Risk Thresholds for Alcohol Consumption: Combined Analysis of Individual-participant Data for 599,912 Current Drinkers in 83 Prospective Studies

Angela M. Wood
University of Cambridge

Carlos J. Crespo
Portland State University, ccrespo@pdx.edu

Emerging Risk Factors Collaboration/EPIC-CVD/UK Biobank Alcohol Study Group

Citation Details

Risk thresholds for alcohol consumption: combined analysis of individual-participant data for 599 912 current drinkers in 83 prospective studies

Methods We did a combined analysis of individual-participant data from three large-scale data sources in 19 high-income countries (the Emerging Risk Factors Collaboration, EPIC-CVD, and the UK Biobank). We characterised dose–response associations and calculated hazard ratios (HRs) per 100 g per week of alcohol (12·5 units per week) across 83 prospective studies, adjusting at least for study or centre, age, sex, smoking, and diabetes. To be eligible for the analysis, participants had to have information recorded about their alcohol consumption amount and status (ie, non-drinker vs current drinker), plus age, sex, history of diabetes and smoking status, at least 1 year of follow-up after baseline, and no baseline history of cardiovascular disease. The main analyses focused on current drinkers, whose baseline alcohol consumption was categorised into eight predefined groups according to the amount in grams consumed per week. We assessed alcohol consumption in relation to all-cause mortality, total cardiovascular disease, and several cardiovascular disease subtypes. We corrected HRs for estimated long-term variability in alcohol consumption using 152 640 serial alcohol assessments obtained some years apart (median interval 5·6 years [5th–95th percentile 1·04–13·5]) from 71011 participants from 37 studies.

Findings In the 599 912 current drinkers included in the analysis, we recorded 40 310 deaths and 39 018 incident cardiovascular disease events during 5·4 million person-years of follow-up. For all-cause mortality, we recorded a positive and curvilinear association with the level of alcohol consumption, with the minimum mortality risk around or below 100 g per week. Alcohol consumption was roughly linearly associated with a higher risk of stroke (HR per 100 g per week higher consumption 0·94, 0·91–0·97). In comparison to those who reported drinking >6–100 g per week, those who reported drinking >100–200 g per week, >200–350 g per week, or >350 g per week had lower life expectancy at age 40 years of approximately 6 months, 1–2 years, or 4–5 years, respectively.

Interpretation In current drinkers of alcohol in high-income countries, the threshold for lowest risk of all-cause mortality was about 100 g/week. For cardiovascular disease subtypes other than myocardial infarction, there were no clear risk thresholds below which lower alcohol consumption stopped being associated with lower disease risk. These data support limits for alcohol consumption that are lower than those recommended in most current guidelines.
Introduction

Alcohol consumption guidelines vary substantially across the globe.1,2 In the USA, for example, an upper limit of 196 g per week (about 11 standard UK glasses of wine or pints of beer per week) is recommended for men, and an upper limit of 98 g per week is recommended for women.1 Similar recommendations apply in Canada and Sweden.3 By contrast, guidelines in Italy, Portugal, and Spain recommend lower-risk levels almost 50% higher than these.1 At the other extreme, UK guidelines recommend low-risk limits for men almost half that recommended by US guidelines.1,2

Such variation in policy might reflect ambiguity about drinking risk thresholds associated with the lowest risk of mortality,1–15 as well as uncertainty about the specific consequences of alcohol consumption, including those related to cardiovascular disease subtypes. For example, recent studies have challenged the concept that moderate alcohol consumption is universally associated with lower cardiovascular disease risk,16–17 but with the dose–response associations of alcohol consumption with cardiovascular disease subtypes remain poorly understood. Therefore, to help in the formulation of evidence-based alcohol policy, we analysed individual-participant data from 83 long-term prospective studies in 19 high-income countries. Our aim was to characterise risk thresholds for all-cause mortality and cardiovascular disease subtypes in current drinkers of alcohol.

Methods

Study design, data sources, and participants

We focused our study on current alcohol drinkers for three main reasons. First, alcohol guidelines provide recommendations about low-risk limits only for drinkers (we are unaware of any guidelines that encourage non-drinkers to consume alcohol). Second, a focus on current drinkers should limit potential biases that are difficult to control in observational studies (eg, reverse causality, residual confounding, and unmeasured effect modification) because ex-drinkers include people who might have abstained from alcohol owing to poor health itself,16–21 as well as those who have changed their habits to achieve a healthier lifestyle. Third, never-drinkers might differ systematically from drinkers in ways that are difficult to measure, but which might be relevant to disease causation.21

We did a combined analysis of individual-participant data from three large-scale data sources available to our research team, each constituting purpose-designed prospective cohort studies with quantitative information about alcohol consumption and total cardiovascular disease risk.22 Of the 102 studies in the ERFC with information about alcohol status, 81 contained information about a variety of risk factors, cardiovascular disease causation.21

Evidence before this study

We searched for prospective epidemiological studies of alcohol consumption investigating disease risk thresholds published in any language up until March 1, 2017 (with no specified earliest date), in PubMed, Scientific Citation Index Expanded, and Embase using relevant terms (“alcohol”, “mortality”, “survival”, “cardiovascular disease”, “cohort”, and “prospective”). We found many primary reports and literature-based reviews. However, no study had combined the following key features required to achieve reliable estimates of dose–response associations: availability of individual-participant data; quantitative assessment of alcohol consumption levels using validated instruments; periodic re-surveys of alcohol consumption levels; recording of large numbers of deaths (eg, >20 000 deaths); and sufficient detail and power to disaggregate incident cardiovascular disease outcomes into subtypes (eg, >20 000 incident total cardiovascular disease outcomes).

Added value of this study

The current study combined all the key study design features mentioned above, and afforded several additional advantages. First, it reduced the potentially distorting effects of reverse causality by focusing on current drinkers without previous cardiovascular disease who survived at least 12 months of follow-up. Second, it enhanced generalisability by including individual-participant data from 83 prospective studies in 19 different high-income countries. Third, it used a variety of established and emerging risk factors, enabling investigation of potential confounders and mediators.

Implications of all the available evidence

The chief implication of this study for public policy is to strengthen of evidence that the association between alcohol consumption and total cardiovascular disease risk is actually comprised of several distinct and opposite dose–response curves rather than a single J-shaped association.
EPIC-CVD, a ten-country case-cohort study nested in the European Prospective Investigation into Cancer and Nutrition (EPIC) prospective cohort study, had quantitative alcohol information from 22 of its 23 contributing centres. Third, UK Biobank—a single large prospective study—had cohort-wide data about quantitative alcohol consumption. Therefore, our combined analysis included information from a total of 83 prospective studies that each used broadly similar methods to quantify alcohol consumption, record risk factors, and ascertain cause-specific death and cardiovascular disease events. We harmonised records of alcohol consumption across the contributing studies using a conversion of 1 unit=8 g of pure alcohol to a standard scale of grams per week (appendix pp 1–2), enabling a common analytical approach despite variation in the methods used (eg, self-administered vs interview-led questionnaires; food frequency questionnaires vs dietary recall surveys), and in consumption scales over different periods of ascertainment. Details of contributing studies are in appendix pp 3–4, 10–11.

To be eligible for the analysis, participants had to have information recorded about their alcohol consumption amount and status (ie, non-drinker vs current drinker), plus age, sex, history of diabetes and smoking status, at least 1 year of follow-up after baseline, and no known baseline history of cardiovascular disease (defined as coronary heart disease, other heart disease, stroke, transient ischaemic attack, peripheral arterial disease, or cardiovascular surgery); appendix p 21. The main analyses focused on current drinkers, whose baseline alcohol consumption was categorised into eight predefined groups according to the amount in grams consumed per week: >0–≤25, >25–≤50, >50–75, >75–100, >100–150, >150–250, >250–350, and >350 g per week. We assessed alcohol consumption in relation to all-cause mortality, total cardiovascular disease, and the following cardiovascular disease subtypes (defined in appendix p 5): fatal and non-fatal myocardial infarction; fatal and non-fatal coronary disease excluding myocardial infarction; fatal and non-fatal stroke (including ischaemic, haemorrhagic, subarachnoid, and unclassified subtypes of stroke); fatal and non-fatal heart failure; and mortality from other cardiovascular causes, including cardiac dysrhythmia, hypertensive disease, sudden death, and aortic aneurysm. In analyses of cardiovascular disease subtypes, participants contributed follow-up time until the first outcome recorded (ie, cardiovascular deaths preceded by non-fatal outcomes were not included). Event times were censored at the end of follow-up or death from non-cardiovascular causes.

Statistical analysis

Hazard ratios (HRs) for alcohol consumption were calculated separately within each study using Cox regression models, stratified by sex and with adjustment for known confounders: age, smoking status (current vs non-current) and history of diabetes. To account for EPIC-CVD’s case-cohort design (which was used because lipids and other cardiovascular disease biomarkers were measured only in the case-cohort subset and not the full EPIC cohort), the Cox models for cardiovascular disease events were adapted using Prentice weights and stratified by centre. For the four case-control studies nested within prospective cohorts of the ERFC, odds ratios were calculated using, as appropriate, conditional or unconditional logistic regression models, taking into account relevant matching factors. Study-specific estimates were then pooled across studies by random-effects meta-analysis. We tested for violation of the proportional hazards assumption by including time interactions with alcohol consumption. To avoid model overfitting, studies with fewer than five incident cases of a particular outcome were excluded from analyses of that particular outcome.

To correct for measurement error and within-person variability in alcohol consumption over time, we estimated long-term average (henceforth, “usual”) alcohol consumption using multi-level regression calibration and information from 152 640 serial assessments in 71 011 individuals from 37 studies. This calculation was achieved either by regressing re-survey measurements (for the repeat alcohol assessments available in the ERFC studies and UK Biobank) or lifetime alcohol consumption measurements (for calculated lifetime alcohol consumption measurements available in EPIC-CVD) on baseline alcohol consumption, adjusted for duration of follow-up and baseline age, sex, smoking status, history of diabetes, other relevant covariate(s), and with random effects for study and re-survey. The regression dilution ratio (ie, the calibration slope), which measures the extent of within-person variability, was extracted from the calibration model. HRs in this paper relate to usual alcohol consumption levels unless specified otherwise.

We assessed the shapes of associations for all-cause mortality and cardiovascular disease outcomes by calculating study-specific HRs within the predefined groups of baseline alcohol consumption, pooled them by multivariate random-effects meta-analysis, and plotted them against mean usual (and baseline) alcohol alcohol consumption within each group. We estimated 95% CIs for each group (including the reference group) that corresponded to the amount of information underlying each group. For each major outcome, we determined the best fitting first or second order fractional polynomial to describe the association with baseline alcohol consumption (using a 1% significance level as evidence for a second order fractional polynomial over a first order fractional polynomial) using Cox regression models stratified by sex, study, and centre. Further analyses assumed a linear association with alcohol consumption, expressing results per 100 g per week (12·5 units/week) in usual alcohol consumption. To assess the effect of excluding known current drinkers with missing alcohol consumption data, we did a sensitivity analysis using multiple imputation within studies, before combining DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany (Prof W Koenig MD); University of Ulm Medical Center, Ulm, Germany (Prof W Koenig); Department of Medicine, University of Padua, Padua, Italy (Prof E Casiglia MD); MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK (Prof C Cooper FMedSci); German Cancer Research Center (DKFZ), Heidelberg, Germany (V Arndt MD, F Kühn PhD, Prof H Brenner MD, Prof R Kaaks MD); Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands (Prof O H Franco MD, JD van Schie MD, E Voortman PhD); Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden (P Wennberg MD, M Wennberg PhD); Department of Primary Care and Public Health, Cardiff University, Cardiff, UK (Prof J Sullivan PhD); 22 de Octubre Research Institute, CIBERESP, Madrid, Spain (A Gómez de la Cámara MD); Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany (Prof H Völzke MD); Department of Public Health, Aarhus University, Aarhus, Denmark (C T Dahm PhD, Prof K Drevon MD); Farr Institute of Health Informatics Research, UCL Institute of Health Informatics, University College London, London, UK (C E Dale PhD); German Institute of Human Nutrition, Potsdam-Rehbrücke, Germany (M M Bergmann PhD, Prof H Koenig PhD); School of Community Health, Portland State University, Portland, OR, USA (C J Crespo PhD); St Vincent’s Clinical School, University of New South Wales, Sydney, NSW, Australia (A Simons MD); Hellenic Health Foundation, Athens, Greece (P Lagiou MD, A Karakatsani MD); National and Kapodistrian University of Athens, Athens, Greece (P Lagiou, A Karakatsani, Prof A Trichopoulou); Harvard TH Chan School of Public Health (Prof J Gallacher PhD); 1515 articles
Study level characteristics

<table>
<thead>
<tr>
<th>ERFC</th>
<th>EPIC-CVD</th>
<th>UK Biobank</th>
<th>Participants with resurveys of alcohol consumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location</td>
<td>81 studies in 19 countries</td>
<td>22 centres in 10 European countries</td>
<td>England, Scotland, and Wales</td>
</tr>
<tr>
<td>Year of most recent endpoint follow-up</td>
<td>2013</td>
<td>2009</td>
<td>2016</td>
</tr>
</tbody>
</table>

Participant level characteristics

| Total participants | 356 819 | 30 702 | 358 833 | 89 499 |
| Known current drinkers at baseline | 247 504 | 26 016 | 326 372 | 71 011 |

Weekly baseline alcohol consumption in current drinkers

<table>
<thead>
<tr>
<th>Category</th>
<th>ERFC</th>
<th>EPIC-CVD</th>
<th>UK Biobank</th>
<th>Participants with resurveys of alcohol consumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>>0–<25 g per week</td>
<td>53.418 (22%)</td>
<td>7960 (30%)</td>
<td>39461 (12%)</td>
<td>12 301 (17%) [11 g/week vs 16 g/week]</td>
</tr>
<tr>
<td>>25–<50 g per week</td>
<td>33.953 (14%)</td>
<td>3704 (14%)</td>
<td>39432 (12%)</td>
<td>8365 (12%) [38 g/week vs 56 g/week]</td>
</tr>
<tr>
<td>>50–<75 g per week</td>
<td>26.656 (11%)</td>
<td>2748 (11%)</td>
<td>42907 (13%)</td>
<td>7322 (10%) [63 g/week vs 80 g/week]</td>
</tr>
<tr>
<td>>75–<100 g per week</td>
<td>16.557 (7%)</td>
<td>2446 (9%)</td>
<td>36780 (11%)</td>
<td>6394 (9%) [87 g/week vs 98 g/week]</td>
</tr>
<tr>
<td>>100–<150 g per week</td>
<td>36.236 (15%)</td>
<td>2602 (10%)</td>
<td>55815 (17%)</td>
<td>10 051 (14%) [116 g/week vs 126 g/week]</td>
</tr>
<tr>
<td>>150–<250 g per week</td>
<td>31.645 (13%)</td>
<td>3090 (12%)</td>
<td>60025 (18%)</td>
<td>12 255 (17%) [193 g/week vs 173 g/week]</td>
</tr>
<tr>
<td>>250–<350 g per week</td>
<td>23.607 (10%)</td>
<td>1744 (7%)</td>
<td>26469 (8%)</td>
<td>6927 (10%) [303 g/week vs 248 g/week]</td>
</tr>
<tr>
<td>≥350 g per week</td>
<td>25.432 (10%)</td>
<td>1796 (7%)</td>
<td>25201 (8%)</td>
<td>7396 (10%) [515 g/week vs 354 g/week]</td>
</tr>
</tbody>
</table>

Baseline characteristics restricted to all current drinkers

Alcohol consumption (g/week), median (5th–95th percentiles)	87.7 (2.2–522.4)	61.9 (2.6–404.0)	103.9 (11.8–420.8)	105.2 (6.0–482.8)	
Age (years) at baseline	57.1 (8.7)	55.0 (9.2)	56.5 (8.0)	55.3 (8.2)	
Sex	Male	162 685 (66%)	13 508 (52%)	157 809 (48%)	44 360 (62%)
	Female	84 819 (34%)	12 528 (48%)	168 563 (52%)	26 651 (38%)
Smoking status	Not current	161 037 (65%)	17 608 (68%)	29 312 (90%)	50 930 (72%)
	Current	86 467 (35%)	8 428 (32%)	33 190 (10%)	20 081 (28%)
History of diabetes	No	237 685 (96%)	24 875 (96%)	315 090 (97%)	68 159 (96%)
	Yes	9819 (4%)	1 161 (4%)	11 282 (3%)	2 892 (4%)
BMI, kg/m²	26.1 (3.8)	26.4 (4.1)	27.0 (4.4)	26.1 (3.8)	
HDL-C, mmol/L	1.40 (0.42)	1.40 (0.42)	Not available*	1.41 (0.41)	
Total cholesterol, mmol/L	5.80 (1.17)	6.13 (1.16)	Not available*	5.78 (1.08)	
Systolic blood pressure, mm Hg	136.5 (19.0)	138.4 (21.3)	137.9 (18.5)	134.6 (18.4)	

Major outcomes restricted to current drinkers

| All-cause mortality events | 32 813 | 7 841 | 6 720 | 6 912 |
| All cardiovascular disease | 18 791 | 12 758 | 7 469 | 11 597 |

Data are n, n (%), or mean (SD), unless otherwise indicated. ERFC=Emerging Risk Factors Collaboration. EPIC-CVD=European Prospective Investigation into Cancer and Nutrition—Cardiovascular Disease. BMI=body-mass index. HDL-C=high-density-lipoprotein cholesterol. *At the time of analysis, measurements of HDL-C and total cholesterol were not available in the UK Biobank. †All-cause mortality events from EPIC derive only from the 13 670 participants in the random sub-cohort of EPIC-CVD, rather than from the entire EPIC prospective study. ‡Mean consumption (g/week) at baseline.

Table 1: Study-level and participant-level characteristics of the contributing data sources

The data in a meta-analysis. We investigated associations with alcohol type (wine, beer, and spirits), consumption frequency (dichotomised as drinkers who consumed alcohol on ≤2 days per week or those who consumed alcohol on >2 days per week) and episodic heavy drinking (dichotomised as binge drinkers who consumed ≥100 g per drinking occasion or non-binge drinkers who consumed <100 g per drinking occasion).

We used regression calibration methods similar to those described above to estimate and adjust for long-term levels of potential confounding factors or mediators in individuals with available information. HRs were adjusted for usual levels of available potential confounders or mediators, including body-mass index (BMI), systolic blood pressure, high-density-lipoprotein cholesterol (HDL-C), low-density-lipoprotein cholesterol (LDL-C), total cholesterol, fibrinogen, and baseline measures for smoking amount (in pack-years), level of education reached (no schooling or primary education only vs secondary education vs university), occupation (not working vs manual vs office vs other), self-reported physical activity level (inactive vs moderately inactive vs moderately active vs active), self-reported general health (scaled 0–1 where low scores indicate poorer health).
self-reported red meat consumption, and self-reported use of anti-hypertensive drugs. We investigated effect modification with formal tests for interaction, using a 0·1% significance threshold to make some allowance for multiple testing. Heterogeneity was investigated by grouping studies according to recorded characteristics and through meta-regression, assessed by the I² statistic.11 Evidence of small study effects was assessed visually with funnel plots and by Begg and Mazumdar’s test34 and Egger’s test.15

Methods we used to estimate reductions in life expectancy (years of life lost) are described in the appendix (pp 6–7). Briefly, estimates of cumulative survival from 40 years of age onwards in different categories of baseline alcohol consumption were calculated by applying estimated HRs (specific to age-at-risk) for cause-specific mortality to the detailed mortality component of the US Centers for Disease Control and Prevention’s WONDER database,36 which recorded 10 million deaths (from all causes) in more than 305 million individuals in the USA during 2007–10.21 Results were modelled from age 40 years and enabled estimation of years of life lost between light drinkers (defined as those consuming >0–≤100 g/week of alcohol) and pre-defined groups of >100–≤200, >200–≤350, and >350 g per week. This method does not make use of the survival estimates from the modelled data; instead, it makes inferences by estimating age-at-risk specific HRs, which are then combined with external population age-specific mortality rates.10

Analyses used Stata (version 14.2 and 15.1). All P values presented are for 2-sided tests.

Role of the funding source
The funders of the study did not have any role in the study design, data analysis, or reporting of this manuscript. AMW and SK had full access to the combined dataset, and, together with EDA and JD, had responsibility for the decision to submit the manuscript for publication.

Results
Of the 786 787 participants with sufficient information for inclusion in this consortium, 186 875 (19%) reported not drinking at baseline, leaving 599 912 current drinkers without a history of cardiovascular disease at baseline who were eligible for the prespecified principal analysis. The current drinkers were derived from ERFC (247 504 participants), EPIC-CVD (26 036), and the UK Biobank (326 372; table 1). Baseline year of recruitment ranged from 1964 to 2010. The mean age of the participants was 57 years (SD 9). 265 910 (44%) of 599 912 participants were women, and 128 085 (21%) were current smokers (appendix p 12). About 50% reported drinking more than 100 g of alcohol per week, and 8·4% drank more than 350 g per week (table 1). During 5·4 million person-years (median 7·5 years of follow-up [5th–95th percentiles 5·0–18·4]), there were 40 310 deaths from all causes, (including 11 762 vascular and 15 150 neoplastic deaths), and 39 018 first incident cardiovascular disease outcomes, including 12 090 stroke events, 14 539 myocardial infarction events, 7 990 coronary disease events excluding myocardial infarction, 2 711 heart failure events, and 1 121 deaths from other cardiovascular diseases (appendix p 13).

Baseline alcohol consumption varied substantially across studies, was generally lower in more recent calendar periods of recruitment, and was positively skewed (median 96 g/week; 5th–95th percentiles 6·4–448; appendix p 22). It was weakly and positively correlated with male sex, smoking status and amount, systolic blood pressure, HDL-C level, fibrinogen, and lower socioeconomic status (appendix pp 23–24). 152 640 serial assessments of alcohol consumption were available for 71 011 participants from 37 studies (median interval between baseline and serial measurements 5·6 years [5th–95th percentiles 1·0–13·5]). Participants with serial measurements were younger, had higher baseline alcohol consumption, and were more likely to be men than those without serial measurements (table 1, appendix p 14). The regression dilution ratio for alcohol consumption was 0·50 (95% CI 0·47–0·52), similar to that for systolic blood pressure (0·52, 0·50–0·55) but lower than that for HDL-C concentration (0·74, 0·72–0·76) in a common set of participants.

For all-cause mortality, there was a positive and curvilinear association with alcohol consumption, with the lowest risk for those consuming below 100 g per week (figure 1, appendix p 25). Associations were similar for men and women (appendix p 26), but weaker at older ages (appendix p 27). There was a J-shaped association for the aggregate of cardiovascular disease outcomes (figure 1, appendix p 25). However, disaggregation showed two opposing sets of associations (figure 2).
After adjustment for age, sex, smoking, and history of diabetes, the amount of alcohol consumed had positive and roughly linear associations with stroke (HR per 100 g/week higher consumption 1.15, 1.03–1.28; figures 2, 3). Stroke associations were similar for fatal and non-fatal outcomes (appendix p 28) and across subtypes (appendix p 29). However, for coronary disease excluding myocardial infarction, associations were stronger for fatal than non-fatal outcomes (appendix p 28).

With the following notable exceptions, further adjustment for additional covariates did not substantially change HRs (table 2, appendix pp 15, 30). First, adjustment for HDL-C level weakened the inverse association between alcohol consumption and myocardial infarction, but strengthened the positive association between alcohol consumption and both coronary disease and heart failure. Second, adjustment for systolic blood pressure strengthened the inverse association between alcohol consumption and myocardial infarction, but weakened the positive associations between alcohol consumption and all other cardiovascular disease outcomes. Our analysis confirmed the established association of alcohol consumption with cancers of the digestive system, which did not change after additional adjustment for the factors listed above (appendix p 16). Furthermore, additional adjustment for smoking amount abolished the apparent association of alcohol consumption with lung cancer (appendix pp 16), in line with the accepted view that alcohol consumption does not cause lung cancer.40

When including never-drinkers and ex-drinkers, we reproduced previously reported U-shaped associations of...
alcohol consumption with total cardiovascular disease and all-cause mortality (appendix p 31). However, we observed notable differences in baseline characteristics between never drinkers and current drinkers (eg, in relation to sex, ethnicity, smoking, and diabetes status; appendix p 12), supporting the validity of focusing on current drinkers in our main analysis. We recorded similar findings to those reported above in sensitivity analyses that involved the following approaches: used multiple imputation rather than complete-case analysis (appendix p 32); used fractional polynomials (appendix p 34); used a fixed-effect meta-analysis (appendix p 35); included studies that

<table>
<thead>
<tr>
<th>Events/participants</th>
<th>Hazard ratio (95% Cl)</th>
<th>Heterogeneity</th>
</tr>
</thead>
<tbody>
<tr>
<td>All stroke</td>
<td>1.16 (1.11–1.22)</td>
<td></td>
</tr>
<tr>
<td>Myocardial infarction</td>
<td>0.95 (0.91–0.99)</td>
<td></td>
</tr>
<tr>
<td>Coronary disease excluding myocardial infarction</td>
<td>1.06 (1.00–1.12)</td>
<td>29 (0–63)</td>
</tr>
<tr>
<td>Heart failure (fatal and non-fatal)</td>
<td>1.11 (1.04–1.18)</td>
<td>63 (35–79)</td>
</tr>
<tr>
<td>Deaths from other types of cardiovascular disease</td>
<td>1.13 (1.07–1.30)</td>
<td>33 (2–53)</td>
</tr>
<tr>
<td>Basic adjustment</td>
<td>1.11 (1.03–1.19)</td>
<td>12 (0–40)</td>
</tr>
<tr>
<td>Plus adjustment for high-density-lipoprotein cholesterol</td>
<td>1.14 (1.06–1.25)</td>
<td>29 (0–63)</td>
</tr>
<tr>
<td>Subcutaneous fat</td>
<td>1.16 (1.06–1.25)</td>
<td>63 (35–79)</td>
</tr>
<tr>
<td>Aortic aneurysm</td>
<td>1.10 (1.03–1.16)</td>
<td>12 (0–40)</td>
</tr>
</tbody>
</table>

Data are hazard ratio (95% CI) per 100 g per week higher usual alcohol consumption, unless otherwise indicated. Analyses were restricted to individuals with basic adjustment variables plus the additional variable. Studies with fewer than five events were excluded from the analysis of each outcome. *Basic adjustment includes age, smoking, and history of diabetes, and stratification by sex and centre.

Table 2: Hazard ratios for major cardiovascular outcomes in current drinkers, without and with adjustment for usual levels of systolic blood pressure, high-density lipoprotein cholesterol, or body mass index
The estimates of cumulative survival from 40 years of age onwards in the alcohol-drinking groups were calculated by applying hazard ratios (specific to age at risk) for all-cause mortality associated with categorised baseline alcohol consumption to US death rates at the age of 40 years or older. Mean usual levels of alcohol consumption within each baseline alcohol consumption category were 56, 123, 208 and 367 g per week, respectively, for the groups >0–≤100 g per week, >100–≤200 g per week, >200–≤350 g per week and >350 g per week.

Figure 4: Estimated future years of life lost by extent of reported baseline alcohol consumption compared with those who reported consuming >0–100 g per week.

The main finding of this analysis was that the threshold for lowest risk for all-cause mortality was about 100 g per week. For men, we estimated that long-term reduction of alcohol consumption from 196 g per week (the upper limit recommended in US guidelines) to 100 g per week or below was associated with about 1–2 years of longer life expectancy at age 40 years. Exploratory analyses suggested that drinkers of beer or spirits, as well as binge drinkers, had the highest risk for all-cause mortality.

Our study has highlighted the complex and diverse potential mechanisms by which alcohol consumption may exert cardiovascular effects. It has shown that the association between alcohol consumption and total cardiovascular disease risk comprises several distinct and opposite dose–response curves, rather than a single J-shaped association. In particular, whereas higher alcohol consumption was roughly linearly associated with a higher risk of all stroke subtypes, coronary disease excluding myocardial infarction, heart failure, and several less common cardiovascular disease subtypes, it was approximately log-linearly associated with a lower risk of myocardial infarction. Our results are concordant with recent observational data and Mendelian randomisation studies.
Our results contribute toward understanding of the basis for these directionally divergent cardiovascular disease associations. For example, our data have suggested that elevated systolic blood pressure could mediate alcohol consumption’s positive association with stroke and coronary disease excluding myocardial infarction. By contrast, pathways related to HDL-C (but not necessarily HDL-C itself) could mediate alcohol consumption’s inverse association with myocardial infarction. Both blood pressure and HDL-C are known to increase in response to alcohol consumption. They have contrasting associations with cardiovascular disease outcomes: the inverse association of HDL-C with cardiovascular disease is substantially stronger for coronary disease than stroke, whereas the positive association of systolic blood with cardiovascular disease is considerably stronger for stroke than coronary disease. However, we did not find convincing evidence that other known risk factors were important mediators or confounders.

Our study’s access to individual-participant data avoided limitations of previous literature-based reviews. To limit reverse causality, our study focused on current drinkers without baseline cardiovascular disease and omitted the initial period of follow-up. To limit confounding, our study adjusted for a variety of risk factors. To correct for misclassification in alcohol consumption and covariates, our study also used extensive information on serial assessments. Our results were robust to a variety of sensitivity analyses. Generalisability of the findings was enhanced by inclusion of data from 83 prospective studies based in many different high-income countries recruited between 1964 and 2010. Although alcohol consumption levels declined during this period, HRs were similar over calendar time.

Nevertheless, our study has some potential limitations. Self-reported alcohol consumption data are prone to bias and are challenging to harmonise across studies conducted over different time periods that used varying instruments and methods to record such data. We did not, however, identify major differences in results across studies that used differing alcohol measurement instruments. Despite our study’s access to extensive serial alcohol re-surveys from mid-life, our study could not investigate alcohol consumption during the entire life course. Misclassification in outcomes would have diluted dose-response associations, suggesting that true underlying associations of alcohol consumption with cardiovascular disease subtypes are stronger and more divergent than we observed. Because we did not generally have access to additional alcohol-related adverse outcomes (eg, non-fatal liver disease, injuries, or psychiatric comorbidities), we probably underestimated potential benefits associated with lowering alcohol consumption. Because some individuals who reduced, but did not cease, alcohol consumption due to health complications were probably included in our analysis, we cannot exclude the effects of reverse causation (especially since some contributing studies did not record baseline chronic disease other than cardiovascular disease). Therefore, alternative study designs including randomised trials are needed, to control more completely for residual biases (including those related to studying ex-drinkers and never-drinkers).

In conclusion, our study shows that among current drinkers, the threshold for lowest risk of all-cause mortality was about 100 g per week. For cardiovascular disease subtypes other than myocardial infarction, there were no clear thresholds below which lower alcohol consumption stopped being associated with a lower disease risk. These data support adoption of lower limits of alcohol consumption than are recommended in most current guidelines.

Contributors
All the authors contributed to data collection, and to the design, analysis, interpretation, and re-drafting of this report. AMW and SK had full access to the combined data and did the statistical analysis. AMW, EDA, and JD drafted the manuscript and had responsibility for submission of the manuscript for publication.

Data management team
Thomas Bolton, Catherine Perry, Sarah Spackman, and Matthew Walker.

Coordinating centre

Declaration of interests
ASB reports grants from European Commission Framework 7 (HEALTH-F2-2012-27913), the European Research Council (268834), the British Heart Foundation (SP/09/002 and RG/08/034 and RG13/13/30194), the UK Medical Research Council (G0800270 and MR/L003120/1), from National Institute for Health Research (through the NIHR Cambridge Biomedical Research Centre), during the conduct of the study; and grants from Merck, Biogen, Bioverativ, Novartis, and Pfizer outside the submitted work. BMP reports that he serves on the DSMB of a clinical trial funded by Zoll LifeCare and on the Steering Committee of the Yale Open Data Access Project funded by Johnson & Johnson. MD reports grants from Japan Society for the Promotion of Science, during the conduct of the study. EDA reports grants from European Commission Framework 7, the European Research Council, the British Heart Foundation, the UK Medical Research Council, and the National Institute for Health Research, during the conduct of the study; and grants from NHS Blood and Transplant, outside the submitted work. EB reports grants from the National Health and Medical Research Council of Australia, during the conduct of the study. HMK reports a research agreement (through Yale) from Johnson & Johnson (Janssen) and Medtronic to develop methods of clinical trial data sharing; personal fees from UnitedHealth, IBM Watson, Element Science, and Aetna; a personal health information platform from Hugo; grants from the FDA and Medtronic; and contracts from Centers for Medicare & Medicaid Services to develop and maintain measures that are publicly reported, outside the submitted work. JD reports grants from the UK Medical Research Council, the British Heart Foundation, the UK National Institute of Health Research, and the European Commission, during the conduct of the study; personal fees and non-financial support from Merck Sharp and Dohme UK Atherosclerosis; personal fees and non-financial support from Novartis Cardiovascular and Metabolic Advisory Board, grants from the British Heart Foundation, European Research Council, Merck, the National Institute of Health Research, NHS Blood and Transplant, Novartis, Pfizer, the UK Medical Research Council, the Wellcome Trust, and AstraZeneca, and personal fees and non-financial support from Pfizer.
For the funding agencies that have supported individual cohorts of the EPIC centres see http://www.phc.cam.ac.uk/ceu/epic_cvd/funding-sources/ For the study website of the funding agencies that have supported individual cohorts of the ERFC see http://www.phc.cam.ac.uk/ceu/erfc/list-of-studies/

Population Research Advisory Panel, outside the submitted work.
ML reports grants from National Institutes of Health, during the conduct of the study; grants from National Kidney Foundation, outside the submitted work; and funding from the National Institutes of Health, Grant SU04A025286, to Johns Hopkins University. MS reports grants from the UK Medical Research Council, the British Heart Foundation, the National Institute for Health Research, European Commission Framework 7, and the European Research Council, during the conduct of the study. NW reports grants from the Netherlands Ministry of Health Welfare and Sports, Directorate of Long-Term Care, during the conduct of the study. OHF reports grants from Nestle and Metagenics, outside the submitted work. PJN reports grants from the NIH, during the conduct of the study. SGT reports grants from the UK Medical Research Council and the British Heart Foundation, during the conduct of the study. SKI reports grants from FFG COMET program; “Research Center of Excellence in Vascular Ageing—Tyrol. VASCase” (K-Projekt No. 841536) funded by the BMVIT, BMWFV, Wirtschaftsagentur Wien and Standortagentur Tirol, outside the submitted work. SKA reports grants from the UK Medical Research Council and the British Heart Foundation, during the conduct of the study. WK reports personal fees from AstraZeneca, Novartis, Pfizer, The Medicines Company, GSK, DaCor, Sanofi, Berlin-Chernie, Kowa, and Amgen; grants and non-financial support from Roche Diagnostics, Beckmann, Singulex, and Abbott, outside the submitted work. The other authors declare no competing interests.

Acknowledgments

The study’s coordinating centre (Emerging Risk Factors Collaboration and EPIC-CVD Coordinating Centres, Department of Public Health and Primary Care, University of Cambridge, Strattoneways Research Laboratory, Cambridge, UK) has been underpinned by grants from the UK Medical Research Council (G0800270 and MR/L003120/1), British Heart Foundation (SP/99/002, RG/08/014 and RG11/13/30194), National Institute for Health Research (through the National Institute for Health Research Cambridge Biomedical Research Centre), European Commission Framework 7 (through the EPIC-CVD award; HEALTH-F2-2012-279233), and the European Research Council (through an Advanced Investigator Award to JD; 268834). JD holds a BHF Professorship and NIHR Senior Investigator Award. A study website Funding for the EPIC-InterAct project was provided by the EU FP6 programme (grant number LSHM_CT_2006_017197). A study website includes a list that investigators have provided of funding agencies that have supported individual EPIC centres. A study website includes a list that investigators have provided of funding agencies that have supported individual cohorts of the EPIC contributing to the present consortium. This research has been conducted using the UK Biobank resource (application 21886). We thank Nicola Kerrison and Stephen Sharp (both from the University of Cambridge MRC Epidemiology Unit, Cambridge, UK) for the former’s data management in the EPIC-InterAct subcohort and the latter’s statistical input into development of the EPIC-CVD’s analytical guidelines.

References

21 Ng Fat L, Cable N, Marmot MG, Shelton N. Persistent long-standing illness and non-drinking over time, implications for the use of lifetime abstainers as a control group. J Epidemiol Community Health 2014;68:71–77.