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Abstract

We propose methodology for exact statistical tests of hypotheses for mod-

els of network dynamics. The methodology formulates Markovian exponen-

tial families, then uses sequential importance sampling to compute expecta-

tions within basins of attraction and within level sets of a sufficient statistic

for an overdispersion model. Comparisons of hypotheses can be done condi-

tional on basins of attraction. Examples are presented.

Keywords: Basin of attraction, biological network, conditional test, polynomial

dynamics, sequential importance sampling, sufficient statistic

1 Introduction

In this paper we develop methodology for exact statistical tests of hypotheses for

models of network dynamics. We introduce statistical models that include a dis-

persion parameter to deal with real data, formulate conditional tests that respect a

given test size, and develop practical methods for computing expectations within
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level sets or fibers of a sufficient statistic. The methods are applied to examples of

biological networks, including one on abscisic acid (ABA) signalling and another

on cancer cell signalling.

Biological networks are often modeled as discrete dynamical systems in order

to understand interactions and regulatory processes. Boolean models, a two-state

conceptual simplification, continue to be developed and used (Albert et al., 2003;

Klamt et al., 2006; Morris et al., 2010; Saez-Rodriguez et al., 2011; Stigler, 2006;

Thomas, 1973, 1998). Extensions to discrete states with more than two levels

have been of interest, so that on-off states may be refined to low-medium-high

for example (Mendoza, 2006). In this paper we focus on the binary case but any

discretization can be done similarly (Dinwoodie, 2012).

Regulatory network data has features that cause difficulties for rigorous statis-

tical inference: high dimensionality, over-dispersion, and lack of ergodicity due to

absorbing states and limit cycles. In addition, conceptually useful models are sim-

plified to the point that data from experiments on real networks have probability 0

under the model, a situation that may be called singular data since the model prob-

abilities and the empirical data are technically incompatible. Thus we introduce a

straightforward dispersed version of idealized dynamics, and we can view the data

as singular with respect to deterministic dynamics but lying within the support of

the distributions in the dispersed dynamical model. We develop conditional infer-

ence to do tests of controlled size α even with unknown nuisance dispersion param-

eter φ in the model. Conditional tests generally require computation in level sets or

fibers of a sufficient statistic. This is a classical subject now for contingency tables

where the sufficient statistics are linear, and recent developments include connec-

tions with integer programming and commutative algebra (Aoki et al., 2012; Drton

et al., 2008; Riccomagno et al., 2000), and sequential importance sampling (Chen

et al., 2006).

Biological network models are very different than log-linear models in sev-

eral key technical ways: the states are generally binary or ternary vectors instead

of integer; and the constraint equations for sampling are not linear. On the plus
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side, the dynamical equations are generally lightly coupled, and by this we mean

imprecisely that most equations depend on only a few indeterminates so equa-

tions are not highly linked together or highly dependent. The methodology will

use a combination of elementary computational commutative algebra, and sequen-

tial importance sampling for computing exact conditional p-values. Some of our

methods require a lexicographic Gröbner basis (Kreuzer et al., 2000) for a set of

polynomials, and while this is theoretically a hard and complex thing to compute

it works well on many real examples from the systems biology literature including

those in Section 6. Computations were done with Singular (Decker et al., 2011) but

other software such as Macaulay 2 (Grayson et al., 2012) is also suitable. Section

2 is a self-contained discussion of attracting sets, which are simple for dynami-

cal systems on a finite state space and fundamental for biological understanding.

Section 3 presents a statistical model for dynamics that includes a dispersion pa-

rameter φ that makes idealized dynamics compatible with noisy data. Section 4 is a

technical section on sequential importance sampling on a basin of attraction where

some computational commutative algebra is used, but for practical purposes it is

only necessary to understand the implementation in Example 2. This section is not

new except for the extension of Theorem 1 to limit cycles from earlier fixed point

assumptions.

Section 5 has the new results and this section formulates the probability model,

sets up the problem of exact statistical inference, conditions on a sufficient statistic,

and computes conditional p-values for exact tests. Finally Section 6 applies the

method to network examples with published data.

2 Attractors and Basins of Attraction

Attracting sets in discrete Boolean dynamics can be steady states (fixed points) or

limit cycles. In (Li et al., 2006), limit cycles appear in a model of stomatal closure,

but in some cases only steady states are possible. In all of our real examples of

Section 6 both steady states and cycles appear. In this section we set up the notation

3



for attracting sets and establish basic properties, as one goal of this paper is to

extend a previous method (Dinwoodie, 2012) for sampling points in the basin of

attraction of a steady state to any attracting set.

Consider a state space Ω := {x = (x1, . . . ,xd),x j = 0,1} = {0,1}d , a d-fold

product of binary on-off states.

Let F = (F1, . . . ,Fd) be a transition map or transition function or update func-

tion on Ω, where Fj : Ω → {0,1} and F : Ω → Ω. This map is deterministic, and

the real time step which it represents can depend on many factors (Saez-Rodriguez

et al., 2007). Randomized versions called asynchronous updates are of interest

(Saadatpour et al., 2010), but we do not treat that extension in this paper.

For a state x, define the limiting set

Ax = ∩∞
k=1 ∪

∞
n=k Fn(x) (1)

where Fn is the n-fold composition of F .

The resulting sets, as x varies in the state space {0,1}d are disjoint and are the

limiting sets or attractor sets of the system.

Proposition 1. Ax ∩Ay = /0 or Ax = Ay.

Proof. Suppose Ax ∩Ay 6= /0 and let z ∈ Ax ∩Ay. This implies that z = Fnk(x) =

Fmk(y) for increasing sequences nk,mk,k = 1,2,3, . . .. Then if x′ ∈ Ax, it follows

that x′ = F ik(x) = F ik−n1(z) = F ik−n1(Fm1(y)) and thus x′ ∈ Ay. By symmetry,

Ay ⊂ Ax as well.

A steady state p = (p1, . . . , pd) ∈ Ω has the defining property that F(p) = p, a

cycle of length 1. Define the set of points that eventually lead to a steady state p:

Bp := ∪∞
k=1{x : Fk(x) = p}

where Fk is the k-fold composition of the map F . More generally, define the basin

of attraction BA of any attractor (1) as

BA := ∪∞
k=1{x : Fk(x) ∈ A}. (2)
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Clearly, if p is a steady state, then Ax = {p} for all x∈Bp, the basin of attraction

of p.

The invariance of the attractor follows immediately from the definition (2.1).

Proposition 2. If y ∈ Ax, then F(y) ∈ Ax.

Proof. If y ∈ Ax then there is an increasing sequence n1 < n2 < n3 < · · · with

y = Fn1(x) = Fn2(x) = · · · , and this then implies that F(y) = Fnk+1(x),k ≥ 1 and

so F(y) ∈ Ax.

Proposition 3. All attractor sets Ax are fixed points or cycles.

Proof. It is enough to show that the map F does not leave invariant any strict subset

of Ax. Let B ⊂ Ax with F(B) ⊂ B. If y ∈ Ax, then y = Fnk(x),n1 < n2 < n3 < .. .

and similarly if b ∈ B then b = Fmk(x). This means that y = Fnk−m1(b),nk > m1

and thus y ∈ Ab. By Proposition 1, it follows that Ax = Ab ⊂ B, where the last

containment follows by the invariance of B. Thus any invariant subset B of Ax

must be all of Ax.

Proposition 4. For any basin of attraction BA, x ∈ BA if and only if Ax = A.

Proof. Suppose x ∈ BA. Then there is a k ≥ 1 with Fk(x) ∈ A. Since A is invariant,

it follows that Fn(x) ∈ A for all n ≥ k, and hence Ax = ∩k≥1∪n≥k Fn(x)⊂ A – then

by Proposition 1 Ax = A.

Conversely, suppose Ax = A. To show that x ∈ BA(= BAx
), it is sufficient to

show that Fnk
(x) = x0 for a sequence n1 < n2 < n3 < · · · and any point x0, because

the point x0 must then be in Ax. But this property is immediate since the infinite

sequence Fn(x) in the finite set {0,1}d must visit some point x0 an infinite number

of times.

Proposition 4 clarifies that a point x will hit its attracting set at some finite time

(unlike the situation in continuous dynamics), and this is used in the algorithm of

Theorem 1.
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Example 1. An example of dynamics with limiting cycles is given in Table 1 of

(Saadatpour et al., 2010) for a 13-node subnetwork of a guard cell ABA signalling

network. With 13 nodes each getting an indeterminate s1, . . . ,s13, the dynamics are

F1 = s11,F2 = s1,F3 = s2,F4 = s2,F5 = s4,F6 = s3,F7 = s11,F8 = s7,

F9 = (s5 · s6)+ s8 − s5 · s6 · s8,F10 = s11,F11 = s9 · (1− s10),F12 = 1− s11,F13 = s11.

There is one fixed point 0000000000010 with basin of attraction counting 108

points, and two attractors in the form of limit cycles of size 4, given by

1000001011001

0100000100010

0011000010010

0000110000110

1100001111001

0111000110010

0011110010110

1000111011101

The two basins of attraction have sizes 1704 and 6380.

3 One-parameter dispersion model

Idealized, simplified interaction and regulatory rules F are useful conceptual tools.

However these dynamics usually do not fit data for several reasons: 1) the actual

multivariate time series do not exactly follow the dynamics because the rules are

only approximate, 2) there is noise in the original continuous measurements, which
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leads to corrupted binary values in discretized data, 3) an intervention or experi-

ment is deliberately stimulating or inhibiting the network to provide data for mod-

eling. We may call data that is incompatible or inconsistent with a deterministic

model singular data, as its probability or likelihood is 0. Comparing two idealized

theories in this setting is our goal.

In this section we define a probability model that interpolates between pure iid

noise and the exact deterministic dynamics. This will make the likelihood of the

data positive, help account for uncertainties in measurement modeling, and then

permit likelihood based methods of inference. We introduce a dispersion param-

eter in a way that is standard in generalized linear model theory and has some

similarities with the categorical data version in (Diaconis et al., 1985).

For dispersion parameter φ, define a transition probability kernel on Ω by

K(x,y) =
e
− 1

φ ‖F(x)−y‖2

(1+ e−1/φ)d
, φ ∈ (0,∞). (3)

When φ → ∞, the distribution approaches coin flipping for y, and when φ → 0

it approaches the deterministic dynamics y = F(x). One may parametrize with

θ = 1/φ if desired, but using φ is more consistent with notation for dispersion

parameters in exponential families where larger φ corresponds to more variance in

the response.

Let µ denote a known initial probability distribution on Ω, giving probability

distribution Pµ,F,φ on Ωn+1:

Pµ,F,φ(x0:n = (x0,x1, . . . ,xn)) = µ(x0)
n

∏
i=1

K(xi−1,xi)

which simplifies to

Pµ,F,φ(x0:n) = µ(x0)
e
− 1

φ ∑n
i=1 ‖F(xi−1)−xi‖

2

(1+ e−1/φ)dn
. (4)

We will consider φ to be a nuisance parameter, and the dynamics F to be the “pa-

rameter" of interest for testing.
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To estimate φ (which is useful to determine how well the pure dynamics fit the

data because a better map F is related to a smaller dispersion φ), note that we can

solve explicitly for its maximum likelihood estimator φ̂:

p̂ :=
∑n

i=1 ||F(xi−1)−xi||
2

nd
1

φ̂
= log(

1− p̂

p̂
), 0 < p̂ < 1/2.

The model (3) means that perturbations or errors occur with odds e−1/φ homo-

geneously in time (index i = 1, . . . ,n) and space (coordinate indices j = 1, . . . ,d),

and when they occur they are built into the process affecting future transitions (a

state space model would be more appropriate for noisy observations where the true

state is not randomly perturbed). This would roughly correspond to a situation

where homogeneous interventions are made on a network to keep generating data

for observation or reverse engineering. In experiments such as the hcc1954 data

described in (Bender et al., 2011), there are many different interventions that af-

fect the network in different ways, so homogeneity in the perturbations may be too

idealized.

4 Sequential Importance Sampling

In this section we describe a sequential importance sampling algorithm for com-

puting expectations on the initial state x0 ∈ BA ⊂ Ω, for basin of attraction BA. The

value of computations within basins of attraction is evident in work such as (Al-

bert et al., 2003), (Saadatpour et al., 2010). The mathematical method is based on

constructing the set of polynomials that vanish on the basin of attraction (its ideal),

then sampling roots sequentially with a nonlinear version of back substitution. The

algebraic tools are outlined in (Kreuzer et al., 2000) and (Riccomagno et al., 2000).

Before explaining the details, let us say how the approach in this section differs

from existing methods for studying attractors, such as found in BoolNet (Müssel et
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al., 2010). Rather than complete enumeration and listing of states in an attracting

set, a process whose work grows exponentially in the number of dimensions or

nodes d, the algebra constructs the polynomials that vanish on the attracting set.

In many real examples, the polynomials are few and simple to understand. For

example, in the signalling network of Example 7, each fixed point has an attracting

basin of size 8192. Complete enumeration does not reveal that each is simply a

cylinder set obtained by restricting three coordinates 1, 8, and 11, but the poly-

nomial characterization shows sixteen polynomials only three of which say more

than the states are binary. For the limit cycle in that example (the one of sixteen

that was analyzed), just nineteen polynomials are needed, only three of which are

nontrivial. While the algebra can in theory be hard or practically impossible, in

real examples the standard polynomial basis typically has size on the order of d,

rather than the 2d states, and its computation is fast. Its use in sampling requires

importance reweighting (Theorem 2), but that is a small inconvenience in return

for the insight and memory efficiency.

Let A be an attractor of interest, possibly a limit cycle, and let µ have support on

its basin of attraction BA. We will use twice as many indeterminates as the number

of coordinates d. Define the ring of polynomials R := C[s1, . . . ,sd, t1, . . . , td] =

C[s, t], and define ideals

I01 = 〈s2
1 − s1, . . . ,s

2
d − sd, t

2
1 − t1, . . . , t

2
d − td〉

Fst = 〈F1(s)− t1,F2(s)− t2, . . . ,Fd(s)− td〉

Fts = 〈F1(t)− s1,F2(t)− s2, . . . ,Fd(t)− sd〉

IA = ∩p∈A〈t1 − p1, . . . , td − pd〉.

Define the ideal I1 by

I1 = (Fst + IA + I01)∩C[s].

Define recursively a sequence of ideals I2, I3, I4, . . . by

J = (Fts + Ii + I01)∩ C[t] (5)

Ii+1 = (Fst + J+ I01)∩ C[s], i = 1,2,3, . . . (6)
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Stop the iteration when dimR/(Ii + I01) repeats in order to get the polynomials

that vanish on the basin of attraction BA (see (Dinwoodie, 2012) for proofs in the

case of a steady state and examples).

Theorem 1. There exists i⋆ < ∞ such that dimR/(Ii⋆ + I01) = dimR/(Ii⋆+1 + I01),

and for such an integer

I(BA) = Ii⋆

as an ideal within C[s].

Proof. Here we only sketch the main steps. Observe first that IA is the ideal of

the attracting set A containing a finite number of points p = (p1, . . . , pd). The

elimination ideal I1 is the ideal for the points x that reach A in one time step,

using indeterminates s. Then the following ideal J is for the points x that reach

A in two time steps, using indeterminates t. The elimination operation does not

add unwanted partial solutions (solutions that do not match up with points that

reach A from the previous time step), because the Extension Theorem applies when

the univariate polynomials in the ideal I01 are added. All the ideals Ii + I01 are

radical and 0-dimensional so the dimension of the vector space R/(Ii + I01) counts

solutions. When the number of solutions stops increasing, then the procedure has

found all points that will reach A in forward iterations of F .

Now map the polynomials in Ii⋆ to C[s] in the obvious way (s j → s j, t j → 0) so

IBA
is the ideal of polynomials in s1, . . . ,sd that vanish on the basin of attraction BA,

the ideal of the variety. Note also that the univariate polynomials s2
j − s j all belong

to the ideal I(BA).

For sequential sampling from BA we adapt the “backward" method from (Din-

woodie, 2011). Let

{ f1, . . . , fg} (7)

be a lexicographic Gröbner basis for I(BA) with indeterminate ordering s1 > s2 >

· · ·> sd .
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The proposal distribution, from which we generate an iid sample of size N in

BA ⊂ Ω, will be close to uniform. The proposal distribution q will be expressed as

a product of successive conditional distributions

q(x) = qd(xd) ·qd−1(xd−1|xd) ·qd−2(xd−2|xd ,xd−1) · · ·q1(x1|xd, . . . ,x2)

just as a random point Xk := (Xk,1,Xk,2, . . . ,Xk,d) ∈ BA will be generated sequen-

tially: Xk,d,Xk,d−1, . . . ,Xk,1, k = 1, . . . ,n.

The unnormalized weights wk are defined by wk = µ⋆(Xk)/q(Xk), where µ⋆ is

a convenient possibly unnormalized version of the probability distribution µ. The

SIS Monte Carlo estimate for EBA
( f (X)) is given by

ÊBA
( f (X)) :=

1

N

N

∑
k=1

f (Xk)
wk

w̄
. (8)

The law of large numbers says that

w̄ =
1

N

N

∑
k=1

µ⋆(Xk)

q(Xk)
→ ∑

x∈BA

µ⋆(x)

q(x)
q(x) = µ⋆(BA) (9)

which implies the consistency of the estimator ÊBA
( f (X)):

ÊBA
( f (X))→

1

µ⋆(BA)
∑

x∈BA

f (x)
µ⋆(x)

q(x)
q(x) = ∑

x∈BA

f (x)µ(x) = EBA
( f (X)). (10)

When µ⋆ is the unnormalized constant 1, then SIS can be used for approximate

counting as is well-known: w̄ → |BA|.

The SIS procedure for sampling from a nonempty BA using an initial Groebner

basis computation is described next.

(SIS) Sequential Importance Sampling on BA:

1. Compute a reduced lexicographic Groebner basis for I(BA) with variable

order s1 > s2 > · · ·> sd in C[s].

2. For sample size N, let the index k run from 1 to N:
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(a) Using the polynomials from the lex basis that only involve sd , deter-

mine which of {0,1} solve the system and let nd ∈ {1,2} be the num-

ber of values in {0,1} that solve the equations. Then uniformly sample

Xd from the set of roots, and let qd(Xd) = 1/nd .

(b) Continue for indices j = 1, . . . ,d − 1 to count (by substitution of 0

and 1) the number of solutions nd− j to the equations in the lex basis

that involve variables sd− j, . . . ,sd , with sd− j+1 = Xd− j+1, . . . ,sd = Xd .

Choose Xd− j uniformly from the nd− j solutions, and set

qd− j(Xd− j|Xd− j+1, . . . ,Xd) = 1/nd− j.

(c) Complete X=(X1, . . . ,Xd)∈BA when X1 is chosen and q1(X1|Xd, . . . ,X2)

is computed.

(d) Set Xk =(X1, . . . ,Xd) and lk =− log(qd(Xd))−·· ·− log(q1(X1|Xd, . . . ,X2)).

The following result is from (Dinwoodie, 2011), and is essentially an appli-

cation of the Extension Theorem (Cox et al., 1998), using the elements of I01 to

satisfy certain technical conditions, and accounting for the proposal probabilities.

While the lexicographic Gröbner basis is considered computationally hard, the na-

ture of the equations in biological networks usually gives tractable systems.

Theorem 2. Sequential importance sampling in (SIS) above always produces an

element Xk ∈ BA if BA 6= /0 , and when µ is constant on BA the importance sampling

weights wk are

wk = elk .

Example 2. To make the method above concrete, consider a simple example on

d = 2 nodes, where the dynamics are F1(x1,x2) = F2(x1,x2) = x1x2. There are

two fixed points, and attractor A = {00} has basin of attraction equal to B00 =

{00,01,10}. Its ideal is generated by lex Gröbner basis {s2
1 − s1,s1 · s2,s

2
2 − s2}

which is the key to sampling. There is one equation that involves only the last

indeterminate s2, and it is solved by both 0,1, so nd = n2 = 2. Suppose we choose

0 for its value, giving partial solution ∗0. Then replacing s2 by 0 in the other
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equations gives equations s2
1 − s1,0, so again two choices are possible and n1 = 2.

Thus the weights w on 00 and 10 are both 4, the reciprocal of 1
2
· 1

2
. On the other

hand if the first choice was x2 = 1, giving partial solution ∗1, the updated equations

become s2
1 − s1,s1. These are only solved by s1 = 0 for complete solution 01 with

weight 2, the reciprocal of 1
2

1
1
. The sequential sampling will generate solutions

00, 01, 10, with frequencies proportional to 1/4, 1/2, 1/4, and the weights are the

reciprocals.

Thus an expectation of a function f with the respect to the uniform distribution

µ⋆ = 1 on B00 is computed as

EB00
( f (X)) := ∑

x∈B00

f (x)

3
= f (00)

w00

3
·

1

4
+ f (01)

w01

3
·

1

2
+ f (10)

w10

3
·

1

4

where the weights are given by w00 = 4,w01 = 2,w10 = 4, and the normalizing 3

corresponds to the average w̄ from the expectation of the weights

w̄ ≈ 3 = w00 ·
1

4
+w01 ·

1

2
+w10 ·

1

4
.

Then it is clear that the reweighting of the integrand f compensates for the unequal

frequencies from the sampling procedure.

5 Exact Conditional Hypothesis Tests

We use the term “exact test" in the sense that the size α of the test is guaranteed to

be as advertised – it does not come from asymptotic results with unknown conver-

gence rates possibly not uniform over the parameter φ. The technical proof of the

exactness is stated in Proposition 5 below. This result is generally not stated but

exists as a folk theorem (Guo et al., 1992, p. 363). We state it completely to clarify

the p-value formula and to show that the conditioning is not so much a Bayesian

approach as one which makes a rejection region by considering each level set of a

sufficient statistic.

The probability model of Section 3 gives likelihood function LF,φ in the two

unknown parameters F,φ of the form:
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LF,φ := Pµ,F,φ(x0,x1, . . . ,xn) = µ(x0)
e
− 1

φ ∑n
i=1 ‖F(xi−1)−xi‖

2

(1+ e−1/φ)dn
.

Let TF(x0:n) := ∑n
i=1 ‖F(xi−1)−xi‖

2 measure the distance between ideal dynamics

F and data x0:n. The data x0
0:n is singular with respect to the ideal dynamics when-

ever TF(x
0
0:n)> 0. TF is a sufficient statistic for φ. Then the conditional distribution

on Ωn+1 given TF = t is proportional to µ(x0):

Pµ,F,φ{x0:n | TF(x0:n) = t}=
µ(x0)

∑TF (y0:n)=t µ(y0)
∝ µ(x0). (11)

We will be interested in initial distributions µ that are supported on certain attrac-

tors.

Suppose the dynamics F could be one of two choices, G0 or G1 giving hy-

potheses

H0 : F = G0 (12)

H1 : F = G1 (13)

with unknown nuisance parameter φ ∈ (0,∞).

A likelihood ratio test might be best if φ were known, but there are two practi-

cal difficulties: how to calibrate the test statistic for size α, and dealing with φ the

unknown dispersion parameter. Note that the assumptions of Wilks’ theorem that

give a χ2 asymptotic distribution for the likelihood ratio statistic are not satisfied

(Bickel et al., 2007, p. 395). Another point here is that in maximizing a likeli-

hood ratio maxφ LG1,φ/maxφ LG0,φ, the two maximizers φ̂ could be different, and

the larger φ̂ should be considered as evidence against the corresponding dynamics

G1 or G0. This information would not be considered in a standard likelihood ra-

tio procedure but posterior densities of φ would be useful. Conditional inference

handles both problems of exactness and unknown φ, but it is necessary to be able

to compute in fibers {x0 ∈ BA}∩{TG0
= t}. For this we use sequential importance

sampling as described below.
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The conditional p-value V can be used as a test statistic to give a size α test

in the traditional frequentist sense. This is because the V test statistic cuts out a

rejection subset {V ≤ α} of size at most α (not depending on the nuisance param-

eter) from each level set of the sufficient statistic, and the parametric distribution

just weights the various level sets differently depending on φ. A case study for

practical issues of conditional p-values for categorical data is (Guo et al., 1992),

and the proposition below is essentially in (Casella et al., 2002, p. 399).

Let T = TG0
−TG1

and define the p-value test statistic V on observed data x0
0:n

by

V =V (x0
0:n) := Pµ,G0,φ(T ≥ T (x0

0:n) | TG0
= TG0

(x0
0:n)) (14)

which is a conditional p-value using the conditional likelihood ratio.

Proposition 5. With p-value V defined above, the test that rejects H0 when V ≤ α

has size at most α for any 0 < α < 1 regardless of φ.

Proof. Suppose the true dynamics are given by G0, so the probability distribution

on Ωn+1 is Pµ,G0,φ. Then the conditional distribution given TG0
= t is proportional

to µ(x0). The test statistic V defines a rejection region R given by

R = ∪t≥0Rt

Rt := {x0
0:n ∈ T−1

G0
(t) : V (x0

0:n)≤ α}= {x0
0:n ∈ T−1

G0
(t) : Pµ,G0,φ(T ≥ T (x0

0:n) | TG0
= t)≤ α}.

Now using the mutual exclusiveness of the Rt , we get

Pµ,G0,φ(R) = ∑
t≥0

Pµ,G0,φ(Rt | TG0
= t) ·Pµ,G0,φ(TG0

= t)

and it is sufficient to show Pµ,G0,φ(Rt |TG0
= t)≤ α for each t. This is in fact a stan-

dard result for discrete random variables put into their own cdf, a slight variation

on the continuous version where the resulting distribution is exactly uniform.

To simplify notation, fix t and let π denote the conditional mass function of

x0:n ∈ Rt and let gt denote the mass function of TG0
using the conditional distribu-
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tion on Rt , and let x denote a trajectory x0
0:n. Then

Pµ,G0,φ(Rt | TG0
= t) = Pµ,G0,φ{x0

0:n ∈ T−1
G0

(t) : Pµ,G0,φ(T ≥ T (x0
0:n) | TG0

= t)≤ α}

= ∑
x:∑t≥t(x) gt≤α

π(x)

=
∞

∑
s=0

I{s:∑∞
t=s gt≤α}gs

= ∑
s∈[sα,∞)

gs, [sα,∞) := {s :
∞

∑
t=s

gt ≤ α}

≤ α.

We now compute V with a Monte Carlo method that uses the SIS method of

Section 4 for sampling BA combined with a sampling method on {TG0
= t}. For

simplicity, the initial distribution µ will be uniform on basin BA with unnormalized

µ⋆ = 1. Recall that T := TG0
−TG1

is defined before (14) and x0
0:n is the actual data.

(MC) Monte Carlo Exact Test in {TG0
= t}∩{x0 ∈ BA}:

1. Do (SIS) in BA with dynamics F = G0 to get an iid sample Xk ∈ BA with

weights wk, k = 1, . . . ,N.

2. For each k = 1, . . . ,N:

(a) Sample uniformly a subset S of size t from index set {(i, j), i= 1, . . . ,n, j =

1, . . . ,d}, set Si = { j : (i, j) ∈ S}.

(b) For i = 1, . . . ,n, set xi = G0(xi−1)⊕ 1Si
, with x0 = Xk and addition

modulo 2 to switch the value 0 ↔ 1.

(c) Set xk
0:n = (Xk,x1,x2, . . . ,xn) to be the concatenation with x0 = Xk.

3. Compute the estimator for p-value V defined at (14) by

V̂ =
1

N

N

∑
k=1

I{T≥T (x0
0:n)}

(xk
0:n)

wk

w̄
. (15)
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Note that for each xk
0:n constructed in (MC) above,

TG0
(xk

0:n) =
n

∑
i=1

‖G0(x
k
i−1)−xk

i ‖
2 =

n

∑
i=1

|Si|= t.

Theorem 3. The estimator V̂ from Monte Carlo sampling (MC) converges to V as

N → ∞ when µ is uniform on BA.

Proof. As the Monte Carlo sample size N → ∞,

V̂ =
1

N

N

∑
k=1

I{T≥T (x0
0:n)}

(xk
0:n)

wk

w̄

→
1

µ⋆(BA)
E[I{T≥T (x0

0:n)}
(x0:n)w(x0)]

=
1

µ⋆(BA)
E
[

w(x0)E[I{T≥T (x0
0:n)}

(x0:n) | x0]
]

=
1

µ⋆(BA)
E

[

w(x0)
|{x1:n : T (x0:n)≥ T (x0

0:n),TG0
(x0:n) = t}|

|{x1:n : TG0
(x0:n) = t}|

]

=
1

µ⋆(BA)
∑

x0∈BA

µ⋆(x0)

q(x0)
q(x0)

|{x1:n : T (x0:n)≥ T (x0
0:n),TG0

(x0:n) = t}|

|{x1:n : TG0
(x0:n) = t}|

=
1

|BA|
∑

x0∈BA

1

q(x0)
q(x0)

|{x1:n : T (x0:n)≥ T (x0
0:n),TG0

(x0:n) = t}|

|{x1:n : TG0
(x0:n) = t}|

= Pµ,G0,φ(T ≥ T (x0
0:n) | TG0

= TG0
(x0

0:n))

=V.

6 Examples

The network examples are ABA signalling and a cancer cell network.

Example 3. Consider the network for stomatal closure from Example 1, and

consider the first run from the Abscisic Acid Signaling Network Data Set at the

UCI Machine Learning Repository (Frank et al., 2010) in Table 1. This data was

simulated with the dynamics of Example 1 in an asynchronous fashion, meaning
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that a coordinate j was chosen randomly, then that coordinate map Fj is applied

to update that one coordinate while the others remain unchanged. The initial state

(marked as time 1) was simulated uniformly over all states. This transition scheme

has the same steady states as the pure dynamics, but introduces randomness differ-

ently than the perturbations of model (4) and slows the process by a factor of 1/d

approximately. Therefore the data is quite different than what would be typical for

model (4).

Table 1: ABA Signalling Data
NOS NO GC ADPRc cADPR cGMP PLC IP3 CIS CaATPase Ca KAP KEV

step+1 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13

1 0 1 1 0 0 1 0 0 0 1 1 0 1

2 1 1 1 1 1 1 0 0 0 0 0 0 1

3 0 0 0 0 1 0 0 0 1 0 0 0 0

4 0 0 0 0 0 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0 0 0 0 0 0 0

7 0 0 0 0 0 0 0 0 0 0 0 0 0

8 0 0 0 0 0 0 0 0 0 0 0 0 0

9 0 0 0 0 0 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0 0 0 0 0

11 0 0 0 0 0 0 0 0 0 0 0 0 0

12 0 0 0 0 0 0 0 0 0 0 0 0 0

13 0 0 0 0 0 0 0 0 0 0 0 0 0

14 0 0 0 0 0 0 0 0 0 0 0 0 0

15 0 0 0 0 0 0 0 0 0 0 0 0 0

16 0 0 0 0 0 0 0 0 0 0 0 0 0

17 0 0 0 0 0 0 0 0 0 0 0 0 0

18 0 0 0 0 0 0 0 0 0 0 0 0 0

19 0 0 0 0 0 0 0 0 0 0 0 0 0

20 0 0 0 0 0 0 0 0 0 0 0 0 0

21 0 0 0 0 0 0 0 0 0 0 0 0 0

While the initial state above is in the basin of attraction of the smaller cycle

limit described in Example 1, we will take µ to be uniform as was done in the

original simulation. Then importance sampling is not needed as exact simulation of

µ is straightforward . Let G1 be a competing theory with map 9 given by s5 ·s6 with

no appearance of s8, while the null model G0 is exactly map F from Example 1.

Five Monte Carlo p-value computations with N = 10000 gave an average of 0.021,

with standard error 0.001. Therefore this data would probably lead to rejection of

the null model.
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Example 4. Starting from the same initial state as Example 3 but running pure

dynamics with no noise (φ = 0), the data becomes

0 1 1 0 0 1 0 0 0 1 1 0 1

1 0 1 1 0 1 1 0 0 1 0 0 1

0 1 0 0 1 1 0 1 0 0 0 1 0

0 0 1 1 0 0 0 0 1 0 0 1 0

0 0 0 0 1 1 0 0 0 0 1 1 0

1 0 0 0 0 0 1 0 1 1 0 0 1

0 1 0 0 0 0 0 1 0 0 0 1 0

0 0 1 1 0 0 0 0 1 0 0 1 0

0 0 0 0 1 1 0 0 0 0 1 1 0

1 0 0 0 0 0 1 0 1 1 0 0 1

0 1 0 0 0 0 0 1 0 0 0 1 0

0 0 1 1 0 0 0 0 1 0 0 1 0

0 0 0 0 1 1 0 0 0 0 1 1 0

1 0 0 0 0 0 1 0 1 1 0 0 1

0 1 0 0 0 0 0 1 0 0 0 1 0

0 0 1 1 0 0 0 0 1 0 0 1 0

0 0 0 0 1 1 0 0 0 0 1 1 0

1 0 0 0 0 0 1 0 1 1 0 0 1

0 1 0 0 0 0 0 1 0 0 0 1 0

0 0 1 1 0 0 0 0 1 0 0 1 0

0 0 0 0 1 1 0 0 0 0 1 1 0

With the same maps G0 and G1 as Example 1, five runs of N = 10000 gave a

mean for the p-value estimate of 0.104, with standard error 0.001, values normally

consistent with keeping the null dynamics.

Our third example demonstrates the feasibility of the algebraic computations

required to condition on a particular basin of attraction.

Example 5. Consider again the network for stomatal closure from Example 1,

and hypothetically suppose t = 0, meaning the model G0 = F fits the data perfectly,

and suppose n = 1 for one transition. Let G1 again be the competing theory with

map 9 given by s5 · s6 with no appearance of s8. Suppose the initial distribution µ

is uniform on the basin of attraction BA of size 6380 corresponding to the second
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limit cycle.

Then the p-value V is simply the fraction of initial states x0 ∈BA where G1(x0) 6=

G0(x0), a case treated algebraically in (Dinwoodie, 2012), and the answer is ex-

actly 1 - 3740/6380 = .41. Employing the SIS method of Section 4, there is a lex

Gröbner basis for sampling the set BA of 19 polynomials which is found easily in

Singular. Sampling with N = 10000 showed an estimated size B̂A = 6413.3 on one

run for example, from the average of the importance sampling weights w̄ (and a cv2

value of approximately .12 indicates reasonable efficiency of importance sampling

relative to perfect sampling, see (Liu, 2001)). A Monte Carlo estimate of V on five

runs with N = 10000 is 0.414, which compares with the exact value of .41. The

standard error on the five runs was 0.003, giving confidence interval 0.414±2 · .003

containing the true value.

Example 6. Consider again the network for stomatal closure from Example 1

with G1 as above in Example 5. We generated data starting from an initial point in

the larger basin of attraction of the second cycle, using the dynamics G1 with zero

random perturbations (zero perturbations are likely with φ < .1 when n = 20 and

d = 13) .

1 1 0 0 0 0 1 1 1 1 0 0 1

0 1 1 1 0 0 0 1 0 0 0 1 0

0 0 1 1 1 1 0 0 0 0 0 1 0

0 0 0 0 1 1 0 0 1 0 0 1 0

0 0 0 0 0 0 0 0 1 0 1 1 0

1 0 0 0 0 0 1 0 0 1 1 0 1

1 1 0 0 0 0 1 1 0 1 0 0 1

0 1 1 1 0 0 0 1 0 0 0 1 0

0 0 1 1 1 1 0 0 0 0 0 1 0

0 0 0 0 1 1 0 0 1 0 0 1 0

0 0 0 0 0 0 0 0 1 0 1 1 0

1 0 0 0 0 0 1 0 0 1 1 0 1

1 1 0 0 0 0 1 1 0 1 0 0 1

0 1 1 1 0 0 0 1 0 0 0 1 0

0 0 1 1 1 1 0 0 0 0 0 1 0
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0 0 0 0 1 1 0 0 1 0 0 1 0

0 0 0 0 0 0 0 0 1 0 1 1 0

1 0 0 0 0 0 1 0 0 1 1 0 1

1 1 0 0 0 0 1 1 0 1 0 0 1

0 1 1 1 0 0 0 1 0 0 0 1 0

0 0 1 1 1 1 0 0 0 0 0 1 0

One can see that the map G1 takes the starting state out of the limit cycle for

G0. Five runs of algorithm (MC) gave an estimated p-value of 0.020, with stan-

dard error 0.0005. Such values would normally lead to rejection of the incorrect

dynamics G0.

Example 7. Here we consider two 16-node signalling models for the cancer

cell network of (Bender et al., 2011). We show that the exact test does not reject

one in favor of the other using the hcc1954 signalling data in the the R package

ddepn (Bender et al., 2011).

The hcc1954 data is described in (Bender et al., 2010). We use the EGF ex-

periment, which has three real time measurements at 0, 4, 8, 12, 16, 20, 30, 40 50,

60 minutes. We first averaged the three replication values, then discretized to two

states with the information-based method of (Scutari, 2010), giving time series

0 1 1 0 1 0 0 0 0 1 1 0 0 0 0 0

1 1 1 0 1 0 0 1 0 1 1 0 1 1 0 0

1 1 0 1 0 1 1 0 1 0 0 1 1 1 1 1

1 1 0 1 0 1 1 0 1 1 0 1 1 1 1 0

1 1 0 1 0 1 1 0 1 1 0 1 1 1 1 0

0 1 0 1 0 0 1 0 1 0 0 1 0 1 1 0

0 0 1 1 1 0 0 0 0 1 1 0 0 0 0 0

1 0 1 1 1 0 0 1 1 1 1 0 1 1 0 0

1 0 1 1 0 0 1 0 0 1 1 0 0 1 1 0

1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 0

where the 16 column names are in the order of the proteins listed below, and each

row corresponds to one time step.
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The dynamics G0 for the protein-signalling model are defined in Table 2, and

are derived by logical disjunction of incoming nodes in the network, and an al-

ternative model G1 in Table 3 was learned with a Laplace prior (see Figure 6 of

(Bender et al., 2011)).

Table 2: Cancer Cell Network Model

node G0 logical update G0 polynomial

1 EGF EGF x1

2 ERBB2 EGF x1

3 ERK1/2 EGF x1

4 AKT EGF x1

5 PDK1 ERBB3 x15

6 MEK1/2 EGF x1

7 PLCg EGF x1

8 PKC PKC x8

9 P38 EGF or (not ERK1/2) x1 +(1− x3)− x1 · (1− x3)

10 SRC ERBB3 x15

11 mTOR mTOR x11

12 P70 EGF or (not P38) x1 +(1− x9)− x1 · (1− x9)

13 GSK not AKT 1− x4

14 PRAS not ERBB4 1− x16

15 ERBB3 (not EGF) or PRAS (1− x1)+ x14 − (1− x1) · x14

16 ERBB4 PDK1 x5

There are four steady states and sixteen limit cycles of size eight in the null
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Table 3: Cancer Cell Network Alternative Model

node G1 logical update G1 logical formula

1 EGF EGF x1

2 ERBB2 ERBB2 x2

3 ERK1/2 MEK1/2 x6

4 AKT ERBB3 or (not PKC) or PDK1 or mTOR x15 ∨ (!x8)∨ x5 ∨ x11

5 PDK1 ERBB2 or ERBB3 or ERBB4 x2 ∨ x15 ∨ x16

6 MEK1/2 ERBB2 or ERBB3 or ERBB4 x2 ∨ x15 ∨ x16

7 PLCg ERBB2 or ERBB3 or ERBB4 x2 ∨ x15 ∨ x16

8 PKC PLCg x7

9 P38 ERK1/2 x3

10 SRC ERBB2 or ERBB3 or ERBB4 x2 ∨ x15 ∨ x16

11 mTOR AKT or (not PRAS) x4 ∨ (!x14)

12 P70 ERK1/2 or AKT or mTOR x3 ∨ x4 ∨ x11

13 GSK not AKT !x4

14 PRAS not AKT !x4

15 ERBB3 ERBB3 x15

16 ERBB4 ERBB4 x16

model G0. The steady states are

0000100011001011

0000100111001011

0000100011101011

0000100111101011

with basins of attraction in the form of cylinders determined by coordinates 1,

8, and 11 and hence have size 8192. The data starts in one of the steady state

basins because the first coordinate is 0, a condition which is immediate from
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the polynomials. Importance sampling is not necessary for such sets, but the

limit cycles are more interesting. The first as listed by (Müssel et al., 2010)

includes the point 1111011010010000 and seven others that follow. The basin

of attraction has 19 polynomials (reduced lexicographic basis), and counts 4096

points, a number which can be found by computing the vector space dimension

with vdim in (Decker et al., 2011), or with BoolNet (Müssel et al., 2010), or

by approximation with the average weights w̄ from importance sampling of Sec-

tion 4. For completeness and verification, these are the polynomials that define

this basin of attraction: a quadratic polynomial x2 − x in x j for each coordinate

j = 16,15,14,13,12,10,9,7,6,5,4,3,2, three linear polynomials x11,x8,x1−1 and

three other quadratics: x14 · x15 − x14 · x16 + x15 · x16 − x15,x5 · x15 + x5 · x16 − x5 −

x15 · x16,x5 · x14 + x5 · x16 − x5 − x14 · x16.

For comparing G0 and G1 on the four steady-state basins and the one cycle

attracting basin we used five runs of size N = 10000. The results in Table 4 show

not enough evidence to reject G0 with this data.

Table 4: Analysis of hcc1954 Data on Five Attractor Basins

Initial Attractor Basin Estimate of p-value Standard Error

Steady State 1 .137 .002

Steady State 1 .141 .001

Steady State 3 .145 .001

Steady State 4 .142 .002

Cycle Limit 1 .184 .001

7 Conclusions and Further Problems

The method of conditional inference in Sections 4 and 5 makes rigorous inference

possible for comparing non-ergodic dynamics F on discrete states. No asymptotics

are used for calibrating the hypothesis test, rather a conditional p-value computa-

tion is done with a Monte Carlo sampling method on sets constrained by sufficient
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statistics. While p-values are only one tool for inference, and are often criticized

for many valid reasons, we believe it is worthwhile to have a method of inference

that adheres to traditional notions of controlling Type I error probabilities, in addi-

tion to the wealth of learning algorithms available for discovery.

The probabilistic model (4) may not be rich enough to include realistic features

of spatial and temporal inhomogeneity that arise when fusing data sets from exper-

iments that perturb different parts of a network. A further model for investigation

is an n+d parameter model:

Pµ,F,ρ,θ(x0:n) = µ(x0)
e
−∑n

i=1 ‖F(xi−1)−xi‖
2
Φi

∏n
i=1 ∏d

j=1(1+ e−1/φi j)

with 1/φi j = ρi + θ j,Φi = (φi1, . . . ,φid) and norm ‖v‖2
Φi

:= ∑d
j=1 v2

i j/φi j , which

gives richer spatial and temporal variability. The sufficient statistics now are the

“row and column" sums of the error matrix |Fj(xi−1)− xi, j|
2. Uniform sampling

can be done with sequential importance sampling (Chen et al., 2005).

Finally, rather than work on discretized data, which is necessary for simple

Boolean models but raises further uncertainties in the discretization process, one

may try a continuous Gaussian version of model (4), say

K(x,y) =
e
− 1

2φ ‖F(x)−y‖2

(2π φ)d/2
, x,y ∈ R

d

or multiparameter variations. Further examples and applications to network models

for Alzheimer’s disease (Ramanan et al., 2012) would also be of interest.
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