dp,va. Therefore, with

respect to the measurement of particle composition relevant

to the calculation of optical properties, it is more precise to

state that the AMS measures approximately sub-670 nm par-

ticles, not submicron particles. However, for simplicity and

consistency with the literature we will refer to particles with

dp,va< 1000 nm as submicron.

Further characterization of the OA was obtained via pos-

itive matrix factorization (PMF), from which different OA

“types” (or factors) were identified (Zhang et al., 2011). Dur-

ing CARES, three major factors were identified at T0 and

T1. At T0, there were two less-oxygenated factors and one

highly oxygenated factor, while at T1 there was only one

less-oxygenated factor but two highly oxygenated factors

(Setyan et al., 2012). Since the hygroscopicity of the two

less oxygenated OA factors at T0 and the two highly oxy-

genated factors at T1 are likely similar they have been com-

bined into one factor in each case. Thus, only two OA types

are considered at each site, one less oxygenated, referred to

as hydrocarbon-like OA (HOA), and one highly oxygenated,

referred to as OOA.

3.3.2 Single Particle Mass Spectrometry

Two different types of single particle mass spectrometers

were deployed, one at T0 and one at T1. At T1, the Parti-

cle Analysis by Laser Mass Spectrometry (PALMS) instru-

ment was deployed (Cziczo et al., 2006). PALMS samples

particles through an aerodynamic lens into a vacuum cham-

ber where individual particles are detected and sized using

dual continuous 532 nm lasers after which 193 nm light is

used to ablate and ionize the particles. The resulting ions

are analyzed using a ToF-MS. PALMS detects and charac-

terizes the composition, including refractory components, of

particles in the size range 300 nm<dp,va< 2000 nm. Single

particles are classified according to the predominant ions in

their mass spectra. PALMS provides a semi-quantitative in-

dication of particle mixing state by identifying differences

in composition between individual particles (Murphy et al.,

2006).

At T0 SPLAT II was deployed (Zelenyuk et al., 2009).

SPLAT II works similarly to the PALMS, with a key dif-

ference being that SPLAT II uses a CO2 laser to first des-

orb the non-refractory fraction of individual particles and

a 193 nm excimer laser to ionize the produced gas-phase

plume and ablate the refractory particle fraction. For spheri-

cal particles, SPLAT II has nearly 100 % detection efficiency

over the range 125<dp,va< 600 nm, with 50 % cut-off at

dp,va= 85 nm. Above and below this size range, the detection

efficiency falls off, although particles with diameters up to a

few microns can be detected. For non-spherical particles, the

detection efficiency can be substantially lower due to diver-

gence of the particle beam. Characterized particles are clas-

sified according to the mass spectra. SPLAT-identified parti-

cle types included soot, biomass burning (BB), primary OA

(POA), hydrocarbon-like (HC), sea salt (SS), dust, two types

of amine containing particles (amine Type I and Type II) and

mixtures of organics and inorganics, predominately sulfate,

with varying relative abundances. The mixed sulfate/organic

particles are referred to as Sulfate+OA Type I through

Type IV, signifying mixtures from 75 % sulfate down to less

than 5 % sulfate respectively. Because particles with differ-

ent compositions may exist in different size ranges and have

different shapes, the detection efficiencies could vary with

type (especially for the dust and sea salt that tend to be

present in larger particles). For comparison with the AMS,

the size distributions of the sulfate/OA particle types were

used to estimate the size-dependent distribution of sulfate

mass and OA mass. The size-dependent mass of each par-

ticle type was estimated from the measured particle-phase

densities and particle size (assuming spherical particles), and

the relative amounts of OA and sulfate mass in each particle

size bin were determined from their relative ratios, as further

described in Sect. 4.

For both the T0 and T1 sites, the single particle measure-

ments were the only instruments deployed that provide in-

formation on the composition of supermicron particles. This

data limitation has implications as to how the supermicron

particle composition is treated in the optical calculations dis-

cussed in Sect. 4.

3.3.3 Refractory black carbon

Refractory black carbon (rBC) mass concentrations were

measured at both sites using single particle soot photome-

ters (SP2; DMT, Inc.; Schwarz et al., 2010). The SP2s were

calibrated using mobility size-selected Aquadag (Acheson,

Inc.) graphite-containing particles and the known relation-

ship between mobility diameter and per-particle mass for

this particle type. The rBC concentrations have been adjusted

to account for the higher sensitivity of the SP2 to Aquadag

than to other black carbon types (in particular, to diesel soot;

Laborde et al., 2012a). The CARES SP2 instruments mea-

sured rBC-containing particles with volume equivalent core

diameters (dp,ved) between 30 and 400 nm, although the SP2

is not fully quantitative for particles with dp,ved<∼ 100 nm

(Laborde et al., 2012b) and thus the BC concentration mea-

sured by the SP2 is a lower limit (Cappa et al., 2014).

3.4 Size distribution measurements

Submicron dry particle mobility diameter (dp,m) size distri-

butions were measured at T0 and T1 using scanning mobility

particle sizers (SMPS) comprised of a charge neutralizer, dif-

ferential mobility analyzer (DMA) and a condensation par-

ticle counter (CPC). The SMPS at T0 was a commercial

Atmos. Chem. Phys., 15, 4045–4061, 2015 www.atmos-chem-phys.net/15/4045/2015/
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TSI system (3081 DMA column and model 3775 CPC). The

SMPS used at T1 is described in Setyan et al. (2014). The

SMPS data were corrected for multiply charged particles and

diffusional losses within the instruments. At T0, the SMPS

was configured to measure particles over a size range of 12 to

737 nm, while the T1 instrument measured from 8 to 858 nm.

Supermicron dry particle aerodynamic diameter (dp,a) size

distributions were measured at both sites over the size range

542 to 20 000 nm using aerodynamic particle sizers (APS;

Model 3321, TSI, Inc.). The measured aerodynamic size dis-

tributions were converted to dp,m equivalent size distribu-

tions assuming spherical particles and a constant density of

2.0 g cm−3 (roughly compatible with either an inferred dust

or sea-salt composition) with

dp,m = dp,a

√
1

ρp

Cc

(
dp,a

)
Cc

(
dp,m

) , (2)

where Cc is the Cunningham slip correction factor (De-

Carlo et al., 2004). Because Cc depends on dp,m, Eq. (2)

must be solved iteratively. For reference, a particle with

dp,a= 2500 nm and ρp= 2 g cm−3 has a dp,m= 1745 nm

and a particle with dp,a= 1000 nm and 2 g cm−3 has a

dp,m= 685 nm. It should be noted that dp,a is not equivalent

to the dp,va measured by the AMS, SPLAT II and PALMS.

The SMPS and converted APS size distributions were

merged into a single mobility-diameter size distribution

(Fig. 1c and f). The SMPS measurements were used

for particles with diameters< 737 nm and the APS mea-

surements were used for larger particles. We will re-

fer to particles with dp,m< 737 nm as “submicron” and

with 1700 nm>dp,m> 737 nm as “supermicron”, since the

sub/supermicron distinction is typically based on aerody-

namic diameter.

The merged size distributions were ultimately used as in-

put to the Mie theory calculations (see next section), and thus

the assumption regarding the particle density will have some

influence on the calculated scattering. It is unlikely that the

particle density is much larger than 2 g cm−3. Had smaller

values been assumed, the shift in dp,a to dp,m would have been

smaller and, consequently, the calculated scattering would be

increased. Had a density of 1.75 or 1.5 g cm−3 been assumed,

the calculated scattering would have increased on average by

∼ 8 or 21 %, respectively. This is important to keep in mind

in the context of the dry particle optical closure presented

below. However, a density of 2 g cm−3 gave the best over-

lap with the SMPS distribution, on average, and thus was

chosen here; the average SMPS and APS mobility size dis-

tributions are shown for the T0 site in Fig. S1 for reference.

Additionally, since the hygroscopicity measurements result

from a ratio of extinction or scattering values, these effects

largely cancel out and lead to only minor changes in the de-

rived hygroscopicity parameters.

The APS at T0 malfunctioned after 22 June 21:00 PST,

limiting the period over which observations of extensive

properties, such as bext, at this site can be directly compared

with calculations. However, calculations of intensive prop-

erties, such as f (RH) or γRH, exhibit less sensitivity to the

exact nature of the size distribution since the intensive prop-

erties depend on the calculation of ratios of extensive proper-

ties; this is especially true when dp,m>∼ 700 nm. This lack

of sensitivity is exploited here to facilitate comparison of cal-

culated and observed γRH. The measured supermicron size

distribution shape was constant in time over the measure-

ment period during which the APS was operating properly,

with only the total particle concentration varying. A syn-

thetic supermicron size distribution for the missing data pe-

riod was therefore determined by comparing the observed

and calculated dry particle bext (see next section). Specifi-

cally, the shape of the distribution was assumed equal to the

campaign average (Fig. S1), and the number concentration

of particles with dp,m> 737 nm was scaled such that the ob-

served and calculated dry bext agreed to within 1 %. The final,

merged size distribution after 22 June is comprised of actual

SMPS measurements and the synthetic APS distribution. Im-

portantly, small mismatches in the exact shape of the super-

micron particle size distribution have only a small effect on

the derived hygroscopicity.

4 Optical property calculations

4.1 General methodology

Time-series of bext and bscat have been calculated from Mie

theory for both low and high RH conditions using the mea-

sured dry particle size distribution and composition as model

inputs. The combined low RH and high RH calculations

have been used to calculate f (RH) and γ values, which

can be compared with the observations. The calculations re-

quire specification of the amount of particle phase water and

the associated particle growth, which depends on the parti-

cle composition. The hygroscopicity of the various partic-

ulate components varies and is reasonably well-known for

some components (e.g., ammonium sulfate, ammonium ni-

trate, black carbon, and hydrocarbon-like OA) but is not as

well established for others (e.g., OOA and supermicron par-

ticles). Here, the hygroscopicity of the “unknown” compo-

nents, specifically of OOA (Sect. 5.2.3) and of supermicron

(Sect. 5.2.4) particles, have been determined through com-

parison between the observed and calculated γ values. Fur-

ther details of the general methodology used here are pre-

sented below.

The bext and bscat have been calculated from the observed

dry particle size distributions using a numerical implemen-

tation of spherical particle Mie theory (Bohren and Huff-

man, 1983). At each point in time extinction and scattering

cross sections, σext and σscat, were calculated for each median

diameter of the appropriate (i.e., RH-adjusted) bin in the size

distribution (dp,m,RH) and multiplied by the observed particle
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Figure 1. Overview time-series data of bext at T0 (left panels) and bscat at T1 (right panels) for both humidified and dried particles (a) and (d),

volume fraction of the various submicron components, exclusive of water (b) and (e), and composite volume-weighted size distributions (c)

and (f). Note that neither the vertical nor the horizontal scales are the same between the two sites/sets of panels. The black box around the

last portion of the large particle size distribution at T0 (c) indicates the time period during which a synthetic size distribution was used, as

described in the text.

number distribution, and the product was then integrated over

size to produce the bulk optical coefficients:

bext =

dp,m,max∫
dp,m,min

σext

(
dp,m,RH

)
·

dN

dlog
(
dp,m,RH

)dlog(dp,m,RH).

(3)

Submicron and supermicron particles are treated separately

(i.e., as having distinct properties), but in similar manners.

Bulk-average real refractive indices (n) were calculated at

each point in time using volume mixing rules, specifically:

ntot =

∑
i

VFi · ni, (4)

where VFi is the volume fraction of component i in each par-

ticle, including water, and the species-specific n values are

given in Table 1. For submicron particles the dry VF values

were determined from the measured mass concentrations of

the individual PM components using the densities given in

Table 1. Dry supermicron particles were assumed to have a

constant real refractive index (Table 1). This assumption does

not account for variations in the refractive index that can re-

sult from variations in the supermicron particle composition

(e.g., sea salt vs. dust). Particulate water volume fractions

(VFH2O) were determined based on the measured particle

composition, as discussed further below. The base-case as-

sumes that the particles do not absorb light. The influence

of particle light absorption on the calculations is discussed

separately in Sect. 5.2.7.

Table 1. Species properties used in model calculations.

PM Component Real ni Densitya κb GF

(g cm−3) (85 %)c

(NH4)2SO4 1.52 1.77 0.61 1.63

NH4NO3 1.5 1.73 0.67 1.67

BC 1.9 1.8 0 1.00

Chloride 1.55 2.17 1.12 1.93

HOA 1.45 1d 0.006 1.02

OOA 1.49 1.4d e e

Supermicronf 1.7d 2.1d e e

Water 1.33 1.0 n/a n/a

a Haynes and Lide (2014); b Petters and Kreidenweis (2007); c calculated from

κ values; d assumed; e adjustable; f technically, dp,m > 737 nm.

The RH-specific physical growth factors

(GF= dp,m,wet/dp,m,dry) associated with each submicron

NR-PM component (GFi) were determined based on the

hygroscopicity parameter, κ , of the individual component

using the relationship (Petters and Kreidenweis, 2007):

RH

exp
(

A
dp,m,dry·GF

) = GF3
− 1

GF3
− (1− κ)

, (5)

where dp,m,dry is the dry particle diameter, RH is the mea-

sured (low or high) RH and A= 2.09 nm is a constant that

includes the surface tension of water and other physical con-

stants. Values of κ for the inorganic salts, black carbon and

HOA are specified based on the literature (Table 1), while
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κ values for both OOA and supermicron particles are deter-

mined through optical closure, discussed in Sect. 5.2. The

overall GF of the particles at the measured RH were then

calculated from volume mixing rules:

GFtot (RH)=

(∑
i

VFi · (GFi (RH))3

) 1
3

(6)

where the summation is taken over all non-water compo-

nents. The wet particle diameters for use in the Mie calcu-

lations (Eq. 4) are

dp,m,RH = GFtot(RH) · dp,m,dry, (7)

and the resulting VFH2O are

VFH2O = 1− (1/GFtot)
3
=

D3
p,m,RH−D

3
p,m,dry

D3
p,m,RH

. (8)

4.2 Accounting for size-dependent composition and

mixing state

Particle composition varies with particle size and between in-

dividual particles in a given size range (Zaveri et al., 2012).

Such variations can lead to size-dependent GFs and VFH2O

values, which can influence the calculated optical properties.

Here, three different approaches to accounting for variations

in composition with dry particle size or mixing state are com-

pared. The first approach assumes that particles are internally

well mixed with a size-independent composition within a

given mode (sub vs. supermicron). For the submicron par-

ticles, the bulk composition is taken as the sum of the mea-

sured NR-PM and BC. The second approach similarly as-

sumes a size-independent (but mode-specific) composition,

but with the various submicron components being externally

mixed from each other, existing in single component parti-

cles. Internal vs. external mixing assumptions can influence

the calculated extinction for the humidified particles because

internally mixed particles will all grow by the same amount

due to water uptake, while externally mixed particles with the

same dry size will grow to different extents upon humidifi-

cation. For example, consider two 150 nm diameter particles

comprised of two components A and B with equal volume

fractions but where component A has a GF= 1 and compo-

nent B has a GF= 2. Both particles will grow to be 225 nm

as an internal mixture, but one will grow to 150 nm and the

other to 300 nm as an external mixture of A and B, respec-

tively. Extinction and scattering do not vary monotonically

with particle size, and thus these two mixing cases do not

give equivalent results.

The third approach, referred to as the size-dependent com-

position model, accounts for size-dependent variations in

submicron particle composition. Both the AMS (for T1) and

the SPLAT II (for T0) measurements indicate that particle

composition did vary with particle size and that this varia-

tion was time-dependent (e.g., with the time of the day and

from day to day). Ideally, highly time-resolved, quantitative

size-dependent composition measurements would be used

in these calculations. However, given site-to-site differences

in measurement/data availability, the analysis here uses the

campaign average size-dependent composition for each site.

The use of the campaign-average information allows for a

first-order assessment of how variations in particle compo-

sition with size influence the calculated optical properties.

(Again, because of data availability and concerns about vari-

able detection efficiency of larger particles, the supermicron

mode was assumed to have a size-independent composition.)

The basic framework for the size-dependent submicron

calculations, illustrated schematically in Fig. 2, is as follows:

first, normalized campaign-average mass-weighted size dis-

tributions for each particle component (e.g. OA, ammonium

nitrate, and ammonium sulfate) or particle type were de-

termined. These component-specific distributions are used

to determine the fraction of each component as a function

of particle size. The fractions are used as size-dependent

weighting-factors to apportion the measured ensemble parti-

cle composition of each component at each point in time onto

the observed size distribution at that time point. This yields a

time-series of composition-weighted size distributions with

an assumption of completely internally mixed particles for

each size bin. These composition-weighted size distributions

are then used to calculate size-dependent GFs and refractive

indices for use in the calculation of bext and bsca. Since the

measurements used to assess the size-dependent composition

differ between the two sites, differences in the specific meth-

ods used to determine the average size-dependent composi-

tion between sites are discussed in more detail below.

For the T1 site, the normalized campaign-average size-

dependent composition for submicron particles was deter-

mined from the AMS particle time-of-flight measurements

(Setyan et al., 2012). It was assumed that the BC, HOA

and OOA components had similar average size distributions,

based on the general similarity of the observed size distribu-

tions for the AMS tracer ionsm/z= 44 andm/z= 43, which

exhibit some correspondence with OOA and HOA, respec-

tively (Setyan et al., 2012). The bulk particle composition

at each point in time was also determined from the AMS

measurements, with the exception of BC, which comes from

the SP2 measurements. The measured NH+4 was apportioned

on a molar basis between NO−3 , SO2−
4 and Cl− to produce

NH4NO3, (NH4)2SO4 and NH4Cl; residual NH+4 was negli-

gible (Setyan et al., 2012).

As noted above, for T0 size-dependent submicron com-

position data from the AMS were not available. Therefore,

the SPLAT II data were used to obtain the variation in

composition with size within the submicron range and to

determine the normalized size-dependent composition. To

provide some consistency between T0 and T1, the SPLAT

particle types were mapped onto the AMS+SP2-derived

component types as follows: HOA is equivalent to the sum

www.atmos-chem-phys.net/15/4045/2015/ Atmos. Chem. Phys., 15, 4045–4061, 2015
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Figure 2. Schematic of the process for determining size-dependent hygroscopic growth factors and real refractive indices. The top panels (a

and b) illustrate how the observed campaign-average size-dependent normalized particle composition and the time-dependent particle com-

position are combined to yield the time- and size-dependent particle composition (c). The resulting size-dependent particle composition is

combined with the time-dependent size distribution (d) to yield a time-dependent size distribution with size-dependent composition (e). The

resulting size distribution is then used to determine size-dependent growth factors, κ values and real refractive indices (f).

of the SPLAT II POA, BB, and HC categories; BC is equiva-

lent to the SPLAT II soot type; inorganic ions (excluding sea

salt and dust) are equivalent to SPLAT II sulfate; oxygenated

OA is equivalent to SPLAT II OA. SPLAT II reports sulfate

and OA as mixed particle types of varying relative composi-

tion, and thus the sulfate and OA modes were estimated from
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weighted sums of the mixed sulfate+OA particle types. For

example, the size distribution for the 50/50 sulfate+OA

mixed particle type is split into two individual sulfate and

organic size distributions, with half the mass in one and half

in the other. The total sulfate (really, total inorganics) and

OA distributions are then determined from the sum over all

of the different sulfate+OA particle types. The overall dis-

tribution is then determined by assuming that the particles

are internally mixed within each size bin. A cartoon illus-

trating this process is shown in Fig. S2. This last assumption

(internal mixing within a given size bin) discards some of

the available information from the SPLAT II measurements

on mixing state, but is done to facilitate comparison with the

AMS results from T1. Comparison of the size-independent

internally mixed vs. externally mixed calculations provides

some indication of the limitations of this simplification.

It is assumed in all cases that the supermicron compo-

sition is size-independent, a simplification that has been

made to account for limitations regarding time-dependent

variations in the supermicron particle composition. Unless

otherwise stated, results of calculations in Sect. 5.2 have

used the size-dependent submicron composition method. The

three approaches (external mixing, size-independent inter-

nally mixed and size-dependent internally mixed) are com-

pared in Sect. 5.2.6.

5 Results and discussion

5.1 Overview of observations

Time series for the dried (RH< 40 %) and humidified

(RH∼ 85 %) particle extinction (532 nm) or scattering

(525 nm), the submicron particle composition as volume

fractions, and the volume-weighted particle size distributions

are shown in Fig. 1 for both T0 and T1. At T1, the submi-

cron particle composition is dominated by OOA (Fig. 1e), as

noted by Setyan et al. (2012). At T0, organics also comprise a

large fraction of the total submicron PM, although HOA/OA

is larger than at T1 (Fig. 1b). Further, there are periods where

the OA fraction is only ∼ 50 % of the submicron PM mass at

T0, while the OA fraction is always> 70 % at T1. At both

T0 and T1 the submicron contribution to the overall PM2.5

particle volume concentration tends to be larger than for su-

permicron components, although there are periods where the

supermicron components contribute substantially (Figs. 1c, f

and S3), and it should be noted that contributions from even

larger particles (dp,a> 2.5 µm) can be substantial (Kassianov

et al., 2012).

Time-series of the observed optical hygroscopicity param-

eter, γ , for T0 and T1 are shown in Fig. 3a and c. Values of

γ varied from as low as ∼ 0.2 to as high as ∼ 1.0. The val-

ues of γ at T0 and T1 are similar during the latter part of

the study (22 through 28 June) when transport and recircula-
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Figure 3. The time-series of the observed (gray) and calculated (or-

ange) γRH values at T0 (a) and T1 (c). The observed and calculated

optical properties, bext or bsca, for the lowest (green and black, re-

spectively) and highest (grey and gold, respectively) RH channels

for the CRD at T0 (b) and humidigraph at T1 (d). The calculated

traces are produced by the optical hygroscopicity model described

in the main text.

tion is thought to have homogenized the particle composition

between the two sites (Fast et al., 2012; Zaveri et al., 2012).

5.2 Optical property model/measurement comparison

5.2.1 Optical closure under low-humidity conditions

Time-series of bext,low and bsca,low for PM2.5 and PM1 have

been calculated from Mie theory, with the PM2.5 results

shown in Fig. 3. There is generally good agreement between

the measured and calculated bext,low or bsca,low (Fig. 4a and

b) at both sites. The slope of a linear orthogonal distance re-

gression (ODR) fit of the observed vs. calculated bext,low at

T0 is 1.005 (±0.005) (1σ of the fit) and for the bsca,low at

T1 is 1.02 (±0.004), which demonstrates agreement and clo-

sure to well within the experimental uncertainties. (Note that

for T0, only data from the period prior to 6/22 at 21:00 PST,

when the APS was in operation, are included in the fit.) The

generally good agreement at T1 is notable since no explicit

size cut was used during sampling and is important in the

context of the particle hygroscopicity assessment discussed

below. For these fits (Fig. 4a and 4b), the y intercept was
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Figure 4. Scatter plot comparisons between observed and calcu-

lated bext or bscat for low RH (a and b) and high RH (c and d)

and f (RH) (e and f) values at the T0 site (left panels) and the T1

site (right panels). The red and dashed lines represent the best ODR

linear fit to the data and the 1 : 1 line, respectively. For T0, calcu-

lated bext,low and bext,high values are excluded during the period

over which synthetic supermicron size distributions were used.

constrained to be equal to zero, but the intercepts produced

when the fits were not forced through zero were statistically

indistinguishable from zero at the 95 % confidence level.

The calculated average supermicron fractional contribu-

tion (fsuper) to the PM2.5 bext at T0 ranged from 0.05 to 0.4,

with a mean value of 0.21± 0.10 (1σ), while at T1 fsuper

ranged from 0.05 to 0.6 with a mean value of 0.22± 0.13

(1σ) (Fig. S3). The fsuper at T1 after 21 June (i.e., during

the period when reliable high RH measurements are avail-

able) were smaller, varying from 0.05 to 0.4 with a mean

of 0.11± 0.05 (1σ) (Fig. S3). There is a general correspon-

dence between periods of high supermicron influence at T0

and T1, in particular during the period from 18 to 21 June,

although the fsuper values at T1 tend to lag those at T0 by

6–12 h.

5.2.2 Optical closure under elevated-humidity

conditions

The calculation of wet particle optical properties requires that

the GFs (or equivalently κ values) for the major PM compo-

nents are known so that the water uptake due to each com-

ponent can be assessed. The κ values for the major highly

hygroscopic inorganic components, ammonium nitrate and

ammonium sulfate, are known, and BC and HOA are essen-

tially non-hygroscopic, with κ values of 0 and 0.006, respec-

tively (Table 1; Petters and Kreidenweis, 2007). In contrast,

the hygroscopicity of OOA is variable and depends on the

specific OOA composition, with reported κOOA values from

field observations or κ values for oxidized OA from labo-

ratory experiments ranging from ∼ 0.05–0.25 (Cappa et al.,

2011; Jimenez et al., 2009; Lambe et al., 2011; Levin et al.,

2014; Massoli et al., 2010; Mei et al., 2013). The hygroscop-

icity of the supermicron particles in this study, κsuper, is also

not a priori well-established. Since water uptake can have a

large impact on the optical properties of ambient PM, it is

important that the hygroscopicity of the various contributing

components be well understood.

Average optimal values for κOOA and κsuper for both the T0

and T1 sites have been established for this data set by deter-

mining the specific values that lead to the best agreement be-

tween the calculated and observed γ time-series. Since there

are two unknowns, we have taken the simplifying approach

of assuming that κOOA and κsuper are site-specific constants

for the entire campaign. Limitations of this simplification are

examined further below. Optimal κOOA and κsuper are deter-

mined by independently varying them over reasonable ranges

until the best model/measurement agreement is obtained, as

characterized by minimization of a parameter similar to χ2,

here calculated as

χ2
=

∑
t

(
γobs,t− γcalc,t

)2(
γobs,t+ γcalc,t

)
/2
. (9)

Results from the optimization procedure are illustrated in

Fig. 5, which shows color maps of the calculated χ2 values

as a function of κOOA and κsuper for the two sites. For each

site a single global minimum χ2 value is obtained. Absolute

values and associated uncertainties in the derived values are

discussed further below.

Time-series of the optimized bext,high and bsca,high and for

γ are shown for the periods 17–26 June at T0 and 21–28 June

at T1 (Fig. 3), and the modeled extinction/scattering coef-

ficients are compared to the measurements in Fig. 4c and

d. (Time-series of the RH in the high RH channels, and

the associated f (RH) are shown in Fig. S4.) The overall

model/measurement agreement in the calculated extensive

optical properties is good, with slopes of 0.992 (±0.004) (1σ

of the fit) at T0 and 1.03 (±0.004) at T1. This good agree-

ment is as expected given the model/measurement agreement

under low RH conditions and the fact that the κOOA and κsuper

were optimized to give good model/measurement in γ .
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Figure 5. Visualization of the optimization procedure for the super-

micron and OOA hygroscopicities at T0 (left) and T1 (right). The

χ2 value is shown as a false color image where the redder colors

are lower in value. The global minimum is indicated by the dot and

contours are included added to accentuate the shape of the surface.

5.2.3 Oxygenated organic aerosol hygroscopicity

The optimal average OOA hygroscopicities are

κOOA= 0.15± 0.04 for T0 and 0.09± 0.03 for T1. The

uncertainty estimate is discussed in Sect. 5.2.5. There is

some cross-sensitivity to the optimization results; e.g., larger

values of κsuper lead to smaller values of κOOA, and vice

versa. However, the particular cross-sensitivities of κsuper

and κOOA differ between the two sites. At T0, the optimal

κsuper exhibits relatively small sensitivity to the κOOA, while

the reverse is not true. At T1, the optimal κsuper exhibits

greater sensitivity to variations in the κOOA, with the κOOA

reasonably independent of κsuper. These differences in

cross-sensitivity between the two sites arise from differences

in particle composition and the relative contributions of

sub- and supermicron particles to the total extinction or

scattering. At T0, the supermicron contribution to total

extinction is substantial, while at T1 it is relatively small

over the period considered. At T1, the overall scattering

is dominated by OOA, while at T0 the OOA contribution,

although not insignificant, is comparably smaller.

The consistency of the derived κOOA between the two

sites suggests that for OOA in the Sacramento region in the

summer κOOA∼ 0.09–0.15, although the optimal κOOA de-

rived for T1 is likely more robust than that at T0 because of

the greater sensitivity of κOOA to κsuper at T0. The oxygen-

to-carbon atomic ratio (O : C) for OOA at T1 was ∼ 0.5

(Setyan et al., 2012), and although comparable values are

unavailable for the T0 site, the aircraft measurements indi-

cated O : C for OOA is ∼ 0.6 over the Sacramento region in

general (Shilling et al., 2013). Previous work suggests that

there is some relationship between degree of oxygenation

of OA and κ . The observed κOOA and OOA O : C are con-

sistent with κOA /O : C relationships determined from lab-

oratory measurements (Jimenez et al., 2009; Lambe et al.,

2011; Massoli et al., 2010) and as derived from other field

observations (Chang et al., 2010; Jimenez et al., 2009; Mei

et al., 2013). Altogether, this suggests that the assumption of

a time-invariant, albeit site-specific κOOA during CARES is

reasonable, and our derived values fall within the expected

range. The small difference in OOA hygroscopicities be-

tween the two sites (0.15 vs. 0.09) may be due to the ad-

dition of relatively less oxidized OA produced from the bio-

genic precursors encountered during transit from T0 to T1,

with decreased production from anthropogenically precur-

sors as the urban plume dilutes and spreads. Alternatively,

it could indicate that κHOA is somewhat underestimated at

T0. (There were two less oxygenated OA factors observed

at T0, which were combined into a single HOA factor be-

cause they exhibited generally similar temporal dependen-

cies. However, the average mass spectrum for one of these

factors suggested a potential cooking source and appeared to

be somewhat more oxidized than OA from vehicle emissions.

More detailed analysis of the PMF results from T0 is beyond

the scope of the current study.)

5.2.4 Supermicron particle hygroscopicity

The optimal campaign-average κsuper values were 0.9± 0.2

at T0 and 1.0± 0.2 at T1 (uncertainties discussed in

Sect. 5.2.5). These are between the values for the major sub-

micron inorganic species ((NH4)2SO4 and NH4NO3) and the

major component of sea salt, NaCl (Table 1). (The κ for

NaCl is ∼ 1.2; Petters and Kreidenweis, 2007.) Such large

values for κsuper indicate that the supermicron particles dur-

ing CARES were overall quite hygroscopic. The SPLAT II

and PALMS measurements indicate that a substantial frac-

tion of the supermicron particles contained NaCl and other

hygroscopic salts (Fig. 6), indicative of a marine sea-spray

influence and generally consistent with the large κsuper val-

ues.

The average κsuper values were determined assuming that

the supermicron particle hygroscopicity was constant in time

at each site. However, the single particle mass spectrome-

try results indicate that there are some variations in the su-

permicron particle composition, which could lead to tem-

poral variations in κsuper. The potential variability in κsuper

has been assessed by minimizing the difference between the

modeled and measured γext and γsca at every point in time

while holding κOOA constant at 0.15, as opposed to a single

campaign average value. A histogram of the derived individ-

ual κsuper values for the T0 site shows a broad distribution

centered around 0.8 (Fig. S5). (The T0 site was considered

here since the supermicron contribution to scattering at this

site was larger. Also, use of a different κOOA would shift the

distribution, but have minimal influence on the spread.) As-

sessing variability in κsuper by setting κOOA to be constant is

reasonable given the similarity between the κOOA values at

T0 and T1 and with literature values.

Variability in the supermicron composition could result

from variations in sources of primary supermicron PM or

from photochemical processing. Sacramento is located about

90 miles from the San Francisco Bay and Pacific Ocean; thus,

sea-spray particles transported to the T0 site in Sacramento

www.atmos-chem-phys.net/15/4045/2015/ Atmos. Chem. Phys., 15, 4045–4061, 2015



4056 D. B. Atkinson et al.: Aerosol hygroscopicity measurements during CARES 2010

 Dust
 Sea Salt
 Soot
 BB
 POA
 HC
 Amines (type I)
 Amines (type II)
 Sulfate+OA (I)
 Sulfate+OA (II)
 Sulfate+OA (III)
 Sulfate+OA (IV)
 Sulfate+OA (V)
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Figure 6. Fraction of total sampled number of supermicron parti-

cles at T0, as identified by the SPLAT II instrument, over the period

17 June–25 June. It should be noted that the sea-salt particle type,

which is the most abundant particle type observed, includes par-

ticles with varying amounts of NaCl, NaNO3, and organics. The

solid black outline groups the various Sulfate+OA particle types.

(Amine Type I particles were not observed in sufficient abundance

to be seen in the pie chart.)

and the T1 site in the Sierra Foothills will likely have un-

dergone some photochemical processing along the way. As

noted above, sea-salt-containing particles make up a substan-

tial proportion of supermicron particles sampled during the

measurement period (Fig. 6). The majority of the sea-salt

particles observed were processed to differing extents as in-

dicated in the single particle mass spectra by the presence

of characteristic peaks for NaCl (m/z 23,81, 83) and NaNO3

(m/z 23, 62, 30, 39, 78, 92, 108) with different relative in-

tensities. Displacement of chloride with nitrate as a result of

HNO3 uptake on sea-salt-containing particles (Gard et al.,

1998) would lead to a decrease in the overall particle hy-

groscopicity since κNaNO3
∼ 0.84<κNaCl∼ 1.2 (Petters and

Kreidenweis, 2007). Similarly, the addition of secondary or-

ganic material would lead to a decrease in κ relative to that

for fresh sea salt, since κOOA<κNaNO3
<κNaCl. Thus, al-

though classified simply as “sea salt”, more detailed con-

sideration of the mass spectra associated with these sodium-

containing particles indicate compositional variations asso-

ciated with photochemical processing, with both nitrate and

organic signatures observed.

An example of the dependence of κsuper on particle com-

position is shown for the T1 site based on single particle mass

spectra from the PALMS instrument for 15 June, a day during

which the supermicron fraction of scattering was particularly

large (0.37± 0.03). On this day there is an evolution from

sea-salt-containing particles with predominately chloride ion

signatures (at 9:30 a.m. LT) to mixed chloride-nitrate-organic

(at 1:15 p.m.) to mostly organic (∼ 4 p.m.) (Fig. 7). The de-
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Figure 7. Fractional contributions (left axis) of chloride (purple),

organics (green) and nitrates (blue) in the PALMS single particle

negative ion mass spectra for sea-salt-containing particles, identi-

fied by sodium in the positive ion spectra, and (right axis) the de-

rived supermicron hygroscopicity parameter, κsuper. The ion frac-

tions do not add up to unity due to contributions from other ion

peaks not included here.

rived κsuper is not constant, and there is a strong correspon-

dence between the measured chloride fraction of sea-salt-

derived particles and κsuper, with smaller κsuper associated

with smaller chloride fractions. As far as we are aware, this

is the first direct demonstration of the influence of photo-

chemical processing on the hygroscopicity of supermicron

particles.

In addition to chemical processing affecting particle hy-

groscopicity, variations in the sources of emitted primary su-

permicron particles can influence the observed supermicron

hygroscopicity. For example, non-sea-salt-containing parti-

cles can be emitted as sea spray in addition to sea-salt (i.e.,

sodium-containing) particles (Facchini et al., 2008; Prather

et al., 2013; Quinn et al., 2014), which may have lower hy-

groscopicity than sea salt. Further, there are also supermicron

dust particles, the hygroscopicity of which can be quite vari-

able but is typically lower than sea salt (Koehler et al., 2009;

Zhang et al., 2014). Finally, sulfate+OA particles also con-

tribute to the supermicron particle burden (Fig. 6). Temporal

variations in the contributions from these different sources,

as well as variations in the extent of photochemical process-

ing, will all contribute to the observed variability in the κsuper

values at both sites. Variability in supermicron composition

and the consequent impacts on the overall particle hygro-

scopicity will clearly require further study, ideally with both

quantitative bulk and single-particle chemical information as

constraints.

5.2.5 Sensitivity/uncertainty analysis

The sensitivity of the retrieved values of κOOA and κsuper

to the assumed κ values of the other components (e.g.,

(NH4)NO3, (NH4)2SO4, HOA, and BC) has been investi-

gated. Although the κ values of these other components have
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Table 2. Change in absolute model retrieved κOOA or κsuper for a given perturbation in the assumed hygroscopicities for other particle

components (κother), along with sensitivities shown as 1κOOA /1κother and 1κsuper /1κother.

Component 1κother T0 T1

(% and absolute) 1κOOA 1κOOA /1κother 1κsuper 1κsuper /1κother 1κOOA 1κOOA /1κother 1κsuper 1κsuper /1κother

(NH4)2SO4 −10 % (−0.067) 0.0077 −0.12 0.0077 −0.12 0.0023 −0.034 0.192 −2.86

+10 % (+0.067) −0.0075 −0.11 −0.0091 −0.14 −0.0070 −0.104 −0.069 −1.03

NH4NO3 −10 % (−0.067) 0.0044 −0.065 0.0011 −0.016 0.0014 −0.024 0.0061 −0.091

+10 % (0.067) −0.0044 −0.065 −0.0014 −0.021 −0.0018 −0.0053 −0.079

BC n/a (0.02) −0.0015 −0.075 0.0007 0.035 −0.0004 −0.021 −0.0019 −0.095

n/a (0.05) −0.0038 −0.076 0.0021 0.042 0.00045 0.009 −0.0135 −0.27

Chloride −10 % (−0.12) 0.0004 −0.003 0.0005 −0.004 −6× 10−6
−5× 10−5

−0.0003 −0.0025

+7 % (0.08) 0.0004 0.005 −0.0005 −0.006 −0.0002 −0.0025 −0.0011 0.0137

HOA +200 % (0.02) −0.0052 −0.260 −3× 10−6
−0.0002

+733 % (0.05) −0.0167 −0.334 −0.0001 −0.002

HOA +67 % (0.01) −0.0004 −0.040 −0.0017 −0.170

+367 % (0.028) −0.0018 −0.064 −0.0032 −0.114

been previously established, they still contain some uncer-

tainty. The sensitivity of κOOA and κsuper have been deter-

mined by perturbing the other species κ values by some

amount and then recalculating optimized κOOA and κsuper val-

ues. For more hygroscopic components (ammonium sulfate

and nitrate and sodium chloride) the κ values were varied by

±10 % around the literature values. The values for BC and

HOA, which are assumed to be essentially non-hygroscopic,

were both increased substantially from their literature values

of κBC= 0 and κHOA= 0.006 (to 0.02 and 0.05 for BC and

by up to 0.05 for HOA at T0, where the loadings were higher

and the greatest effect was thought to be likely). Sensitivities

were determined by perturbing one component at a time. In

general, an increase in κ for one of the other species resulted

in a lowering of both κOOA and κsuper, and vice versa, as ex-

pected since volume additivity is assumed. The absolute and

relative changes in κOOA and κsuper for a given change in κ

of the other species have been quantified (Table 2).

For T0, the κOOA is particularly sensitive to changes in

κHOA, whereas the κsuper is most sensitive to changes in κAS.

The sensitivity of κOOA to κHOA comes about because the

relative concentration of HOA was substantial at T0 and

was sometimes correlated with OOA, while the sensitivity of

κsuper to κAS comes about because κAS is similar in magni-

tude to the derived κsuper. Despite these sensitivities, the over-

all sensitivity-based uncertainty of the κOOA deriving from

uncertainties in the κ values of the other species at T0 is rel-

atively small, estimated as ±7 % from summing the errors

in quadrature. The sensitivity-based uncertainty in the κsuper

deriving from uncertainties in the other κ values is similarly

small, estimated as ±5 %. The overall uncertainty in κOOA

and κsuper also depends on the anti-correlation between these

two parameters (Fig. 4) and in the RH measurement (±2 %).

The uncertainty in RH gives an additional uncertainty in

κOOA of ±0.02 and in κsuper of ±0.11. The uncertainty in

κOOA and κsuper at T0 from their cross-sensitivities are es-

timated as ±0.03 and ±0.15, respectively, based on the χ2

values (Fig. 5). Thus, for T0, the mean values for the OOA

and supermicron hygroscopicity are κOOA= 0.15± 0.04 and

κsuper= 0.9± 0.2.

At T1, because bext was dominated by OA, and specifi-

cally OOA, the derived κOOA values are much less sensitive

to variations in κ for other species, meaning that the overall

uncertainty for κOOA at T1 is determined predominately by

the RH uncertainty. The supermicron contribution to bext at

T1 is comparably small, making κsuper much more sensitive

to variations in the other κ values compared to T0. Specifi-

cally, κsuper is highly dependent on the κAS, changing by 0.12

for a 10 % change in κAS. The estimated uncertainty in κsuper
from the cross-sensitivity to κOOA is 0.1. Thus, for T1, the

mean values for the OOA and supermicron hygroscopicity

are κOOA= 0.09± 0.03 and κsuper= 1.0± 0.2.

5.2.6 Influence of assumed mixing state

Three different models of the submicron particle mixing

state were tested in calculating the particle optical properties:

an internal mixture with size-dependent composition (the

base case discussed above), an internal mixture with size-

independent composition and an external mixture with size-

dependent composition. The optimization procedure was re-

peated for the two alternative models. The derived opti-

mal κOOA values are 0.15, 0.13, and 0.10 for T0 and 0.09,

0.16 and 0.08 for T1 for the internal+ size-dependent com-

position, internal+ size-independent composition and exter-

nal mixture models, respectively. It is apparent that the de-

rived κOOA exhibits some, albeit limited sensitivity to the

assumed mixing state, at least for the particle distributions

in the Sacramento region in the summer. The derived opti-

mal κsuper values are 0.9, 1.2 and 0.8 for T0 and 1.0, 1.1 and

0.9 for T1 for the internal+ size-dependent, internal+ size-

independent and external mixture models, respectively. Like

κOOA, the derived κsuper is not strongly dependent upon the
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model formulation, although because the supermicron parti-

cles are treated as a separate, internally mixed mode in all

cases this is perhaps to be expected. Despite the similarity of

the derived κOOA and κsuper values between the three mod-

els, the two size-dependent composition models generally

resulted in more definitive retrievals of the hygroscopicities;

i.e., the calculated χ2 values exhibited a more well-defined

minimum. This suggests that accounting for differences in

the size distributions of inorganic and organic components

may be important for accurate calculation of the optical prop-

erties of ambient PM at elevated RH.

5.2.7 Influence of particulate light absorption

In the Mie calculations presented herein, it was assumed that

the particles were non-absorbing, and thus that bext= bsca.

However, black carbon is highly absorbing in the visible

wavelength range, and although the time-series shown in

Fig. 1 demonstrates that BC is typically only a small frac-

tion of the total submicron PM, it is important to consider

the extent to which the results above might change if light

absorption by BC is included. One of the challenges in the

simulation of BC light absorption is properly accounting for

the influence of internal mixing (i.e., the presence of coat-

ings) on the light absorption by BC. In theory (Bond et al.,

2006; Fuller et al., 1999) and in some laboratory experi-

ments (e.g., Cappa et al., 2012; Schnaiter et al., 2005), non-

absorbing coatings lead to an enhancement in the absorption

by BC particles above that of uncoated (externally mixed)

BC particles. However, measurements for dry ambient parti-

cles during CARES indicated absorption enhancements that

were substantially smaller than expected (Cappa et al., 2012).

For the humidified aerosols, the effects of water on BC ab-

sorption enhancements for ambient particles remain ill char-

acterized, although there is some experimental evidence to

suggest that water uptake can lead to enhancement of absorp-

tion (Mikhailov et al., 2006).

The magnitude of the potential influence of light absorp-

tion on the calculated hygroscopic growth has been assessed

through a series of test calculations. Results are compared

between calculations for particles that were assumed to have

an overall dry diameter of 300 nm, but where (i) the parti-

cles are well-mixed and non-absorbing, (ii) the particles are

well-mixed and the BC fraction is absorbing and (iii) the BC

exists as an absorbing core with a non-absorbing coating, i.e.,

in a core-shell morphology. The dry particles are assumed to

have 5 % by volume BC, 20 % ammonium sulfate and 75 %

OOA, giving a composite κtot= 0.25 or a GF(85 %)= 1.33.

For the core-shell case, this corresponds to a BC core diame-

ter of 110 nm. The imaginary refractive index for BC is taken

as 0.8. The calculated γext for the three cases are 0.43, 0.39

and 0.41, respectively. The calculated γsca for the three cases

are 0.43, 0.46 and 0.48, respectively. These test calculations

indicate that the neglect of absorption by BC will have had a

minimal influence on the γext calculations, and consequently

on the derived κOOA and κsuper at the T0 site. In contrast, the

calculated γsca without absorption might be biased low by a

small amount, which could consequently lead to small low

biases in the calculated κOOA and κsuper at the T1 site.

6 Conclusions

Measurements of light extinction and light scattering by am-

bient particles (PM2.5) were made at two sites under low

and high RH conditions during the 2010 CARES campaign

in Sacramento, CA to assess the influence of water uptake

on the optical properties of the particles. The overall effect

of water uptake on extinction and scattering was character-

ized by the optical hygroscopicity parameter γ . Concurrent

measurements of particle composition allowed for assess-

ment of the relationship between particle composition and

the water uptake. Optical closure calculations for the low

RH measurements indicate good model/measurement agree-

ment when the model is constrained by observed size distri-

butions. Effective hygroscopicities, i.e., κ values, were deter-

mined for OOA and for supermicron (defined here as parti-

cles with 1 µm<dp,a< 2.5 µm) particles based on compari-

son between observed and calculated γ values. The derived

campaign-average κOOA values at the two sites were simi-

lar, with κOOA= 0.15± 0.04 (T0) and 0.09± 0.03 (T1), indi-

cating that OOA is moderately hygroscopic, consistent with

previous studies. The derived campaign-average κsuper val-

ues at the two sites were also similar to each other, with

κsuper= 0.9± 0.2 (T0) and 1.0± 0.2 (T1), indicating that the

supermicron particles in this region were overall highly hy-

groscopic. However, the κsuper exhibited some dependence

on the particle composition, with larger values observed

when the supermicron particles were dominated by sea salt

and smaller values observed as chloride was replaced by ni-

trate or when supermicron organics were prevalent.

The Supplement related to this article is available online

at doi:10.5194/acp-15-4045-2015-supplement.
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