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Abstract 

UMf A's Section 15 reporting requirements establish precision standards and 

corresponding sampling plans for estimating bus ridership at the system level. However, many 

transit providers are interested in recovering data with sufficient precision to permit ridership 

analysis at the route level. One outcome of extending a system sampling plan to route level data 

collection and analysis would be a large increase in the sample sizes required to achieve a 

reasonable standard of precision. Given the oos1s involved in expanding the data recovery 

process beyond what is required for Section 15 reporting, alternative means of improving the 

precision of route level data warrant consideration. 

'Ibis report presents results from an initial effort to estimate ridership per bus 1rip on the 

basis of route level characteristics (primarily related to time of service). The analysis covers 17 

routes served by the Tri-Counfy Metropolit.an Transportation District of Oregon (fri-Met). We 

find that variations in ridership ~ bus trips within each of the routes studied are significantly 

related to the route characteristics. The effects of these characteristics on ridership were also 

found to vary from route to route. Improvements in the precision of ridership estimates 

attributable to the contribution of route-specific information translate, in the limit, to a 45 per cent 

reduction in the sample size required to achieve a given level of precision. Thus the potential 

gains in sampling precision from further research on this subject appear promising. 
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Introduction 

Public transit providers are required to collect ridership data under UMTA's Section 15 

reporting system; The data collected for this purpose, however, concern transit operating 

characteristics at the system. level, whereas many transit planners are more concerned with the 

evaluation of ridership patterns at the route level. A shift in orientation from the system to the 

route level has important implications for the design of ridership sampling plans. The composite 

sample size required. to achieve an acceptable level of statistical precision at the route level is 

substantially larger, and the sampling plan must also be restructured to conform with the relative 

variations of ridership across routes. 

Some transit providers have installed. automatic p~ger counters (APC's) in their fleets 

to facilitate collection of large quantities of ridership data, in support of route scheduling and 

planning activities. The use of APC's introduces another dimension to the sampling exercise, 

which also affects the data recovery process at the route level (2, 20]. 

In this report we address several issues associated with route level sampling. First, we 

discuss the features that distinguish a route level sampling plan from one executed at the system 

level. Second, we note differences arising from the use of APC's in recovering ridership data. 

Tirird, we review alternative approaches to improving the precision of ridership es1imates. 

Lastly, we report the results of an initial application of a clustering methcxiology designed to 

improve the precision of ridership es1imates at the route level. The route clustering approach 

uses a classification scheme based on ridership differentials, and is evaluated with respect t.o 

reductions in the intra-cluster variation of parameter estimates of the "time of service" 

determinants of ridership. 

Ridership data and other transit operating inf onnation used in the analysis were provided. 

by the Tri-County Metropolitan Transit District of Oregon (TRI-MET), which introduced. APC's 

in 19 82 and has relied on this teclmology for Section 15 reporting since 19 86. 
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General Aspects of Route Level Sampling 

Procedures for sampling bus trips as&>ciated with Section 15 reporting have been defined 

by UMTA (21). A principal underlying objective of the sampling plan is to ensure an equal 

probability of selection among all scheduled bus trips. Ridership estimates for Section 15 

reporting are subject to a standard of precision of+/- 10 per cent at the 95 per cent level of 

confidence. Given 1his standard and the system level ridership variation, a minimum sample size 

can be derived as follows [ 14]: 

n = [(Za/2 · S) I (p · M)]2, where 

n = the number of bus trips to be randomly sampled; 

za/2 =the critical z value associated with a level of confidence of (1 - ex); 

S = the standard deviation of ridership per bus trip for 1he system; 

p = the level of precision required from the sample estimate; 

M = the mean ridership per bus trip for the system. 

Application of the system ievel sampling plan described above to the route level requires 

that route specific estimates of mean ridership and its standard deviation be substituted for the 

system level statistics. Tue degree of precision sought from route level statistics may also be less 

rigorous. For example, a standard of+/- 20 per cent at the 90 per cent level of confidence may 

provide acceptable precision for route level analysis of ridership [ 17). 

Regarding Section 15 reporting, it is important to remember that system level inferences 

cannot be directly obtained from simple aggregation of the data recovered from a route level 

sampling plan. In the more disaggregate route sampling approach the probability of selection 

remains equal for all bus trips within a given route. But because the coefficient of variation on 

ridership tends to vary across routes, so too does the sampling fraction. Thus post stratification 

of the sample data by route would be required for inf erring system level ridership from a route 

level sampling plan [15, 20]. 
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'The sampling plan, whether oriented to the system or route level, is also atiected by the 

method of data collection. With manual data collection, suiveyors can be assigned to individual 

randomly selected bus trips. Alternatively, APC-equipped vehicles recover ridership data from 

all the trips served in a daily bus assignment. These blocks of 1rips - comprising what are termed 

*trains* - are not independent, as is required for simple random sampling. Rather, the trip level 

data recovered by APC's constitute a cluster sample where trains represent the primary sampling 

unit (2, 20). A sampling plan for A.PC's must account for the magnifying effects of within-train 

correlation of bus trips on overall sampling error. The presence of this type of correlation with 

APC's translates into larger sample size requirements to achieve the same level of precision as a 

simple random sample, with the proportionate increase in sample size determined by both the 

level of intra-train correlation and the number of bus trips per train. 

The proportionate increase in sample size resulting from the clustering of bus trips within 

train level selection units has been cailed the .. design effect* [ 15]. Jhe magnitude of the design 

effect for a cluster sample of bus trips is defined as follows: 

Def= [ 1 + (N - 1)-p], where 

Def = the design effect; 

N = the number of bus trips per train; 

p = the correlation of ridership among bus trips withln trains. 

We see from this equation that in the extreme instance where there is no intra-train 

correlation of ridership, the design effect is equal to one, and the cluster and simple random 

sample sizes are equivalent Also, we note from the equation that there can be no clustering (or 

correlation) when N equals one. When either the number of bus trips per train or the intra-train 

correlation increases, so does the magnitude of the design effect This is illustrated in Table 1, 

which presents values of the design effect for alternative train sizes and correlation values. For 

large trains with relatively strong intra-train correlation, the value of the design effect can be 
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substantial. For example, given a transit system with APC trains averaging 25 bus trips 

correlated at .4, the corresponding sample size would need to be nearly eleven times larger than a 

simple random sample of bus trips. 

Table I 

Alternative Values of the Design Effect for a 
Cluster Sample of Trains 

Intra-train Correlation 

Bus Trinsffrain .2 .4 .6 .8 

5 1.8 2.6 3.4 4.2 

10 2.8 I 4.6 6.4 8.2 

15 3.8 6.6 9.4 12.2 

20 4.8 8.6 12.4 16.2 

25 5.8 10.6 15.4 20.2 

30 6.8 I 12.6 18.4 24.2 

In designing an APC sampling plan for implementation by Tri-Met, we derived a design 

effect of 4.3, corresponding with an average train size of 8.98 bus trips and intra-train 

correlation of .414 (20]. This finding points to one of the basic trade-offs associated with the 

use of APC's. While they are technically capable of recovering the large number of observations 

required for route level analysis at a relatively favorable cost per observation [ 16], they a1so 

require larger sample sizes to achieve the same level of precision as a simple random sample with 

manual data recovery. Cost-benefit studies of alternative data collection methods should thus 

account for the design effect to avoid a differential "precision bias' favoring APC's over manual 

data collection. 
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Conventional Estimates of Route Sample Sizes 

To illustrate the effects of a shift in sampling orientation from the system to the route level 

on the precision of ridership estimates, we evaluated sample data collected by Tri-Met between 

April and June 1988. We randomly selected 16 routes providing weekday service, 9 routes 

providing Saturday service and 7 routes providing Smiday service. The routes chosen represent 

nearly 20 per cent of Tri-Met's service network. Statistics on the number of boarding riders per 

bus trip for each of the routes were used to detennine the precision of the sample estimates at the 

90 per cent level of confidence. We then derived the sample size for each route that would be 

required to achieve precision of+/- 20 per cent at the 90 per cent level of confidence. These 

results are presented in Table 2. 
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Table 2 

Precision Estimates and Minimum Sample Sizes 
for Selected Routes: April-June, 1988 

Weekday Rts. Precision (% )1 Sample size2 
12 31.5 121 
51 54.1 128 
20 30.1 115 
36 125.2 369 
89 129.7 177 
55 I 89.9 289 
41 I 28.3 76 
38 110.8 209 
43 (J().9 114 
23 65.1 132 

120 35.1 155 
32 73.7 183 
33 (J().9 153 
60 120.3 82 
34 89.7 261 
54 I 41.9 100 

Saturday Rts. 
8 86.9 97 

108 15.3 184 
72 I 37.0 143 
35 46.4 42 

109 I 42.0 89 
33 50.6 50 
70 I 64.9 144 
141 46.0 77 
9 I 37.5 68 

Sundav Rts. 
15 44.6 126 
120 I 61.2 195 
70 100.9 124 
71 61.9 102 

109 58.8 115 
4 57.8 49 
6 36.7 65 

1 The precision estimates represent the percentage range aroond the route level sample 

mean~ that, with 90 per cent confidence, contains the true population 

mean. 

2 The sample size is the minimum number of bus trips in each given route that would 

have to be sampled to achieve +/- W per cent precision at the 90 per cent level of 

confidence. These estimates assume cluster sampling with APC's and a design effect 

of 4.3. 
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The level of precision in the sample of routes varies considerably, ranging from 30 per 

cent on Route 20 (weekdays) to 130 per cent on Route 89 (weekdays). On average, the 

precision for weekday routes(+/- 72.1 per cent) is less than the precision for Sunday(+/- 60.2 

per cent) and Saturday (+/- 54.1 per cent) routes. This is probably the result of the effects of the 

AM and PM peak ridership *spikes" on weekday variances. 

The precision estimates derived at the route level are weak in comparison with the 

precision of the system level ridership estimate. Previously, we detennined that the precision of 

the system level estimate of ridership dming the September-November 1988 period was 

approximately four per cent at the 95 per cent level of confidence (20). 

In order to achieve a reasonable standard of precision, the sample sizes aswciated with a 

route level orientation would have to be considerably larger than the sample size required for 

UMT A Section 15 reporting. Ext.ending the mean sample size estimates from the weekday, 

Saturday and SUnday routes in Table 2 to all routes in Tri-Met's service network, a sample of 

22, 815 bus trips would have been required during the April-June 19 88 period to achieve 20 per 

cent precision at the 90 per cent level of confidence. 'Ibis sample would represent nearly seven 

per cent of all scheduled trips. By comparison, we determined that a system level sample of .6 

per cent of all scheduled bus trips (l,961 trip observations) would satisfy the stricter precision 

standards pertaining to UMT A Section 15 reporting [20]. Thus the change in orientation from 

the system to the route level in generating ridership estimates entails more than a ten-fold increase 

in data recovery requirements, even after allowing for a weaker standard of precision. 

Mitigating the concerns regarding such a large increase in sampling requirements at the 

route level is the acknowledgement that service planning and scheduling carmot function 

effectively on the basis of system level information. Responsive and cost effective service 

provision depend on access to transit utilization information at the route level In light of the 
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effort and resources required to recover adequate route level data, however, alternative means of 

improving the precision of disaggregate ridership estimates warrant consideration. Various 

methods serving this purpose are reviewed below. 

Methods for Improving Sample Estimates at the Route Level 

At the outset it is important to distinguish between the objective of improving the 

precision of route level sample estimates and the objective of estimating transit demand at the 

route level. In ~ce. with the latter objective it is ~ed that the ridership data employed in 

estimating transit demand is measured without error, whereas with the former objective it is 

recognized that ridership data is subject to sampling and measurement error [ 17]. These two 

objectives are related in the sense that improvements in the precision of route level ridership data 

resulting from reductions in sampling or measurement error translate into improvements in the 

performance of mcxlels estimating route level 1ransit demand. Elsewhere, we have addressed the 

issue of measurement error in recovering ridership data with APC's [20] . We will thus limit our 

attention here to the isrue of sampling error. 

A wealth of literature exists on 1he determinants of transit demand at the system level, and 

attention to estimating demand at the route level has been growing [1, 7, 8, 9, 11, 12, 19]. 

Typical route level demand mcxlels utilize ti.me series data to esfunate ridership on the basis of 

service area characteristics (largely socioeconomic factors associated with trip generation), the 

level of transit service (represented by platform hours, miles of service or average headways), 

the relative cost of travel by transit and automobile, traffic congestion and seasonal factors. 

Much less attention has been devoted to the objective of reducing sampling error 

associated with the recovery of transit ridership data. Alternatively, efforts have been made in 

the area of highway traffic data collection to identify homogeneous subsets of the overall 

transportation network, wherein data collected for highway links within the subset can be used as 

a basis for inferring traffic on companion links for which data was not recovered (3] . Given that 

many state highway networks are comprised of 1housands of links (which can be viewed as 1he 
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counterparts of transit routes), potentially sizable savings in traffic counting costs could be 

realized by such a segmentation approach. 

One of the means of segmenting highway links has been on the basis of their functional 

classification, as defined in the Highway Performance Monitoring System [ 4]. Some 

improvement in the precision of sample estimates of average annual daily traffic (AADI) has 

resulted from tlris type of clustering. Within-cluster reductions of the coefficient of variation for 

AADf have not been substantial, however, indicating that corresponding reductions in the 

required sample sizes would be relatively small. 

Another alternative that was explored by Gm and Hocherman [ 6) was to estimate traffic 

volumes for road links on the basis of their location and physical characteristics, their recorded 

volumes from previous periods and the current volumes from other links in the cluster. They 

found that a uniform growth factor applied to previous counts provided better results than 

cluster-specific growth factors. They also estimated changes in traffic volume for road links on 

the basis of changes in volume on connected links. Tilis approach may hold les.s merit in 

applications to traDsit ridership, given the relatively weaker ridership inter-relationships between 

routes in the transit service network [ 1 O]. Because transit riders are les.s inclined to undertake 

trips involving transfers between routes, a change in ridership on a given route is les.s likely to be 

related to (or to influence) changes in ridership in other routes. 

More generally, it has been argued that segmentation of highway links can be based on 

any group of factors that significantly influence AADT. Garber and Bayat-Mokhtari [ 5], for 

example, found that AADTwas significantly related to ftmctional cl.as&fication, functional use, 

land use, area population and terrain. 

In regard to the extension of highway clustering methods to the transit environment, 

Deibel and Zmnwalt [2] have identified the following factors as a pos.51.ble basis for route 

clustering: functional classification (feeder, express, radial, cross-town), route length, headway, 
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nmnber of stop!, total boardings and peak load factor. Shanteau [ 18) found bus loads to be 

ahnost fully explained by headways, suggesting that this factor alone might serve as a basis for 

route clustering. 

Empirical Analysis 

In order to determine whether a set of factors could be identified to serve as a basis for 

evaluating the gains in precision associated with clusters of bus routes in the transit service 

network, we selected a sample of 17 routes with data recorded on the number of boarding riders 

chning the April-June 1988 period. For each route we specified the following equation relating 

the nmnber of boarding riders per bus 1rip to a set of time-of-service desjgnations and a route 

configuration factor: 

Ons = f(fi. T1, T3, T4, Tu, T4o, D1T1, D1T2, D1T3, D1T4, D2T1, 

OiTi, D2T3, D2T4' Dr), where 

Ti= a dummy variable equalling 1 if the bus trip ended in the 7-9:00 AM period 

and O otherwise; 

T1 =a dummy variable equalling 1 ifthe bus trip ended in the 9-12:00 AM period 

and 0 otherwise; 

T3 = a dummy variable equalling 1 if the bus trip began in the 12-4:00 PM period 

and O otherwise; 

T4 = a dummy variable equalling 1 if the bus trip began in the 4-6:00 PM period 

and O otherwise; 

Tu= a dummy variable equalling 1ifthe7-9:00 AM bus trip was inbound and 0 

otherwise; 

T 4o = a dummy variable equalling 1 if the 4-6:00 PM bus trip was outbound and 0 

otherwise; 
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DiTt =an interaction term involving Ti and a dummy variable equalling 1 if the bus 

trip was on a Saturday and 0 otherwise; 

DiT2 = an interaction term involving T2 and Di; 

DiT3 = an interaction term involving T3 and D1; 

DiT4 =an interaction term involving T4 and Di; 

DiT i = an interaction term involving Ti and a dummy variable equalling 1 if the bus 

trip was on a Sunday and 0 otherwise; 

DiT2 = an interaction term involving T2 and Di; 

DiT3 = an interaction term involving T3 and Di; 

DiT4 =an interaction term involving T4 and Di; 

Dr= a dummy variable equalling 1 for bus trips that deviate from the predominant 

origin-destination link defining the route. 

The variables defined above are intended to capture the ridership cliff erentials per bus trip 

in each of the selected routes on the basis of the time of day and day of the week the trip 

occurred, whether it was inbound or outbound during the weekday AM and PM peak commuting 

periods, and whether the trip involved a primary or secondary origin-destination. The 

disaggregation of time of service represented by the variables can also be considered a rough 

proxy for variation in both headways and paS5ellger arrival rates by route. 

A regression analysis was performed for each of the routes and the results are presented 

in Table 3. The coefficients associated with the variables in the equations are generally 

significant at the .05 level or better and the R-square values are moderat.ely strong, indicating that 

the variables are capturing ridership variations related to time-of-day, direction, day of the week 

and origin-destination. 
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Var. 4 I 
a 23.4 

t-Yal 14.1 

Tt 8.4 
1.9 

T2 7.2 
2.3 

T3 23.8 
8.7 

T4 12.0 
2.8 

Tu 11.5 
2.0 

T ... 15.1 
2.8 

D1T1 

D1T2 

D1T3 

D1T4 

D2T1 -13 
-1.4 

D2T2 -3.6 
-0.4 

D2T3 -14 
-2.0 

D2T4 I.I 
0.1 

Dr -3.3 
-0.7 

R2 .40 
SBB 12.8 
n 169 

Table 3 

Parameter Estimates for Selected. 'Determinants• of Bus 
Ridership by Route: April-June, 1988 

Route I 
6 I 8 I 9 I 12 I 20 I 33 I 4 3 I 54 I 5 1 I 10 I 11 I 12 I 

14.8 14.2 17 .3 19.2 11.2 24.9 14.7 15.0 35.4 10.2 22.2 22.6 

15.9 11.9 15.5 9.9 15.9 7.7 5.8 10.8 6.0 7 .1 11.4 14.7 

4.0 0.4 1.4 9.6 3.6 7 .1 -1. 7 19.6 13.1 21.4 7.9 33.5 
1.5 0.1 0.5 2.1 1.8 0.8 -0.3 4 .8 0.7 5.4 1.6 6.1 

6.7 5.0 6.8 8.1 2.2 23.1 5.5 8.3 39.6 2.6 1.8 19.8 
3.2 2.1 3.1 2.5 1.5 2.9 1.4 3.0 3.1 1.0 0.6 5.0 

17.1 20.0 12.5 18.5 7.2 27.1 10.9 17. 7 51.9 12.8 16.2 .45.8 
9.2 9.6 6.3 6.2 5.1 4.9 3.2 7.2 5.5 5.7 5.7 (3.6 

17 .4 15.9 3.9 21.5 4.7 17.6 9.5 15.3 28.9 9.8 13.7 46.9 
6.3 4.8 1.3 5.0 2.6 2.4 2.3 4.2 2. 1 2.8 3.1 8 .0 

10.7 10.8 11.4 16.9 9.4 22.2 37.8 10.8 34.6 -8.6 11.3 -3.8 
3.6 3.3 3.2 3.3 4.0 2.2 7.0 2.2 1.8 -1.7 1.8 -0.7 

4.4 15.l 18.3 -8.9 7.6 23.9 2.9 8.1 37.2 -2.6 -4.8 2.1 
1.5 4.4 5.5 -1.7 3.6 3 .1 0.7 2.0 1.7 -0.6 -1.1 0.4 

-13 -12 -7.9 -18 -14 -19 -19 -13 -14 -38 
-3.7 -3.2 -1.6 -2. l -4.6 -1.8 -2.9 -1.1 -1.3 -5.8 

-4.6 -5.2 -2.9 -4.1 -0.6 -20 -0.1 -4.5 -0.1 -3.0 
-1.6 -1.5 -0.9 -0.6 -0.2 -2.l -0.1 -1.1 -.01 -0.6 

-5.4 -6.3 -5.3 10.7 -1.2 -1 7 -1.2 -11 -18 -7.4 
-2.1 -2.2 -1.9 1. 7 -0 .6 -2.1 -0.3 -3.2 -5. 1 -1.6 

-9 .4 -10 -9 .1 0 .2 -3.4 -14 -17 -1 1 -12 -15 
-2.6 -2.5 -2.4 0.0 1 - 1.3 -1.5 -2.6 -2.2 -2.3 -2 .2 

- 11 -12 -11 -8.8 -29 -17 -39 
-3.1 -2.6 -2.2 -2.4 -4.3 -2.2 -5.1 

-9.0 -12 -3.4 0.1 -II -4.4 -8.7 -33 -4.2 -9 .5 -22 
-3.1 -2.9 -0.8 0.1 -0.8 -1.0 -2. 1 -1.5 -0.7 -2.3 -4.0 

-13 -14 4.7 -1.1 -11 -5.6 -13 -13 -8.7 -19 -29 
-4.9 -4. 1 1.3 -0.5 - I. I - 1.5 -3.6 -0.8 -1.9 -5.4 -6.0 

-16 -16 1.8 -2.7 -24 -12 -7.9 0 .8 -19 -34 
-4.5 -3.4 0.4 -1.0 -2.0 -2.4 -1.6 0.1 -3 .6 -4 .6 

-3.6 7.5 -6.7 -13 -6.3 -9.2 -2.2 -3.6 -10 5.6 -14 14.4 
-1.3 5.5 -2.1 -5 .1 -2 .8 -2.0 -0 .6 -0.7 -1.4 1.1 -4.0 5.1 

.48 .55 .39 .47 .32 .50 . 70 .58 .49 .30 .50 .57 
7.9 9.5 9 .2 11.3 6 .5 14.9 7.0 8.4 25.4 10.4 9.5 18.0 
234 244 227 126 275 85 53 12 1 63 185 130 391 

12 

1 5 I 1 OS I 109 I 120 

26.2 10. l 27.2 16.2 

17.2 7.3 18.0 22.8 

32.1 31.6 32.6 6.4 
5.8 9.6 7.9 3.7 

18.9 16.9 16.3 3.1 
4.8 6.4 5.4 2.3 

43.7 19.4 33.4 10.8 
12.7 8.0 12.3 9.5 

40.9 18.5 19.3 7.4 
8 . 1 5.8 4.7 4.5 

-2. l -26 -6.0 -1.3 
-0.3 -6.8 -1.2 -0.6 

-5.9 -2.6 19.5 -0.8 
-1.0 -0.7 4.1 -0.4 

-30 -22 -24 -10 
-3.2 -4.4 -3.5 -3.9 

-7.0 -20 -13 -5.9 
-1. l -4.4 -2.9 -2.7 

-5.3 -13 -25 -6.2 
-1.0 -3.2 -6.7 -3.3 

-12 -8.1 -17 -4 .8 
-1.6 -1.6 -3.4 -1.8 

-47 -26 -37 -3.2 
-6.4 -4.0 -5.3 -1.0 

-20 -17 -13 -2.3 
-3.5 -3. l -2.2 -1.1 

-27 -17 -17 -6.1 
-5 .6 -3.7 -3.6 -3.5 

-25 -11 4.6 1.3 
-3 .8 -1.9 0.5 0.6 

-6 .8 2.8 -13 -12 
- 1.2 1.3 -6.9 -16 

.56 .55 .56 .62 
15.7 10 .3 12.5 5.8 
264 194 234 270 



Examining the individual parameter estimates ~routes, it is apparent that the 

consistency of the estimated changes in ridership varies by time of service. In particular, the 

estimates for both the AM peak inbound (f u ) and PM peak outbound (f 4o) periods show 

considerable inter-route variation in magnitude. In some instances the values of the coefficients 

for these two variables are negative and statistically significant, indicating that oounter-tlow 

estimates of ridership during the peak connnuting periods are actually higher. For example, the 

weekday AM peak period estimates of outbound ridership for routes 70, 72, 75, 108, 109 and 

120 are higher than inbolIDd ridership. These are ~-toW!l routes~ which would explain their 

apparent oolIDter-intuitive ridership patterns. Other time periods with relatively high inter-route 

coefficient variation include Saturday morning and afternoon (D1T2, D1T3), and Sunday PM 

peak (DiT4). 

High inter-route coefficient variation represents a serious challenge with respect to the 

application of clustering techniques to route level sampling and inference. It indicates that 

clusters of routes will be relatively I~ homogeneous at the bus trip level, thus limiting posfilble 

gains in precision. Kffighway-type" methods of inferring ridership within clusters may thus hold 

1~ potential for application to the transit environment A relatively more ~gregate sampling 

approach.may be needed to adequately reflect inter-route clifferences in ridership patterns, as a 

result 

The regres&on results provide a basis for static evaluation of the oontnoution of a priori 

knowledge about the effects of time of service on route sampling requirements. The variance in 

ridership for each of the routes sampled can now be defined in tenns of one component explained 

by the regression and another representing unexplained ("error") variance. In the limit, we can 

utilize the information provided by the regressions to account for the explained variance, leaving 

the unexplained variance as the basis for determining route sample size requirements. 11ris is 

illustrated in Table 4. The standard error of estimate from the regressions-tepresents the 
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unexplained variation in boardings that is now substituted for the standard deviation term in the 

sample size equation presented earlier. The two right hand columm in Table 4 contain the 

sample sizes required to produce precision of +/- 20 per cent at the 90 per cent level of 

confidence for a conventional cluster sample, as determined by the total variation in boardings, 

and for the re~on-based cluster sample, as determined by 1he unexplained variation 

component Average sample size for 1he 17 routes with conventional sampling is 97 bus trips, 

versus an average of 53 bus 1ri~ per route with the re~on-based sample. Application of the 

regression methodology thus results in a 45 per cent reduction in sampling requirements. 
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Table 4 

Sample Sizes Required for a Conventional Cluster Sample 
and the Regression-Based Alternative 

Rt. t Mean SD SEE Dad Daee 

4 33.6 16.03 12.8 66.6 42.5 

6 19.9 10.56 7.9 82.4 46.1 

8 25.0 13.78 9.5 88.9 42.3 

9 22.9 11.31 9.2 71.4 47.2 

12 27.6 14.85 11.3 84.7 49.1 

20 14.6 7.68 6.5 81.0 58.0 

33 34.4 19.19 14.9 91.1 54.9 

43 21.9 I 11.40 7.0 79.3 29.9 

S4 23.5 12.06 8.4 77.1 37.4 

S1 59.2 32.85 25.4 90.1 53.9 

70 15.6 11.91 10.4 169.7 129.4 

71 24.0 12.59 9.5 80.5 45.9 

72 40.7 26.94 18.0 128.2 57.2 

1S 39.6 22.96 15.7 98.4 46.0 

108 20.2 14.78 10.3 156.7 76.1 

109 35.9 I 18.30 12.5 76.0 I 35.5 

120 13.8 9.16 5.8 I 128.9 51.7 

Mean n 97 .1 53. 1 

The reduction in sample size calculated for the regression-based approach represents an 

estimat.e in the limit, where the effects of time of service factors on ridership are fixed and 

known. In reality, however, these effects must be estimated from the sample data and thus 

cannot be known contemporaneously. We could assume that the effects of "time of service" on 

ridership are invariant from period to period, and use existing data to determine future sampling 

requirements. Such an asmnnption would be reasonable if the values of the various detenninants 

of transit demand do not change greatly over time. 
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Analysis of Route Clusters 

Given the results of the route-specific regressions, the next step in articulating a sampling 

plan involves segmenting the route network into homogeneous clusters. Ouster-specific 

regressions could then be estimated and used as a basis for estimating route level ridership from 

the sample data. The merits of this approach depend greatly on the extent to which variations in 

ridership patterns are minimized within clusters. For example, given a cluster comprised of n 

routes with identical ridership patterns, a sample of size N taken from within the cluster would 

yield the same precision as an alternative sampling plan employing nN observations and 

~independence between routes. 

One means of evaluating the potential gains from route clustering involves determining 

the changes in the value of the coefficient of variation for the time of service regression 

parameters for progressive cluster sizes. With the 17 routes in our sample the number of 

posfilble clusters ranges from one, which would group all the routes together, to 17, which 

would treat each route as being independent In the example above involving a single cluster of n 

identical routes, the associated coefficients of variation for the regression parameters would equal 

zero. 

A factor must also be chosen as a basis for clustering. From those previously discussed 

we selected the mnnber of boardings per bus trip. A cluster analysis was performed to create 

two, three and four group clusters of the 17 routes. Qustering was based on the objective of 

minimizing the composite within group variance of the average boardings per bus trip. The 

resulting allocation of routes to groups for the successive clusters is presented in Table 5. 
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2 

6 4 

8 33 

9 51 

12 72 

20 75 

43 109 

54 

70 

71 

108 

120 

20 

70 

Table 5 

Composition of Route Clusters 

Number of Grouns 

3 

6 4 20 

8 33 70 

120 9 51 120 

12 72 

43 15 

54 109 

71 

108 

4 

6 4 51 

8 33 

9 72 

12 15 

43 109 

54 

71 

108 

For each of the successive clustering arrangements the coefficients of variation (CV's) for 

the regres&on parameters reported in Table 3 were then calculated These values are presented in 

Table 6. The issue of parameter instability discussed earlier is reflected in the CV values for the 

one-group clustering alt.emative; each of the parameters cited have CV values greater than one. 

Moreover, con1rary to convention, the CV values for these parameters inaease with the number 

of groups. Thus while the intra-group variation of average ridership decreases as the number of 

groups expands, intra-group variation in the AM peak inb01:md and PM peak outbound time slots 

actually increases. This result can be primarily traced to the definitional and operational 

differences associated with non-radial routes. Increases in CV values are also observed for 

Saturday PM (+9.2%), Sunday PM peak(+ 136.6%) and the "predominant route" variable 

(+ 12.4%). None of the parameters with declines in the CV value approach the percentage 

decline in intra-group average ridership variation. 
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Table 6 

Coefficients of Variation for Ridership Regression Parameter 
Estimates, With Progressive Route Clustering 

Number of Grouo Clusters Percentage 

Parameter 1 2 3 4 Change 0-4) 

Cl .44 .22 .21 .18 -59.0 

Tt .94 .93 .95 .92 -2.l 

T2 .91 .63 .49 .41 -54.9 

T3 .63 .29 I .25 .23 -63.5 

T4 .65 .48 .42 .41 -36.9 

Tli 1.89 1.96 15.(J() 15.86 +739.2 

T4o 1.64 1.97 2.14 2.12 +29.3 

D1T1 .45 .29 .27 .27 -40.0 

D1T2 l.01 1.05 1.00 1.00 -1.0 

D1T3 1.09 1.17 1.19 1.19 +9.2 

D1T4 .49 .45 .45 .45 -8.2 

D2T1 .66 .54 .49 .49 -25.8 

D2T2 .81 .68 .62 .56 I -30.9 

D2T3 .67 .65 .61 .59 -11.9 

D2T4 1.12 1.03 2.72 2.65 +136.6 

Dr 1.85 1.65 1.72 2.08 +12.4 

I 
Riders/triu .42 .23 I .15 .09 II -78.6 

1 The ooefficients of variation for the 2, 3, and 4 group cll.l.5tering alternatives reported in Table 6 

are the weighted averages of the group-specific values of the statistic. 

The near 80 per cent decline in the coefficient of variation for average riders per trip 

indicates that route clustering can result in a significant reduction in sampling efforts, so long as 

interest is limited to inferring total ridership at the route level. The gains from route clustering for 

more detailed inferences - by time period, direction and day of the week - are less noteworthy. 
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11ie latter conclusion is largely subject to the negative effects 1hat the cross-town routes had on 

group homogeneity, however. These effects can be mitigated by several alternative 

mcxlificati.ons of the methodology employed above. 

In developing the framework for route clustering, one possible modification would be to 

first segment routes into two general types - ~-town and "other" - and then proceed with 

clustering on the basis of ridership. This approach would distinguish two "populations" within 

the overall route network and would determine independent group clusters for each population. 

This approach could also be extended to include segmentation by weekday, Saturday and 

Sunday. A second approach would be to arbitrarily redefine (for statistical rather than route 

performance reporting purposes) the directional orientation of the ~-town routes, which 

would make their ridership patterns more consistent with the radial routes. 

To the extent that the differences in ridership patterns between the cross-town and radial 

routes are limited to definitional issues the latter approach would be preferable because it would 

require fewer group clusters to decompose systematic ridership variance. Alternatively, if the 

cross-town and radial route ridership patterns differ in structure as well as definition, the former 

approach may be needed. Further analysis will be needed to identify which approach should be 

pursued. 

Following the clustering of routes under the chosen segmentation alternative, the 

re~on model (or some variant of it) could then be re-estimated. for each of the route cluster 

groups. This would yield common ridership coefficients for the group members, as well as a 

common standard error of estimate which would be used to determine the necessary sample size 

for each group (as was done for each of the routes in Table 4). Also at this point, other more 

rigorous statistical techniques could be applied to evaluate whether successive route clustering 

produces a significant improvement in error variance (whose magnitude deternrines sample size) 

[ 13). 
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Conclusions 

This report has explored possible ways of improving the precision of sample ridership 

estimates at the route level. Depending on the context of the application of the approaches 

developed in the report, one can conclude that the prospects for improvement in precision appear 

to be excellent, negligible or potentially fruitful. 

The cluster analysis revealed that homogeneous groups of routes within the transit 

network can be identified on the basis of total boarding riders. The creation of four route groups 

reduced the coefficient of variation for average ridership from .42 to . 09 (a 7 8. 6 per cent 

decline). Very little inter-route variation remains within the groups, as a result, indicating that 

reasonable route level precision can be achieved with modest sample sizes. Based on previously 

an.aly7.ed data from the September-November 1988 period (20], we estimate that a route level 

sampling plan utilizing this approach 'W'Ould require an approximate 20 per cent~ in 

sample size over what is required at the system level. In contrast, a conventional sampling plan 

treating each route independently would require a near 300 per cent increase in the number of 

observations over the system level requirements. The drawback with the simple clustering 

approach is that ridership inferences are limited to route totals. While this change in scale 

represents an improvement over system level inferences, it may still be too general to provide a 

useful basis for route planning activities. 

Coordination of the route clustering and regression approaches represents an attempt to 

recover ridership estimates at a scale that, for planning purposes, approaches the bus trip level. 

In regard to this exercise our findings are mixed; some of the ti.me of service regression 

parameters cluster nearly as well as does route level ridership. But the gains for most of the 

parameters are slight, and some of the parameters actually ex:lnbit greater variation after 

clustering. This latter finding is particularly troublesome because the coefficients involved 

include the weekday AM and PM peak periods, times of service for which special attention must 
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be devoted in scheduling and rout.e planning. This approach, promlsing a small overall 

improvement in precision while yet lacking it for the more important trip segments, cannot be 

endorsed as it is presently defined. 

Several pos&ble modifications of the regression approach, involving the treatment of 

cross-town rout.es, promise improvements in precision for the trip segments in question. More 

generally, these modifications parallel refinements in the application of similar teclmiques to 

highway data collection (3). A common is&Je in the transit and highway data collection arenas in 

regard to clustering is the initial specification of the systems' basic ftmctional characteristics 

pertaining to the structure and level of use. Both the transit and highway data collection 

processes would benefit from the identification of a more representative typology defining the 

compa;ition of the network. hnprovements in this area would result in the identification of 

clusters that would produce more precise ridership inferences. 
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