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RESEARCH ARTICLE

Saccular Transcriptome Profiles of the
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(Porichthys notatus), a Teleost with Divergent
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Washington, Seattle, WA, United States of America, 5 Department of Integrative Physiology and
Neuroscience, Washington State University, Vancouver, WA, United States of America

¤a Current address: Biology Department, Portland State University, Portland, OR, United States of America
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Abstract
Acoustic communication is essential for the reproductive success of the plainfin midship-

man fish (Porichthys notatus). During the breeding season, type I males use acoustic cues

to advertise nest location to potential mates, creating an audible signal that attracts repro-

ductive females. Type II (sneaker) males also likely use this social acoustic signal to find

breeding pairs from which to steal fertilizations. Estrogen-induced changes in the auditory

system of breeding females are thought to enhance neural encoding of the advertisement

call, and recent anatomical data suggest the saccule (the main auditory end organ) as one

possible target for this seasonal modulation. Here we describe saccular transcriptomes

from all three sexual phenotypes (females, type I and II males) collected during the breeding

season as a first step in understanding the mechanisms underlying sexual phenotype-spe-

cific and seasonal differences in auditory function. We used RNA-Seq on the Ion Torrent

platform to create a combined transcriptome dataset containing over 79,000 assembled

transcripts representing almost 9,000 unique annotated genes. These identified genes

include several with known inner ear function and multiple steroid hormone receptors. Tran-

scripts most closely matched to published genomes of nile tilapia and large yellow croaker,

inconsistent with the phylogenetic relationship between these species but consistent with

the importance of acoustic communication in their life-history strategies. We then compared

the RNA-Seq results from the saccules of reproductive females with a separate transcrip-

tome from the non-reproductive female phenotype and found over 700 differentially

expressed transcripts, including members of the Wnt and Notch signaling pathways that

mediate cell proliferation and hair cell addition in the inner ear. These data constitute a valu-

able resource for furthering our understanding of the molecular basis for peripheral auditory
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function as well as a range of future midshipman and cross-species comparative studies of

the auditory periphery.

Introduction
The plainfin midshipman fish (Porichthys notatus) is an excellent model organism for studies
of vocal-acoustic communication, in part because acoustic communication is essential to their
social and reproductive behaviors [1,2]. Type I (“parental”) males nest in the rocky intertidal
zone during the spring and summer breeding season, where they produce advertisement calls
to attract females. This mate call is produced via rapid contraction of the sonic muscles associ-
ated with the swim bladder, resulting in a characteristic “hum” with a fundamental frequency
that ranges from 80–100 Hz depending on water temperature [3]. While the fundamental fre-
quency is quickly attenuated, the higher harmonic components of the hum propagate well in
the shallow-water breeding environment. As these fish are nocturnal spawners, vocal-acoustic
signals are likely the primary sensory cue used by gravid females to detect and locate mates.

Female midshipman show a robust behavioral response to both natural and synthetic hums,
and physiological responses to the hum are encoded by the saccule, which is the primary audi-
tory organ in this and most other fish species [4–7]. Interestingly, the female’s auditory system
demonstrates adaptive seasonal plasticity that includes enhanced encoding of the hum’s higher
frequency harmonics and a saccular-specific increase in sensory hair cell density during the
breeding season [8–11]. Recent work demonstrates similar seasonal physiological plasticity of
the auditory system in type I males and in other vertebrate taxa including birds and amphibi-
ans, suggesting that seasonal auditory plasticity may be a general vertebrate trait [12–14].

In addition to the type I males, a subset of male midshipman fish use alternative mating tac-
tics to achieve reproductive success. These small type II (“sneaker”) males, which superficially
resemble females, steal fertilizations during spawning events between type I males and females.
Type II males do not produce courtship vocalizations but instead invest more energy in gamete
production [15,16].

In this study we used RNA-Seq to profile the saccular transcriptome from reproductive
midshipman fish of all three sexual phenotypes: females, type I, and type II males. We also
included saccular RNA-Seq data from the non-reproductive female phenotype as a first step in
our seasonal comparison. Transcriptome-level analysis has been previously conducted in the
inner ears of several vertebrates including mice, frogs (Xenopus), and zebrafish (Danio rerio)
[17–22]. These studies were all conducted in species for which genomic sequences were avail-
able and examined an array of questions surrounding inner ear development, altered transcrip-
tion in mutant lines, and inner ear responses to toxins [19, 21, 22]. Here we apply
transcriptome profiling to investigate new questions related to the genetic mechanisms under-
lying sexual phenotypic differences in auditory function in a vocal teleost fish, for which no
genome sequence is available. We employed next generation sequencing, allowing us to analyze
the inner ear transcriptome for the plainfin midshipman. RNA-Seq has been successfully used
in other non-traditional model organisms lacking sequenced genomes including the guppy
(Poecilia reticulata), and recently, in an innovative study of vocal motor areas in the plainfin
midshipman hindbrain [23,24].

We obtained over 79,000 assembled transcripts (ATs) in our de novo construction of the
midshipman saccular transcriptome, representing approximately 9,000 unique genes. This
work sets the stage for future studies on cross-seasonal comparisons and for understanding the
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molecular events necessary for auditory plasticity to occur in this species, and perhaps more
generally in vertebrates. In addition, the novel transcripts represent an untapped resource to
study new inner ear genes.

Materials and Methods

Fish Collection and RNA extraction
Reproductive plainfin midshipman fish were collected in the summer of 2012 near Brinnon,
WA by hand at low tide, when they reside in shallow pools under rocky nests. Animals were
transported live back to the lab were they were euthanized in a water bath with 0.05% benzo-
caine (Sigma-Aldrich). Fish remained in benzocaine for 10 minutes after cessation of opercular
movement. Fish were then weighed, measured, and the saccules quickly dissected from the
head. Saccules were stored in RNALater (Sigma-Aldrich) at -20°C for up to one week prior to
microdissection of the saccular epithelium (while in RNA Later) and RNA extraction. All ani-
mal procedures were approved by the University of Washington Institutional Animal Care and
Use Committee (permit 4079–01) or Washington State University Institutional Animal Care
and Use Committee (permit 04434–003). Fish collecting was conducted under field permit 12–
192 granted by the Washington Department of Fish and Wildlife. This permit applies to both
hand collection from nests and otter trawls.

For RNA extraction we combined five saccules from three reproductive type I males (stan-
dard length (SL) 14.2–17.5 cm), seven saccules from four reproductive type II males (SL 11.7–
12.8 cm), and six saccules from three reproductive females (SL 13.1–16.9 cm). As a proxy for
relative reproductive state we calculated the gonadosomatic index (GSI) for each fish, defined
here as 100 � gonad mass/(body mass-gonad mass) [25]. GSI range for each reproductive sex-
ual phenotype was as follows: type I males 0.85–2.53, type II males 10.03–13.70, and females
3.07–24.89. Although one reproductive female had a low GSI value, we consider her to be in
reproductive condition (but “spent” or devoid of gravid eggs), because she was removed from a
type I male’s nest and had likely spawned just prior to capture.

Micro-dissected saccules were combined as described above, then crushed with a pestle to
lyse the tissue. mRNA was purified from the lysate using the GeneElute mini-prep mRNA kit
(Sigma-Aldrich) according to the manufacturer’s protocol.

Sequencing
Saccular RNA samples from all three sexual phenotypes (type I male, type II male, reproductive
female) were sent to the Laboratory of Biotechnology and Bioanalysis at WSU Pullman for Ion
Torrent sequencing. One nanogram of mRNAwas used to construct RNA-seq libraries using the
Ion Total RNA Seq V2 kit (Life Technologies) low input protocol, with the exception that
AMPureXP SPRI beads (Beckmann Coulter) were used for all purifications during library con-
struction. Final library size selection was achieved with 0.7X AMpureXP. The libraries were quan-
tified by qPCR and sequenced separately on an Ion Torrent PGM using a single Ion 318 chip for
each sample and sequencing beads produced on an Ion OneTouchDL using 200bp chemistry.

Transcriptome Assembly
Ion Torrent data were assembled using MIRA (version 3.4.0.1). A majority of ribosomal RNA
(rRNA) sequences were removed from raw sequence datasets using the short sequence align-
ment algorithm Bowtie2 (version 2.0.2) prior to assembly in MIRA. A Bowtie2 index was cre-
ated for filtering rRNA/rDNA sequences by searching the GenBank NR (non-redundant)
database for “fish rDNA”, downloading the resulting 2,377 FASTA sequences, then running
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the bowtie2-build command. Each one of these sequences was checked to ensure the GenBank
search did not yield any non-ribosomal sequences. Bowtie2 was run to align each Ion Torrent
dataset to the “fish rDNA” index using the—fast-local parameter preset. Then, all sequences
without homology to the “fish rDNA” index were exported for transcriptome assembly.

The—fast-local preset was chosen to ensure that Bowtie2 only found very strong alignments
because it was more desirable to leave a portion of rRNA sequences in the raw datasets than to
remove non-ribosomal sequences inadvertently. To examine the efficacy of the removal of
ribosomal sequences, BLAST2GO pro (version 2.6.4) was used to run BLASTN analysis on a
subset of 497 reads removed from the type I male dataset, as these presumably represent ribo-
somal RNA. Only 2/497 (0.402%) reads did not show homology to known ribosomal sequence
in the NR database, nor did they show homology to any known sequence. Upon examination,
these two reads both contained long stretches of repeats. This analysis lends confidence to our
method of removing rRNA from the transcriptome assembly.

Each Ion Torrent dataset (type I male, type II male, female) with rRNA sequences removed
was assembled with MIRA using the following job parameters: denovo, est, accurate, iontor.
“Denovo” assembles the transcriptome in the absence of prior scaffold information. “EST”
assembles the data as expressed sequence tags (rather than as genomic DNA), “accurate” is the
MIRA default for complete dataset assembly, and “iontor” specifies the sequencing technology
used to generate the dataset. In this assembly, all sequences less than 40 bp were ignored, and a
minimum of two transcripts had to align in order for MIRA to include the contig in the assem-
bly. Next, the three “EST” assemblies were used together as inputs for a combined MIRA
assembly using the same parameters. This significantly increased average sequence length and
decreased the total number of assembled transcripts.

Bowtie2-build was used to create indexes for the separate female, type I male, and type II
male sequence assemblies. Those indexes were then used to extract matching sequences from
the combined reference assembly using Bowtie2 (—very-sensitive-local parameters for
increased search strength). The resulting three datasets allowed for between-dataset compari-
sons and were used for downstream “sexual phenotype” analyses. As an additional quality con-
trol for the MIRA assembly, single-end libraries were assembled together using Trinity
(trinityrnaseq_r20140717, default parameters), which generated 157,000 assembled sequences
excluding isoforms and 207,351 sequences including isoforms. Given the concordance between
assemblies we have elected to use the MIRA assembly for functional annotation. Data are avail-
able at NCBI under the Bioproject accession PRJNA200442.

Gene Annotation
General statistics for sequence datasets were generated using PrinSeq (version 0.20). These sta-
tistics include mean, N50, minimum, maximum, and range for both sequence length and GC
content.

BLAST2GO pro was used for BLASTX analysis, mapping, and annotation of the combined
reference assembled transcript (AT) dataset. For those ATs that did not yield GO-terms (gene
ontology terms) following this BLAST2GO pipeline, the InterProScan database was checked
for possible homologies and annotations. Those ATs that showed no protein homology in
either analysis were subjected to BLASTN analysis. BLASTN results helped to determine the
identity of additional ATs, but annotations did not provide GO terms for functional analysis.
As there were many instances where multiple ATs showed homology to a single gene, the list
was collapsed so that genes were only counted once in subsequent functional analysis.

Functional categories of interest were developed for grouping ATs from the combined and
sexual phenotype-specific datasets by key-words within GO-terms (Table 1). Because a single
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AT often yields multiple GO-terms, the functional categories are not mutually exclusive.
Searches were conducted using the “contains” and “does not contain” filters in Microsoft
Excel. For each search filter the results were visually inspected to ensure the lists did not con-
tain unintended GO-terms (e.g., contains “ear” and does not contain “nuclear”).

A list of 109 known inner ear and/or deafness-related genes was compiled from the Heredi-
tary Hearing Loss (HHL) database (http://hereditaryhearingloss.org; accessed 11/2/2012) to
query the AT sets for genes linked to inner ear function. Gene names from the HHL database
were used to search GenBank for mRNA sequences from other vertebrates, as none of these
genes had been previously sequenced in midshipman. Fish sequences were selected when possi-
ble. When GenBank searches yielded alternative splice variants or paralogs of a certain gene, all
variants of that gene were downloaded for analysis. These sequences were used to create a
FASTA file of ear-related genes that we could use to query our midshipman AT set. BLAST
databases were generated for the combined and individual midshipman assemblies using the
makeblastdb tool from the blast+ package (NCBI). The HHL-derived FASTA dataset was used
to query the combined and individual midshipman datasets using stand-alone BLASTN
searches. To determine the optimal BLASTN search parameters for queries across taxa, the
word size and minimum BLAST scores were adjusted in a stepwise manner to maximize real
hits while minimizing erroneous hits. This iterative process led us to set word size to 11 and
BLAST results were filtered for only hits with a minimum score of 70.

To better understand the nature of both annotated and unknown transcripts within our
dataset, optimal BLASTN parameters from the prior analysis were used to query all ATs
against nine sequenced teleost genomes: zebrafish (Danio rerio), medaka (Oryzias latipes),
Atlantic salmon (Salmo salar), Fugu (Takifugu rubripes), spotted green pufferfish (Tetraodon
nigroviridis), large yellow croaker (Larimichthys crocea), Nile tilapia (Oreochromis niloticus)
platy (Xiphophorus maculatus) and three-spined stickleback (Gasterosteus aculeatus). This
analysis leant additional support to our assembly and functional annotations.

Expression analysis
For the expression analysis we compared gene expression between sexual phenotypes, and we
included a fourth transcriptome dataset generated from non-reproductive female midshipman.
Non-reproductive females were collected in December 2012 by otter trawl (R/V Kittiwake;

Table 1. Search classification terms for functional AT categories of the combinedmidshipman saccular transcriptome assembly.

Category Search terms

Signal transduction Signal transduction, signal transducer, tyrosine phosphatase, tyrosine kinase, signaling pathway, growth factor, cell
communication, G-protein coupled receptor, serine/threonine kinase

Actin-associated Actin, myosin

Ion channels/transporters Ion channel, ion transport, channel, ion exchanger, voltage-gated, ligand-gated, symporter, antiporter, sodium,
potassium, chloride, anion, cation

Calcium regulation Calcium, calcium ion binding

Cell death Apoptotic, death, bcl, p53, calpain, cathepsin, fas, apoptosis

Cell proliferation Cell proliferation, cell cycle, cyclin, mitotic, mitosis, cell division, cytokinesis, G2/M, cohesin, cdc, cdk

Inner ear Ear, hearing, sound, auditory, semicircular canal, otolith, tectorin, otogelin, otoferlin, usherin, usher, espin, oto, cochlin,
otic

Neuron Neuron, neural, axon, dendrite, synapse, synaptic, nerve, neurotransmitter, nervous system, elav, dopamine, serotonin,
glutamate, GABA, glycine, ganglion, myelin, acetylcholine, spine dendritic, neuro, synap,

Hormone associated Estrogen, androgen, testosterone, thyroid, hormone, steroid, progest, estradiol, corticoid

Transcription factors Transcription factor, sequence-specific, DNA-dependent, transcription, homeobox, hox, sox, forkhead, x-box, e-box

doi:10.1371/journal.pone.0142814.t001
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Bio-Marine Enterprises) in Puget Sound near Edmonds, Washington at depths of 60–100 m.
RNA extraction, sequencing, and assembly are as described above for the summer samples.

Kallisto (http://pachterlab.github.io/kallisto/) was used to compute expression levels in each
of the four samples (type I, type II, reproductive female, non-reproductive female). First, an
index was built using the 'kallisto index' command with default k-mer size based on the tran-
scripts assembled by MIRA. Next, 'kallisto quant' was used to compute TPM (transcripts per
million reads) expression levels of genes for each of the four samples. Additionally, we used the
raw counts from Kallisto to determine significantly expressed transcripts using DESeq2 with
the default analysis parameters and a significance level of p< 0.1 [26]. Functional information
for differentially expressed genes was obtained from UniProt.

RT-PCR validation
A subset of functionally significant ATs (myosin VIA, NADH dehydrogenase, estradiol 17β-
dehydrogenase 12b, S100-A1-like, SPARC-like isoform 3, otogelin-like, otolin1, androgen
receptor α, slit homolog 3) were selected for validation using RT-PCR. mRNA (extracted as
described above) was reverse transcribed using GoScript Reverse Transcription System and
oligo (dT) primers according to the standard manufacturer’s protocol (Promega, Madison, WI,
USA). Amplification of cDNA was performed using GoTaq G2 Hot Start polymerase (Pro-
mega) with the following thermocycler parameters: 95°C for 2 min, followed by 35 cycles of:
95°C for 30 sec, 55°C–60°C (depending on primer pair; see Table 2) for 30 sec, and 72°C for 1
min. PCR products were gel extracted (QIAquick Gel Extraction Kit, Qiagen, Valencia, CA,
USA), sequenced, and their identity verified by BLAST analysis.

Results

Saccular transcriptome assembly
Unassembled Ion-Torrent datasets from reproductive type I male, type II male, and female sac-
cules contained an average of 4,496,247.33 sequence reads with a mean read length of 193.87

Table 2. Primer sequences and annealing temperatures used for PCR reactions to amplify selected genes of interest. F: forward primer, R: reverse
primer.

Gene of Interest Annealing temp. Primer Sequence

Myosin VIa 55°C F: TCAAAGTCGAACAGGCGAAC

R: CCAAGCGATGTCCAGAACCC

Estradiol 17β-Dehydrogenase 12b 60°C F: CTCCAAGGCGTTTGTGGACT

R: GGACGAAACCCATCCCCATC

NADH Dehydrogenase 55°C F: TTCAACTCTCGTATTCGCATC

R: GCCACCACACGCTTCAC

S100-A1-like 55°C F: AAGGGGACAAGTACACGCTG

R: TTCTGCGAGTCCACAATCCC

SPARC-like isoform 3 55°C F: GGAGGAGACAGATGCTGAGG

R: TTTGCCTTTCTTGCAGAGGT

Otogelin-like 55°C F: TGCATCGACGTCATAGCTCC

R: GTGACCTCCGTGGTTACCTG

Otolin-1 55°C F: CGCCTACTCTCTGTCGCCTA

R: GGACAGCACTCGCAAAAGTT

Androgen Receptor-α 55°C F: CAGTGGAGGGCCTGAAGAAC

R: TAGTCCAGCAGCTGTTGATG

Slit homolog 3 55°C F: CCAGAATCACCAAGGTGGAC

R: AAGCTCTGGCAGAAACTGGA

doi:10.1371/journal.pone.0142814.t002
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bp (Table 3). After removing sequences with rRNA homology, the filtered datasets contained
an average of 2,696,180.33 reads (~40% removed). The type I male assembly yielded 503,993
contigs with an average AT length of 240.69 bp. The type II male assembly contained 115,977
contigs with an average AT length of 218.11 bp. The female assembly consisted of 165,683 con-
tigs with an average AT length of 201.37 bp. After combining the sexual phenotype-specific
datasets for a secondary assembly, average contig length increased by 180.14 bp (relative to
unassembled datasets) to 362.24 bp and had a mean GC content of 48.95%. The final combined
assembly contained 79,814 ATs.

Functional annotation
We annotated the 79,814 ATs using the BLAST2GO pipeline. 34,804 (43.6%) ATs yielded
BLASTX hits to the GenBank NR database, and of these hits 14,241 (40.9%) represented
unique gene names. A small subset of these 14,241 unique transcripts were likely represented
more than once, as some gene names were slight variations on one another (e.g., myosin VIIa
vs. myosin VIIa-isoform-partial). Therefore, the 14,241 figure represents an over-estimate of
the number of unique transcripts annotated in the combined dataset. 11,221 of these unique
genes had associated GO-terms for functional analysis.

Functional analysis was conducted for all transcripts that yielded GO-terms. Fig 1 shows the
GO-term classification by biological process (BP) for the combined dataset, while Fig 2 shows
the same classification by molecular function (MF). For biological process, the top GO-term
categories were protein phosphorylation and DNA-binding transcriptional regulators, consis-
tent with high levels of gene expression regulation and active cell signaling events. For molecu-
lar function, the bulk of ATs were classified as binding ATP, zinc, or calcium, again consistent
with cell signaling regulation.

We then composed categories that included multiple GO-terms in combinations that
encompassed suites of genes with related functions, such as cell death, cell proliferation, or neu-
ronal associations (see Table 1). These categories were selected to allow gross classification of

Table 3. Assembly statistics for the midshipman fish saccular transcriptome. Data are described for the raw RNA datasets, rRNA filtered datasets,
sexual phenotype-specific assemblies, and the combined assembly.

Mean length Min
length

Max
length

N50 contig
size

Mean GC
content

Total #
sequences

Total # bases

Raw type I male 201.19 ± 56.72 bp 18 bp 3008 bp 223 bp 52.38 ± 5.87% 4,295,038 864,138,918

Raw type I male rRNA
filtered

200.49 ± 57.26 bp 18 bp 1024 bp 208 bp 52.14 ± 5.94% 3,984,080 798,778,434

Raw type II male 200.79 ± 67.02 bp 18 bp 3018 bp 209 bp 55.79 ± 4.75% 5,068,464 1,017,705,360

Raw type II male rRNA
filtered

179.01 ± 79.41 bp 18 bp 3018 bp 208 bp 56.11 ± 6.19% 1,889,485 338,233,496

Raw female 179.63 ± 62.05 bp 18 bp 2519 bp 191 bp 55.51 ± 5.18% 4,125,240 741,028,157

Raw female with rRNA
filtered

166.81 ± 66.65 bp 18 bp 1019 bp 181 bp 55.30 ± 6.19% 2,214,976 369,489,889

Original type I male
assembly

240.69 ± 113.14
bp

40 bp 2364 bp 251 bp 47.13 ± 7.12% 503,993 121,303,896

Original type II male
assembly

218.11 ± 101.08
bp

40 bp 3093 bp 272 bp 50.60 ± 8.05% 115,977 25,295,418

Original female assembly 201.37 ± 104.80
bp

39 bp 3273 bp 235 bp 48.99 ± 8.10% 165,683 33,363,065

Combined assembly 362.24 ± 167.41
bp

42 bp 3558 bp 399 bp 48.59 ± 6.75% 79,814 28.912,155

doi:10.1371/journal.pone.0142814.t003
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groups of genes relevant to the inner ear. A high proportion of the annotated transcripts could
be classified using our assigned categories (Fig 3). 5,327 genes fell into at least one functional
category, which is 46.13% of all annotated genes with associated GO-terms. The manual anno-
tation revealed 770 distinct ATs for actin-associated proteins, which are important because the
actin-rich sensory hair bundle plays a critical role in transducing sound into neural responses
[27]. 168 ATs had known inner ear function, including the transcription factor Brn3c (Pou4f3)
and the molecular motor myosin VI, both of which cause deafness when mutated [28–30].
Another 228 ATs encode components of hormone signaling, including androgen and estrogen
receptors and genes for steroid hormone metabolism. These latter ATs are of particular

Fig 1. Gene Ontology (GO) term classification by biological process (BP) for the combinedmidshipman saccular transcriptome.

doi:10.1371/journal.pone.0142814.g001
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interest, as hormonal regulation of the auditory system has been previously reported for mid-
shipman fish [9].

We further examined expression of known inner ear genes in our combined dataset to assess
transcriptome quality. BLASTN and BLASTX analysis of deafness-related genes within the
midshipman saccular transcriptome revealed that 73 of 109 sequences were found in our
assembly (S1 Table). These deafness-related genes fall into several GO categories, including
transcriptional regulation and otolith (ear stone) mineralization. The prevalence of deafness
genes in our combined transcriptome, particularly in light of not having genomic midshipman

Fig 2. Gene Ontology (GO) term classification by molecular function (MF) for the combined midshipman saccular transcriptome.

doi:10.1371/journal.pone.0142814.g002
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sequence, offers confidence that this dataset likely contains the majority of all possible saccular
transcripts in this species.

Taxonomic comparison
As there is no published genome for any batrachoidid fish, we compared our unknown ATs to
nine published genomes from other fish taxa. We used only ATs>1000 bp for this analysis, as
these likely represent full-length transcripts, although analysis with AT>500 bp yielded similar
results (data not shown). Over 80% of these long ATs matched to sequences in either the L. cro-
cea or O. niloticus genomes, while only 52.6% of ATs aligned to the D. rerio genome (BLASTN
cutoff 1e-10, Fig 4). The phylogenetic relationships between P. notatus and the other nine spe-
cies are shown in Fig 4B.

Due to the high degree of concordance between the P. notatus and L. crocea genomes, we
further compared all assembled transcripts from P. notatus with the annotated genes of L. cro-
cea using BLAST, rather than restricting our analysis to only transcripts larger than 1000 bp.
Among the 79,814 ATs, 28,618 matched to 8,946 L. crocea genes by considering only the best
hit for each AT (BLASTN cutoff 1e-10). In many cases, multiple P. notatus transcripts matched
the same L. crocea gene, likely due to the fragmented nature of the P. notatus transcripts. This
analysis gives us further confidence in our assembly and annotation.

RT-PCR validation of saccular gene expression
To instill additional confidence in our RNA-Seq data, we validated gene expression by
RT-PCR amplification ofmyosin VIA, estradiol 17β-dehydrogenase 12b, NADH dehydrogenase,
S100-A1-like, SPARC-like isoform 3, otogelin-like, otolin-1, androgen receptor α, and slit homo-
log 3. We used saccular cDNA from all three sexual phenotypes while fin cDNA was used for
qualitative comparison of inner ear gene expression. DNA sequencing confirmed the identity
of all PCR products. Several of these genes (otolin-1, S100,myosin VIa, otogelin, sparc, and slit)

Fig 3. Functional analysis for all transcripts yielding gene ontology (GO) terms. The individual
functional categories are not mutually exclusive, as many annotated genes have multiple gene ontologies
(see Methods). ATs were classified in the narrowest appropriate category. Search terms for functional
categories are located in Table 1.

doi:10.1371/journal.pone.0142814.g003
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are expressed in the inner ears of other vertebrates and may be important for inner ear develop-
ment or maintenance [32–37]. Estradiol 17β-dehydrogenase 12b, which converts estrone into
the more potent estradiol-17β, was chosen because estrogen plays a significant role in seasonal
auditory plasticity in this species [9,38]. Similarly, androgen receptor-α plays a role in hormone
signaling. Lastly, NADH dehydrogenase is a ubiquitous housekeeping enzyme that served as a
positive control. As shown in Fig 5, all nine transcripts were expressed in the saccules of all
three sexual phenotypes. We detected two S100-A1-like transcripts in the saccule of reproduc-
tive females, suggesting expression of multiple S100 isoforms in this reproductive phenotype.

Fig 4. Comparison of P. notatus inner ear transcripts with other fish genomes. A) Analysis of the 460
midshipman sequences longer than 1000 bp (BLASTNwith a cutoff of 1e-10). Midshipman transcripts most
often match L. crocea (large yellow croaker) andO. niloticus (Nile tilapia) genomes. B) Phylogenetic
relationships between P. notatus and the nine species used for genomic comparison. Phylogeny is based on
[31]. Lines are not drawn to scale.

doi:10.1371/journal.pone.0142814.g004
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Estradiol 17β-dehydrogenase, myosin VIa, and slit homolog 3 were also expressed in fin, as is
the housekeeping gene NADH dehydrogenase. It is important to note that band intensity is not
a reflection of relative gene expression levels.

Expression analysis
We used kallisto to analyze the relative expression levels (normalized by TPM) between the
three summer (reproductive) sexual phenotypes and a newly generated dataset from the sac-
cules of winter, non-reproductive females. In order to gain a better understanding of relative
gene expression, we translated all 79,816 in ATs in 6 frames and considered the longest peptide
in each case. The median size was 78 amino acids, which improved to 94 amino acids after con-
sidering only those 28,618 ATs having matches with L. crocea genes, consistent with the close
concordance between the P. notatus and L. crocea genomes (Fig 4). Many of the longest trans-
lated peptides in our dataset had known inner ear-related functions (e.g., otogelin-like, colla-
gen, otolin-1-a-like). Two ATs (combined_assembly_rep_c74637,
combined_assembly_rep_c33111, see S2 Table) are noteworthy among the rest, because, in
addition to long translation product, they were highly expressed in saccules from all three sex-
ual phenotypes, but expressed at very low levels in the saccules of winter non-reproductive
females. AT c74637 matches a receptor-type tyrosine-protein phosphatase in L. crocea, whereas
AT c33111 matches the epiphycan (epyc, formerly called DPSG3) gene, a proteoglycan associ-
ated with the extracellular matrix [39].

We then reduced our AT dataset to 8,946 unique protein-coding genes by eliminating redun-
dant gene IDs and used DESeq2 to analyze differential expression between sexual phenotypes
using the full suite of expressed genes (S3 Table). We first compared saccular expression levels
between reproductive and non-reproductive females, given that there is a known reproductive-
state dependent difference in saccular sensitivity in this phenotype [8]. 769 transcripts were sig-
nificantly differentially expressed between the female reproductive conditions, with 428 tran-
scripts up-regulated in non-reproductive females and the remaining 341 up-regulated in
reproductive female saccules (S4 Table). The most highly up-regulated genes in reproductive
females were a transcriptional regulator, a protein of unknown function, an actin isoform, and
neuroserpin. By contrast, non-reproductive female saccules showed substantial up-regulation of
a nucleotide excision repair protein, a membrane protein related to vesicle trafficking, and a
kinase with potential growth factor activity. Within the entire list of differentially expressed tran-
scripts are several functional groupings, includingWnt and Notch signaling components, hor-
mone receptors, and planar cell polarity proteins (S4 Table). Many of the up-regulated genes in
the reproductive female saccules were also highly expressed in type I and type II males collected
during the breeding season, suggesting that this set of genes is associated with the summer repro-
ductive condition of the animals, or with the increased metabolic needs of more active animals.

We then compared relative gene expression between the two male phenotypes. Both were
collected during the reproductive season from the same nests, so any differences may reflect
true differences in auditory structure or function. Forty-seven genes were differentially
expressed (p<0.05), with 16 of these genes more highly expressed in type II males and the
remaining 31 genes up-regulated in type I males (Table 4). Of the 16 genes up-regulated in
type II males, six have known roles in the inner ear, including two genes associated with deaf-
ness (polycystin/polycystic kidney disease 1, myosin XV), and a putative component of the
mechanotransduction channel, transmembrane channel-like protein-2 (TMC2) [40–43]. It is
important to note that none of the 47 differentially expressed genes was up- or down-regulated
more than 2.3 fold, suggesting that saccular transcriptomes are generally similar between the
two male sexual phenotypes.
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Finally, we compared expression levels between reproductive females and type II males.
Recent evidence suggests that type II males also demonstrate seasonal auditory plasticity, and
type II males likely use acoustic cues for spawning nest identification to facilitate successful
“sneak” spawning behavior [2,3,16, 44]. Sixty-one transcripts were differentially expressed
between these two sexual phenotypes, with 41 up-regulated in type II males relative to repro-
ductive females. Nine of the differentially expressed transcripts have known inner ear function
(Table 5, bold text), with 8 of these 9 expressed significantly more in type II males than in
females. The otolith matrix protein otolin 1 is the only known inner ear gene significantly up-
regulated in reproductive females (vs. type II males). Four inner ear transcripts that show
reduced expression in reproductive females, TMC2,myosin XV, otoferlin-like, and polycystin,
are significantly reduced in type I males as well (Table 4). TMC2 is also highly expressed in sac-
cules from non-reproductive females, while these other three inner ear genes are not upregu-
lated in non-reproductive females (S3 Table). These analyses suggests that saccular gene
expression is generally similar between the three reproductive morphs, but that expression in
type I males and females is more similar to each other than either is to type II males.

Discussion
We have successfully employed RNA-Seq technology to analyze the saccular transcriptome
from the plainfin midshipman fish. The combined dataset represents over 79,000 total assem-
bled transcripts representing almost 9,000 unique genes. Although our transcriptome coverage

Fig 5. RT-PCR validation of midshipman inner ear gene expression. All nine genes (myosin VIA,
estradiol 17β-dehydrogenase 12b, NADH dehydrogenase, S100-A1-like, SPARC isoform 3, otogelin-like,
otolin-1, androgen receptor α, and slit homolog 3) were expressed in saccular tissue, while four genes were
expressed in the fin. Band intensity is not a reflection of relative levels of gene expression.

doi:10.1371/journal.pone.0142814.g005
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Table 4. Protein-coding genes that are differentially expressed in type I vs. type II males. All genes shown here are significantly different at the p<0.05
level. *For this analysis we shown the raw p-values, as the adjusted p-values were all non-significant. Gene expression values are given in transcripts per mil-
lion reads (TPM). ID numbers correspond to the gene table in S3 Table. Gene names in bold indicate genes with known inner ear function.

Gene ID Type 1 Male Type 2 Male Log2 Fold Change P-value* Annotation

rna14389 1.145 79.624 2.233 0.027 FH1/FH2 domain-containing protein 3

rna9888 9.397 331.811 2.160 0.019 transmembrane channel-like protein 2

rna9921 5.228 216.148 2.079 0.025 unconventional myosin-XV-like

rna29562 0.348 27.709 2.061 0.046 SUMO-specific isopeptidase USPL1 isoform X1

rna18544 0.376 29.217 2.041 0.048 myosin light chain phosphorylatable fast skeletal muscle

rna8011 0.600 46.056 2.031 0.050 zinc finger FYVE domain-containing protein 1-like

rna4238 4.075 123.078 2.017 0.035 protein piccolo

rna28078 3.005 104.351 1.964 0.041 small nuclear ribonucleoprotein 70kDa (U1)

rna1625 4.266 113.672 1.942 0.040 GIPC PDZ domain containing family member 3

rna23069 2.748 63.058 1.924 0.042 DEAD (Asp-Glu-Ala-Asp) box helicase 56

rna11095 10.830 216.498 1.916 0.037 G patch domain containing 8

rna3394 10.917 238.319 1.826 0.045 SH3 and multiple ankyrin repeat domains 3

rna15732 9.395 228.236 1.806 0.045 polycystic kidney disease 1

rna14219 20.636 498.566 1.704 0.045 myelin protein P0

rna5121 59.738 1248.786 1.688 0.046 parvalbumin thymic CPV3-like

rna28310 33.979 579.490 1.680 0.049 otoferlin-like

rna16469 66.782 83.226 -1.674 0.049 tristetraprolin-like

rna2246 64.042 74.990 -1.715 0.044 DIP2 disco-interacting protein 2 homolog B (Drosophila) transcript variant X1

rna24775 190.240 137.788 -1.745 0.039 60S ribosomal protein L10 isoform X1

rna2503 152.668 156.818 -1.830 0.032 sodium- and chloride-dependent taurine transporter-like transcript variant X1

rna22205 35.062 24.016 -1.890 0.042 tumor necrosis factor alpha-induced protein 2-like

rna6299 20.502 13.983 -1.895 0.046 ATPase Na+/K+ transporting beta 4 polypeptide

rna27958 13.859 8.149 -1.955 0.041 tubulin beta-5 chain transcript variant X1

rna4791 27.517 30.607 -1.956 0.034 pre-B-cell leukemia homeobox 4

rna27139 36.959 25.238 -1.958 0.035 coronin-1C-like transcript variant X2

rna6436 44.531 47.917 -1.964 0.031 R3H domain containing 2 transcript variant X2

rna27282 29.525 9.920 -1.980 0.048 zinc transporter 8-like transcript variant X2

rna6012 63.527 22.503 -1.987 0.035 fibronectin-like

rna14834 13.430 6.153 -1.999 0.048 A disintegrin and metalloproteinase with thrombospondin motifs 2-like

rna15798 17.939 10.022 -2.023 0.035 glutathione reductase mitochondrial isoform X1

rna13147 6.220 1.809 -2.035 0.049 protein FAM46A-like

rna3689 24.213 11.572 -2.035 0.040 microtubule-associated protein RP/EB family member 2 transcript variant X1

rna4589 15.380 6.222 -2.042 0.043 zinc binding alcohol dehydrogenase domain containing 2

rna4812 53.421 36.259 -2.044 0.025 lipid phosphate phosphohydrolase 3-like

rna19828 59.271 32.913 -2.073 0.029 HECT and RLD domain containing E3 ubiquitin protein ligase 3

rna13994 7.565 2.360 -2.074 0.044 speckle-type POZ protein-like

rna2479 324.443 196.246 -2.129 0.016 exostosin-1b-like

rna20165 24.052 5.942 -2.138 0.034 collagen alpha-1(X) chain-like

rna3357 117.153 64.845 -2.175 0.017 armadillo repeat containing 10

rna7088 60.235 29.556 -2.180 0.019 ceramide synthase 2

rna23738 41.067 20.468 -2.189 0.023 adipocyte plasma membrane associated protein

rna9281 61.557 47.899 -2.190 0.014 creatine kinase U-type mitochondrial-like

rna4076 218.209 86.374 -2.216 0.014 RNA-binding motif protein X chromosome isoform X2

rna11578 11.819 2.980 -2.217 0.033 BMS1 ribosome biogenesis factor transcript variant X1

rna29385 22.783 3.247 -2.217 0.033 histone H2A

rna9391 65.336 83.874 -2.220 0.015 vacuolar protein sorting-associated protein 13D-like

rna13050 29.650 14.153 -2.288 0.020 muscleblind-like protein 3 transcript variant X2

doi:10.1371/journal.pone.0142814.t004
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is relatively low for individual datasets, it is considerably higher when we consider coverage
across all three summer sexual phenotypes, with>8 million sequences used to generate the
combined assembly. The number of unique expressed genes from the combined assembly is
close to that found in a recent cochlear transcriptome sequencing study [45], suggesting that
our estimate may be close to the actual transcriptome size in the inner ear generally. Our data-
set is likely missing some important genes that are expressed at low levels, e.g., transcription
factors such as atoh1 that are transiently expressed in developing hair cells [46,47]. Neverthe-
less, we have developed a valuable resource for a range of future midshipman inner ear studies,
as well as comparative studies of the auditory periphery.

The generation of a de novo transcriptome for plainfin midshipman inner ear required the
use of several bioinformatics tools in combination in order to lend confidence to our AT
assignments. While BLASTX and BLASTN analyses identified many of the same genes within
our dataset, the two analyses did not yield identical results. Each algorithm employs a different
search strategy and offers unique advantages. BLASTX searches for amino-acid sequence
homology for each possible open reading frame within a nucleotide sequence. This was partic-
ularly useful for annotating our dataset because few genetic resources exist for midshipman
fish, and protein sequences are much more highly conserved across taxa than nucleotide
sequences. BLASTN lends the advantage that some ATs may fall outside of the coding regions
of genes (e.g., 5’ and 3’ untranslated regions or introns), and BLASTX would miss these homol-
ogies. Although our dataset was enriched for mRNAs, there were likely a number of non-cod-
ing RNAs in our dataset (rRNAs, snRNAs, lncRNAs) that BLASTX failed to annotate. The
combination of both analyses helped us to validate the quality of our dataset and to annotate a
higher proportion of ATs than with either analysis alone.

Functional Annotation
We verified the presence of expected inner ear-related genes within our dataset, lending confi-
dence that our false negative rate for the combined transcriptome assembly is relatively low.
First, through BLASTX analysis, the present study identified ATs that fall into several func-
tional classes, including over 100 genes that are known to play a role in the inner ear. This
“inner ear” class represents transcription factors required for hair cell differentiation (brn3c),
otolith-associated proteins (otolin-1, SPARC3), glycoproteins crucial for inner ear structural
integrity (e,g. otogelin), and hair bundle genes such asmyosins VIA and VIIA.Myosin VIA, oto-
lin-1, SPARC3, and otogelin expression was also verified by RT-PCR. Microarray-based tran-
scriptome profiling has identified many of these so-called deafness genes in the ears of other
vertebrates, including rodents and the aquatic frog Xenopus [17,19,20].

Zebrafish mutagenesis studies show conserved function of many deafness genes across ver-
tebrate taxa, suggesting that the inner ear ATs found in the present midshipman study are
functionally important for hair cell development and/or maintenance [33,48,49]. Second,
BLASTN analysis for a set of known deafness genes reconfirmed the presence of many of these
same genes within our combined dataset. Deafness-associated genes that are not apparent in
our dataset may have been missed due to the large phylogenetic distance between plainfin mid-
shipman and the available sequences for BLASTN queries, as some of these deafness genes
have only been sequenced in mammals. It is also likely that a subset of mammalian deafness
genes are not expressed in the fish saccule. Genes associated with fluid homeostasis via expres-
sion in the stria vascularis may be specific to mammals, as fish ears employ an alterative strat-
egy for ion exchange [50,51].

We also detected several transcripts previously identified in the midshipman inner ear,
including BK channel subunits and androgen and estrogen receptors [52]. Androgen and
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Table 5. Protein-coding genes that are differentially expressed in reproductive females vs. type II males. All genes shown here are significantly differ-
ent at the p<0.05 level. *For this analysis we shown the raw p-values, as the adjusted p-values were all non-significant. Gene expression values are given in
transcripts per million reads (TPM). ID numbers correspond to the gene table in S3 Table. Gene names in bold indicate genes with known inner ear function.

Gene lD Reproductive
Female

Type 2
Male

Log2 Fold
Change

P-
value*

Annotation

rna10944 6.999 139.948 1.853 0.013 regulating synaptic membrane exocytosis 2 transcript variant X1

rna3322 27.907 441.680 1.851 0.011 dynein axonemal heavy chain 5

rna9370 9.908 169.458 1.832 0.013 proprotein convertase subtilisin/ kexin type 5-like

rna1388 7.940 160.772 1.804 0.016 signal transducer and activator of transcription 5B-like transcript
variant X2

rna25728 4.979 119.483 1.772 0.019 ATP-sensitive inward rectifier potassium channel 10-like

rna10276 6.242 68.208 1.758 0.019 phosphorylase b kinase gamma catalytic chain liver/testis isoform

rna10609 2.045 59.915 1.754 0.021 SRY (sex determining region Y)-box 2

rna28400 7.742 138.417 1.744 0.019 olfactory receptor 10A7-like

rna10722 1.495 40.307 1.734 0.023 zinc finger protein 385B

rna21855 8.429 120.618 1.721 0.019 neurofascin

rna25126 35.224 414.760 1.696 0.018 Phosphatidylinositol phosphatase PTPRQ

rna13414 0.989 30.003 1.692 0.026 SH3-containing GRB2-like protein 3 interacting protein 1 isoform X7

rna18753 1.432 47.270 1.670 0.028 protocadherin gamma-A2-like

rna3394 16.714 238.319 1.637 0.024 SH3 and multiple ankyrin repeat domains 3

rna13480 7.693 134.264 1.635 0.025 fibrillin-1-like

rna18150 27.276 153.668 1.635 0.025 plasma membrane calcium transporting ATPase 2

rna24034 28.391 341.207 1.609 0.025 receptor-type tyrosine-protein phosphatase mu-like

rna18949 2.462 51.783 1.600 0.034 mucolipin-3-like

rna9888 35.130 331.811 1.598 0.025 transmembrane channel-like protein 2

rna28438 0.643 28.013 1.574 0.037 protocadherin beta-16-like

rna19896 4.597 79.379 1.574 0.038 WD repeat and SOCS box-containing protein 1

rna2012 1.007 26.367 1.571 0.039 RAC-gamma serine/threonine protein kinase transcript variant X1

rna9921 16.988 216.148 1.565 0.029 unconventional myosin-XV-like

rna24984 13.990 171.703 1.553 0.032 helicase with zinc finger 2 transcriptional coactivator

rna28080 0.762 23.741 1.544 0.042 protein phosphatase 1 regulatory subunit 35-like

rna6734 0.932 26.691 1.544 0.042 obscurin-like

rna10521 21.177 252.161 1.544 0.030 nuclear receptor corepressor 1

rna12342 1.720 40.837 1.531 0.042 transmembrane protease serine 7

rna6766 7.790 81.393 1.505 0.041 excitatory amino acid transporter 1-like

rna20117 3.923 55.313 1.504 0.047 lysosomal-associated transmembrane protein 4B

rna23323 2.128 24.415 1.504 0.048 adhesion regulating molecule 1 transcript variant X1

rna19304 1.902 58.753 1.503 0.048 RAB member RAS oncogene family like 6

rna29233 6.332 79.600 1.503 0.043 protocadherin gamma-A11-like

rna25715 34.562 400.827 1.502 0.034 uncharacterized LOC104936481

rna9185 21.235 234.031 1.495 0.035 NFX1-type zinc finger-containing protein 1 isoform X2

rna20098 2.102 29.267 1.495 0.049 39S ribosomal protein L11 mitochondrial

rna28310 58.145 579.490 1.495 0.033 otoferlin-like

rna12343 5.110 60.497 1.486 0.047 suppressor of tumorigenicity 14 protein homolog

rna15732 27.314 228.236 1.456 0.041 polycystic kidney disease 1 (autosomal dominant)

rna7083 39.680 466.971 1.417 0.041 histone-lysine N-methyltransferase SETDB1

rna9163 114.919 60.226 -1.406 0.046 LIM domain-binding protein 1 transcript variant X1

rna26281 50.451 26.610 -1.423 0.044 coagulation factor XIII A chain-like

rna13553 86.773 48.150 -1.431 0.046 transcriptional coactivator YAP1

rna3879 154.361 103.430 -1.461 0.037 annexin A1

(Continued)
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estrogen receptors were previously detected in the midshipman saccule and may mediate hor-
monally-driven auditory plasticity in this species [9,53]. How steroid hormones induce sea-
sonal changes in auditory function is unknown, but it may be due in part to an increase in
supporting cell proliferation and hair cell addition during the pre-nesting season, when circu-
lating hormone levels peak [54]. Recent work shows that reproductive female midshipman
have increased hair cell density, decreased hair cell death, and more small, immature-appearing
hair bundles than their non-reproductive counterparts, suggesting that the increase in hair cell
addition may be initiated during the pre-nesting period [11]. Consistent with this hypothesis,
the present study demonstrates saccular expression of several genes associated with cell death,
survival, and proliferation.

Phylogenetic Comparisons
Comparison of our long assembled transcripts (>1000 bp) to several known fish genomes
revealed the greatest similarity with the L. crocea and O. niloticus genomes. According to a
recent reconstruction of the teleost fish phylogeny, sciaenid fishes (drums and croakers, includ-
ing L. crocea) are classified as Percomorpharia, a newly defined taxonomic group that also con-
tains the O. Tetraodontiformes (pufferfishes, represented in the present analysis by T. rubripes
and T. nigroviridis) and the traditional O. Perciformes (which includes G. aculeatus, the
3-spined stickleback). By contrast, cichlids (represented here by O. niloticus), cyprinodonti-
form (X. naculatus) and beloniform (O. latipes) fishes are part of a monophyletic group
referred to as the Ovalentariae [31,55]. Midshipman are batrachoidid fishes, which are an
apparent outgroup from the “apical phylogenetic bush” that comprises these other taxonomic
groups. Therefore, our comparative analysis of the midshipman saccular transcriptome is
inconsistent with recent updates to the bony fish phylogeny. L. crocea, O. niloticus, and P. nota-
tus are all soniferous fishes where hearing is important for intraspecific communication

Table 5. (Continued)

Gene lD Reproductive
Female

Type 2
Male

Log2 Fold
Change

P-
value*

Annotation

rna17374 45.024 18.896 -1.489 0.044 major histocompatibility complex class I-related gene protein-like

rna27963 172.383 110.372 -1.508 0.032 chromosome unknown open reading frame human CXorf56

rna16918 42.974 24.232 -1.530 0.033 transmembrane protein 106B

rna3357 141.118 64.845 -1.536 0.032 armadillo repeat containing 10

rna2246 127.126 74.990 -1.554 0.027 DIP2 disco-interacting protein 2 homolog B (Drosophila) transcript
variant X1

rna8815 22.827 2.961 -1.565 0.038 testis development related protein transcript variant X2

rna4791 51.598 30.607 -1.577 0.030 pre-B-cell leukemia homeobox 4

rna3473 26.927 7.808 -1.603 0.034 proline-rich protein 5-like

rna16889 37.485 8.602 -1.641 0.031 zinc finger protein Pegasus-like

rna17369 51.073 19.513 -1.649 0.027 NudC domain containing 1

rna8728 37.671 23.010 -1.681 0.021 MICAL-like 1 transcript variant X2

rna13147 11.641 1.809 -1.684 0.027 protein FAM46A-like

rna23738 53.717 20.468 -1.726 0.021 adipocyte plasma membrane associated protein

rna12095 147.167 52.728 -1.754 0.014 otolin 1

rna24066 12.684 1.761 -1.795 0.018 cilia and flagella associated protein 44

rna14162 66.264 33.872 -1.885 0.010 ER membrane protein complex subunit 2

rna27192 86.936 28.339 -1.934 0.010 RNA binding protein fox-1 homolog 2-like

doi:10.1371/journal.pone.0142814.t005
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[56,57], so it is possible that similarities between saccular transcripts represent conserved evo-
lution for acoustic communication. Not surprisingly, we found that fewer of our long tran-
scripts matched to the D. rerio (zebrafish) or S. salar (Atlantic salmon) genomes, consistent
with the relatively basal positions of these fishes within teleost phylogeny [31,58].

Relative Expression Analysis
Female midshipman fish exhibit seasonal auditory plasticity, with summer (reproductive)
females having a saccular-specific increase in sensory receptor density coupled with increased
auditory sensitivity [7,8,10]. We therefore examined the relative expression levels between win-
ter and summer females as a first step in identifying the genetic correlates of this seasonal plas-
ticity. Over 700 differentially expressed genes were identified in this comparison, with more
transcripts significantly up-regulated in non-reproductive female saccules. Differentially
expressed genes fall into several functional categories, but it is notable that several members of
the Wnt and Notch signaling pathways were evident in this data set. Both pathways play criti-
cal roles in hair cell development and regeneration, including determining the balance between
cell proliferation and hair cell fate specification [59–63]. Estrogen signaling influences expres-
sion of Wnt-mediated genes in both neurons and osteoclasts [64,65], and functional interac-
tions between these pathways are reported in vivo [66]. Similarly, cross-talk occurs between
estrogen and Notch signaling, with estrogen promoting Notch-dependent proliferation of mes-
enchymal stem cells [67,68]. Collectively, these data are consistent with the hypothesis that
pre-nesting estrogen spikes modulate Wnt and Notch signaling, leading to increased cell prolif-
eration and hair cell addition in the saccule of reproductive females.

Transcript expression was generally similar between the two male sexual phenotypes, and
between type II males and reproductive females. Interestingly, type II males had greater expres-
sion of several known inner ear genes than either of the other reproductive phenotypes. Of par-
ticular interest is expression of TMC2, a putative component of the hair cell transduction
channel, andmyosin XV, a known deafness gene expressed in hair cell stereocilia [40,43]. Also
of interest is the up-regulation of genes involved in synaptogenesis, including neurofascin and
two protocadherins (β16 and γA-11). The significance of these findings is unclear, but it sug-
gests that there may be more hair cells, and or more synaptic connections, in type II male sac-
cules than in saccules from other sexual phenotypes. Recent data suggest that type II males also
undergo a seasonal change in auditory sensitivity and are just as sensitive as females and type I
males during the summer breeding season [44]. Overall, our analysis suggests that saccular gene
expression is generally similar between the three reproductive phenotypes, but that expression
in type I males and females is more similar to each other than either is to type II males. Our
results also suggest that greater differences exist between non-reproductive and reproductive
states, at least for females. These differences may reflect seasonal auditory changes, or may be a
result of the different habitats where these fish were collected, as all reproductive fishes were
obtained from shallow-water nests while winter females were collected via trawls in deeper
water. Our data are consistent with a recent study that found significant up-regulation of meta-
bolic transcripts, including protein synthesis genes, in the inner ears of type I male reproductive
midshipman fish [69]. However, that study did not examine type II males, which occupy a
unique transcriptional niche in our dataset. Future deep sequencing on the Illumina platform
will allow us to better characterize relative expression levels between sexual phenotypes and
reproductive-state dependent conditions and to assess animals housed in similar conditions.
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