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Abstract
Object orientation and pattern matching are often seen as conflict-
ing approaches to program design. Object oriented programs place
type-dependent behaviour inside objects and invoke it via dynamic
dispatch, while pattern matching programs place type-dependent
behaviour outside data structures and invoke it via multiway condi-
tionals (case statements). Grace is a new, dynamic, object-oriented
language designed to support teaching: to this end, Grace needs to
support both styles. In this paper we explain how this conflict can
be resolved gracefully: by modelling patterns and cases as partial
functions, reifying those functions as first-class objects, and then
building up complex patterns from simpler ones using pattern com-
binators. We describe our design for pattern matching in Grace, and
its implementation as an object-oriented framework.

1. Introduction
Grace [1] is a dynamic, imperative, object-oriented language that we
are designing to support the teaching of programming, typically
in the traditional CS1 and CS2 contexts. Grace is a dynamic
language with block structure, single dispatch, curly-bracket syntax
and optional, gradual type declarations. Grace programs look like
an amalgam of Java, Scala, Ruby, Python and Go, but Grace’s
underlying semantic model is purely object-oriented, and closer to
Self, Newspeak, or gBETA.

One important aim of Grace’s design is to give instructors
and text-book authors the freedom to choose their own teaching
sequence, by reducing the dependencies between features in the
language and its libraries. (We also hope that reducing feature
dependencies will make Grace easier to learn in its own right
[20]) Thus, in Grace it is possible to ignore static types completely,
introduce them in the middle of the course, mix dynamically and
statically typed code, or to begin with strict static type checking on
day one. It is also possible to start with objects, or start with classes,
or ignore both and simply write structured, procedural programs
using only top-level method and variable declarations, vectors, and
records represented by degenerate objects.

[Copyright notice will appear here once ’preprint’ option is removed.]

All these options stay roughly within Grace’s pure object-
oriented paradigm. We would also like Grace to support programs
organized in a “functional programming style” — as collections of
functions or procedures that make decisions based on the types or
values of their arguments.

We don’t expect that Grace will ever do as good a job supporting
this “functional programming style” as ML [15] or F# [22], but
we do think that it is possible to do a good enough job to give
instructors and students the chance to compare and contrast these
different ways of organizing programs, without having to learn an
entirely new language syntax, semantics, environment, and library.
The strawman ACM CS2013 curriculum, for example, regards both
object-oriented and function-oriented programming as core topics,
and requires programmes to cover both dynamic dispatch and pattern
matching [24]. With support for pattern matching they may do so
within the same language.

Support for the functional style in Grace is enhanced if the
language provides some form of pattern matching to scrutinize
and de-structure the arguments of a function, and some form of
conditional statement to select behaviour depending on the results
of the pattern-match. While this goes against the object-oriented
style in some ways, we follow Odersky [16] in believing there are
circumstances in which pattern matching, or something similar, is
useful in object-oriented languages. Even Smalltalk programmers
sometimes find it necessary to ask an object if it understands a
particular message. The obvious approach is to extend the core
language with one or more special-purpose constructs to support
pattern-matching, as in F#’s active patterns, or Scala or Machete’s
“whole cloth” approach [4, 9, 22]. Although some language support
seems unavoidable, we would like to minimize it: we want to
create a small, simple, object-oriented language, not a large hybrid
multi-paradigm language. Our problem, then is how to support
pattern matching in a pure object-oriented language, with minimal
extensions.

This paper explains how we solved this problem gracefully.
Our approach is to model patterns and cases as partial functions,
reify those functions as first-class objects, and then build-up more
complex patterns from simpler ones using pattern combinators.
This results in flexible pattern-matching and case statements that
incorporate a programmer-extensible range of pattern matches,
including matching against constants, matching against an object’s
type (that is, its method interface), and also binding a variable of the
new type, matching against the value of a variable or expression, and
“destructuring” an object to extract its components, which requires
the cooperation of the object in determining what those components
should be. All of this is presented in a conventional pattern-matching
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syntax and implemented using three localized language extensions:
treating blocks (lambda expressions) as partial functions, binding
variables in nested patterns, and match-case expressions with an
indeterminate number of case branches.

This paper makes the following contributions.

• A language design that includes an object-oriented form of pat-
tern matching, but which uses a conventional pattern-matching
syntax; this is described in Section 3.

• A model for that design using objects and methods, specifically
partial function objects, pattern objects, and pattern combinator
methods, which is described in Section 4.

• The integration of pattern-matching with Grace’s type system,
so that the bodies of case blocks can be statically type-checked
using information obtained in the pattern match, described in
Section 5.

We start in Section 2 by setting the context with a high-level
overview of Grace. In Section 7 we will discuss the particular design
decisions we made, and roads not taken, set in the context of pattern
matching support in other languages. We also present a case study
of the use of pattern matching in Grace, which demonstrates the
completeness of our design and implementation (Section 6).

2. An Overview of Grace
Grace can be regarded as either a class-based or an object-based
language, with single inheritance and gradual typing. A Grace class
is an object with a single factory method that returns an object:

class aCat.named(n) {
def name = n
method meow { print "Meow" }

}
var theFirstCat := aCat.named "Timothy"

Here the class is called aCat and the factory method is called
named(). After executing this code sequence, theFirstCat is bound
to an object with two attributes: a constant field (name), and a
method meow. The expression c.name answers the string object
"Timothy", and c.meow has the effect of printing Meow.

An object can also be constructed using an object literal — a
particular form of Grace expression that creates a new object when
it is executed. In addition to fields and methods, an object literal
can also contain code, which is executed when the object literal is
evaluated. For example:

var theSecondCat := object {
def name = "Timothy"
method meow { print "Meow" }
print "Timothy now exists!"

}

This code has the effect of printing “Timothy now exists!”, and
binding the variable theSecondCat to a newly-created object, which
happens to be operationally equivalent to theFirstCat .

It is important to note that, in Grace, classes are completely
separate from types: the class aCat is not a type and does not
implicitly declare a type. Grace programs need not have any type
declarations whatsoever. A type in Grace is structural: it specifies
an interface or protocol that an object can support, and any object
that supports the required methods will belong to the type. If the
programmer wishes to specify types, she may easily do so:

type Cat {
name −> String
meow −> None

}

class aCat.named(n : String) {
def name = n
method meow { print "Meow" }

}
var theFirstCat :Cat := aCat.named "Timothy"

When types are not mentioned, code is dynamically-typed.
Mutable and immutable bindings are distinguished by keyword:

var defines a name with a variable binding, which can be changed
using the := operator, whereas def defines a constant binding,
initialized using =, as shown here.

var currentWord := "hello"
def world = "world"
...

currentWord := "new"

The keywords var and def are used to declare both local bindings
and fields inside objects.

An object’s methods are immutable, in the sense that once an
object is created, the code of its methods cannot be changed. A
field that is declared with def is constant; the binding between the
field name and the object cannot be changed, although the object,
if mutable, may change its state. Each constant field declaration
creates an accessor method on the object. For example, the object
club defined by

def club = object {
def members = MutableSet.empty

}

has a method called members that returns the current set of members.
The value of this set may change over time, for example, after
executing club .members.add(anApplicant).

Grace supports visibility annotations that allow the programmer
to restrict access to fields and methods from outside an object by
marking them as public or confidential. For simplicity, we do not
discuss this further here, and omit visibility annotations in all the
sample code in this paper.

In Grace we say that a method is invoked using a “method
request”. We introduce this terminology to distinguish the opera-
tion — fundamental to object-orientation — of requesting an object
to do something, where the choice of what to do is made by the
object itself, from procedure or function call, where the choice of
operation is made by the caller. This distinction is also conveyed by
Smalltalk’s “message send” terminology, but now that networks and
distributed systems are ubiquitous, “sending a message” has become
an ambiguous term. Methods are requested using the now-standard
“dot” notation, in which the receiver self and the following dot may
be omitted, or by using operator symbols like + and <.

Because self . can be omitted, field access is syntactically
identical to a self method request. As in Eiffel [14] and Self [27],
this is deliberate: it makes it easy for the implementor of an object
to override a field with a custom method, which can be very useful
when there is a need to make a change to the implementation of an
object without affecting its interface.

Grace method names may consist of multiple parts (“mixfix”
notation), as in Smalltalk [7]. Separate lists of arguments are
interleaved between the parts of the name, allowing them to be
clearly labelled with their purpose. Thus, we might define on
Number objects

method between (l:Number) and (u:Number) {
return ( l < self) && (self < u)

}

The above method is named between()and(), and we could
request it on the object 7 by writing
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7.between(5) and(9)

Single arguments that are literals do not require parentheses, so
alternatively we could write

7.between 5 and 9

String literals, written between double quotes, support interpo-
lation, using a syntax similar to that of Ruby. Code inside braces
within a literal is evaluated when the string is; the asString method
is requested on the resulting object, and the answer is inserted into
the string literal at that point.

print "1 + 2 = {1 + 2}" // Prints "1 + 2 = 3"

Grace includes blocks, also known as lambda expressions, like
Smalltalk, Self, and Ruby. A block is written between curly braces,
and contains a piece of code for deferred execution. For example,

{ score := score+10; print "score = {score}" }

is a block that adds 10 to the (lexically scoped) variable score and
prints score’s new value. A block may have parameters, which are
separated from the code by−>; a block returns the value of the last-
evaluated expression in its body. Thus, for example, the successor
function is written {x −> 1+x}.

Because Grace is object-oriented, blocks are represented as
objects. Evaluating a block literal results in a block-closure object,
so called because it may close over lexically-scoped variables, like
scope in the example above. Block-closure objects can be executed
by requesting the apply method with arguments that match the
block’s parameters, so

print ( {x −> 1+x}.apply(5) )

creates a block representing the successor function, and immediately
applies it to the argument 5, printing 6.

Control structures in Grace are methods. The built-in structures
are defined in the basic library, but an instructor or library designer
may replace or add to them. Control structures are designed to look
familiar to users of other languages:

if (x > 5) then {
print "Greater than five"

} else {
print "Too small"

}
for (node. children ) do { child −>

process( child )
}
while {countdown > 0} do {

countdown := countdown − 1
print "{countdown}..."

}

Notice that the use of braces and parentheses is not arbitrary:
parenthesized expressions will always be evaluated exactly once,
whereas expressions in braces are blocks, and may thus be evaluated
zero, one, or many times. Because a return statement inside a block
terminates the method that lexically encloses the block, it is possible
to program quick exits from a method by returning from the then
block of an if ()then() or the do block of a while ()do().

While Grace uses braces to delimit blocks and other literals,
it also enforces correct indentation. Braces and indentation may
not be inconsistent with one another: the body of a method, for
example, must be indented. Enforcing this in the language ensures
that students will learn good practice, and avoids the common
problem of not being able to find a mismatched brace because
of the tendency of one’s eye to believe the indentation rather than
the braces.

3. Graceful Patterns
This section describes how patterns appear to the Grace programmer.
The syntax is explicitly conventional, familiar to programmers of
Scala, F#, Haskell, and other languages, and involved only minor
extensions to Grace.

The programmer’s interface to pattern matching is the match()
case(). . . case() method, with the same form as other Grace control
structures. It takes as its first argument the target of the match, and
as succeeding arguments several case blocks. These case blocks are
almost identical to the blocks used ubiquitously in Grace code, but
are treated a little differently. Specifically, the parameter list of a
normal block is replaced by a pattern literal; the body of the block
contains the code to be executed when the pattern matches. This is
best explained using an example.

match(expr)
case { 0 −> "zero" }
case { n:Number −> "Number less than {n+1}" }
case { s : String −> "String \"{s}\"" }
case { x −> error "Unexpected value {x}" }
This match expression first evaluates expr to obtain an object

obj, and then executes the first case block whose pattern matches
obj. The patterns are written before the −>, in the same position as
block parameters. The syntax for patterns is a strict superset of that
for the parameter list of a single-parameter block; this means that
all single-parameter blocks are usable as case blocks.

In the example, the first pattern is the literal 0, which matches
the number object 0. All numeric, string, and boolean literals can
be used as patterns, and match themselves. The second pattern
n:Number matches when obj conforms to the type Number, but
also has the effect of binding n to obj within the body of the block.
Note that this case block has the same syntax as an ordinary single-
parameter block. The third pattern is similar, but matches only when
obj conforms to type String . Recall that Grace is gradually typed,
so static types like these may be used in code that is otherwise
dynamically typed.

The fourth and final pattern introduces a new parameter named
x; the pattern always matches and has the effect of binding x to obj.
To write a pattern that always matches but does not bind a parameter,
the wildcard identifier may be used:

case { −> error "Unexpected value"}
As the second and third cases illustrate, Grace types are usable as

patterns. Grace types are structural and simply assert that particular
methods exist, with particular argument and result types. A type
pattern may thus be used either to test for a particular method, or to
distinguish between several objects with different types.

match (val)
case { n:Number −> "Number with value {n}" }
case { s : String −> "String: {s}" }
case { p:Pair −> "Pair ({p.left}, {p.right})" }

Patterns can be combined using the pattern combinators & and | .
a & b is a pattern that matches when patterns a and b both match:

type X = { x } // the type with method x
type Y = { y } // the type with method y
match (val)

case { o:X & Y −> "Point ({o.x}, {o.y})" }

while a | b matches when either pattern a or pattern b matches:

match (val)
case { :Number | String | Boolean −>

"A value of a built-in type"
}
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Patterns can also be used to extract data from the matched
object for binding to names, or for further matching. We call this a
“destructuring match”; it requires that the matched object cooperate
by providing a method that exposes the necessary data.

match (astNode)
case { nd:ASTString("") −> "Empty string" }
case { nd:ASTNumber(n) −> "The number {n}" }
case { nd:Operator("+", ASTNumber(0), y) −>

"Just {y}" }
case { nd:Operator("+",

m:ASTMember(name : String,
Identifier ("self"), y) −>

"self.{name} + {y}" }
case { nd:Operator("+", x, y) −>

"Adding {x} and {y}" }

Destructuring matches can be nested arbitrarily deeply; each sub-
pattern can use the full pattern syntax.

There is a potential ambiguity in this pattern syntax. If a bare
identifier such as d is used as a pattern, in a context where the
identifier d is already bound, does it indicate a variable match (which
always succeeds and binds d to the object being matched), or does
it indicate that the object already bound to d should be used as a
pattern? We avoid this ambiguity by requiring that the latter case
be written with parenthesis: (d). This feature may also be used to
match against the result of a method request.

4. Patterns as Objects
As we mentioned in the introduction, our aim in adding pattern-
matching to Grace was to provide the — in most ways quite conven-
tional — facilities described in the previous section by leveraging
the existing features of the language, making only minimal exten-
sions. Here we describe the conceptual model that enabled us to
achieve this aim, and the way that it is reified as Grace objects in
the implementation.

4.1 Conceptual Model
In common with a number of other languages, Grace treats a case
statement as combination of partial functions — functions that are
defined on a restricted domain of inputs. A request to apply a partial
function must supply an argument for the function. If the argument
is in the domain of the function then the function executes using
that argument and returns a result, but if the argument is outside the
domain, the function fails and is not executed.

Grace represents both the partial function itself and its domain
as objects. A sequence of method requests ascertains whether the
argument is in the domain, applies the function, and returns the
result. This representation of partial functions allows Grace pattern
matching to be added with minimal disruption to the language.

As Grace is gradually typed, it was already possible to write
a type restriction on a block parameter, and to attempt to apply
the block to an argument of a different type. If such an invalid
application occurred at runtime, the program would report a type
error and terminate. The match method extends this functionality
to also allow for a non-fatal indication of a type mismatch.

The main difference between match and apply is that apply
either returns or raises a type error, while match returns a result
indicating that the application failed because the argument did not
belong to the domain of the function, as shown in Figure 1.

Because of Grace’s support for gradual typing, type annotations
on block parameters are normally checked at compile time if that
is possible, and otherwise at runtime. When a block is applied
using match, the type test is always dynamic: if the test fails, an
appropriate FailedMatch object is returned, but no error is raised.

def blk = { x:Number −> x ∗ 2 }
blk .apply 2 // -> 4
blk .match 2 // -> SuccessfulMatch(4)
blk .match "text" // -> FailedMatch("text")
blk .apply "text" // Error: wanted Number, got String

Figure 1. A partial function block applied in different ways. match
does not raise any errors, but returns a FailedMatch result indicating
that it was unable to apply the function.

To permit matching on values, such as numbers and strings, we
generalize the annotation of a parameter’s type to a pattern: all types
are patterns, but patterns can also represent individual objects or
values, sets or ranges of values, bit patterns, or any other criteria that
can be defined in code. Patterns are permitted as annotation only on
the single argument of a matching block, and on the components
of destructuring matches. Patterns also allow the declaration of
additional parameters for destructuring matching, which are bound
to results returned from the pattern match. These parameters become
new identifiers available in the body of the function, just like other
parameters. These parameters may themselves have patterns applied,
which will also be matched recursively as components of the overall
pattern in a composite structure.

This representation of partial functions allows the the match()
case(). . . case() method to take a series of single-parameter blocks
and request each in turn to match, until one succeeds. The only
thing special about match()case() is that Grace does not currently
provide a way of defining multipart-variadic methods, that is, a series
of methods named match()case(), match()case()case(), match()
case()case()case(), etc. We could simply define variants of this
method in the standard prelude with up to, say, ten case branches,
but the current prototype implementation handles match()case()
. . . case() specially, with no arbitrary limit.

The only other language-level impact that pattern matching
and case statements places on Grace are those just described: the
extension of type annotations into pattern annotations, and the ability
of patterns to bind additional parameters. There are no macros, no
rewriting, no additional control structures, and nothing “special”
about destructor methods.

To arrive at this model of matching we needed to eliminate a
great many conceivable models with superficial attraction, which
turned out to be flawed after deeper consideration. Many approaches
that can work in a purely dynamically-typed language do not have
a viable static typing, for example, while some that work with
pure static typing cannot work for dynamically-typed code, but any
approach in gradually-typed Grace needed to support both. Other
approaches lead to matching protocols that are difficult to follow
or understand, such as those relying on nested blocks. We designed
and even implemented some of these models before we were able
to eliminate them. The final model, of reified partial functions,
addresses the shortcomings of the alternatives while being readily
embeddable into the language.

4.2 Patterns as an Object Framework
We next describe how we implemented the conceptual model as an
object-oriented framework. Most Grace programmers won’t need
to know about this implementation; the exception is when a library
implementor wants to provide new kinds of patterns not supported
by the pattern syntax.

A pattern object is nothing more than an object that has a
match() method: match takes as an argument the target of the
match and returns an object of type MatchResult. MatchResult
is implemented by two classes: SuccessfulMatch, which inherits
from true, and FailedMatch, which inherits from false . Because
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Figure 2. Matching sequence in Grace

SelfMatchingObject

LiteralPattern

TypePattern

AndPattern OrPattern

LambdaPattern

pattern : Pattern

block : Block

DestructuringMatchPattern

pattern : Pattern

items : Tuple<Pattern>

Pattern

match() : MatchResult

BinaryCombinator

left : Pattern

right : Pattern

Figure 3. Hierarchy of built-in pattern objects
.
MatchResult objects inherit from the Booleans, the match method
of a pattern may be used as a condition:

if (pattern .match(obj)) then {
...

}

MatchResult objects have two methods, in addition to the methods
of Booleans. The result method returns the object against which
the match was attempted, whether or not it succeeded. In a top-level
pattern the result will be the original target of the match, but in a
nested pattern it may be more specific. The bindings method returns
a list of values that are bound to the variables of the pattern as an
effect of a successful match; the bindings of a FailedMatch are
always empty. The matching protocol is shown in Figure 2.

A hierarchy of pattern objects, seen in Figure 3, represent
patterns at run-time. The simplest pattern is the wildcard pattern,
which corresponds to in the pattern syntax, always matches, and
does not bind anything: the matched value is simply discarded.

def wildcardPattern = object {
method match(o) {

SuccessfulMatch.new(o, [])
}

}

The variable pattern also always matches, but does bind its argument:

class VariablePattern .new(name) {
method match(o) {

SuccessfulMatch.new(o, aTuple.new(o))
}

}

The variable pattern corresponds to a variable name in the pattern
syntax: { a −> a ∗ 2 } constructs the pattern object VariablePattern
.new("a").

Pattern combinators are represented by pattern objects that con-
tain the argument patterns. An AndPattern conjoins two patterns,
ensuring that they both match:

class AndPattern.new(pattern1, pattern2) {
method match(o) {

def match1 = pattern1.match(o)
if (!match1) then { return match1 }
def match2 = pattern2.match(o)
if (!match2) then { return match2 }
def b = match1.bindings ++ match2.bindings
SuccessfulMatch.new(o, b)

}
}
Notice that AndPattern is an instance of the composite structural
pattern [5, p.163], and is itself a pattern. An AndPattern contains
other patterns as components and uses the components recursively
for matching, without knowing anything about what they are. Here,
the component patterns are both applied to the target of the match:
if either fails, the AndPattern terminates by returning the failure.
When both component patterns successfully match, the AndPattern
also returns a SuccessfulMatch, the bindings of which are the

concatenation of the bindings of the component matches. The
AndPattern corresponds to the & combinator in the pattern syntax.

The other obvious combinator on patterns is disjunction, repre-
sented by the OrPattern, which combines two patterns, and suc-
ceeds if either of them succeeds.

class OrPattern.new(pattern1, pattern2) {
method match(o) {

if (pattern1 .match(o)) then {
return SuccessfulMatch.new(o, aTuple.new)

}
if (pattern2 .match(o)) then {

return SuccessfulMatch.new(o, aTuple.new)
}
FailedMatch.new(o)

}
}

The OrPattern has the dual structure to the AndPattern, but
cannot return bindings. This is because the caller cannot know which
of the component patterns succeeded. The OrPattern corresponds
to the | combinator in the pattern syntax.

Grace types are represented by objects with a method match(o)
that returns a SuccessfulMatch if the argument o has a conforming
type, and a FailedMatch otherwise. In both cases, bindings is
empty. Thus, types are also patterns. In the next example we use
a type as a pattern to ensure that o has a value method, and then
request it.

type Valuable = { value −> Number }
if (Valuable .match(o)) then {

total := total + o.value
}

As a consequence, types can be used as patterns in match-case
expressions. A pattern like z:Valuable combines a type-match with
a variable pattern that binds a value. This is represented using the
AndPattern, so a case of the form:

case { z:Valuable −> ... z. value ... }
results in the construction of the pattern

AndPattern.new(VariablePattern.new("z"), Valuable)
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This pattern will succeed when the target of the match has the
methods defined in the Valuable type, and will result in the variable
z being bound to the target in the body of the block.

Like types, the matchable literals of type Number, String, and
Boolean are also patterns. As patterns, these objects match exactly
those objects to which they are equal. Such patterns do more than
duplicate the equality test; they are a useful part of Grace’s concise
pattern syntax, and fit nicely within the composite structure of
patterns.

More complicated patterns are possible: in particular, destruc-
turing matches can be used to match against some of the exposed
(conceptual) state of an object. For example, given some Point ob-
jects, we may want to match those with a subset of coordinates, or
extract and bind the coordinates. We could write a pattern ourselves
to do so, but Grace also provides a built-in destructuring pattern for
any type with an extract method. For example, given the type

type Point = {
x −> Number
y −> Number
extract −> Tuple<Number,Number>

}

and the class

class aCartesianPoint .at(x ’: Number,y’:Number) {
def x = x’
def y = y’
method extract { aTuple.new(x,y) }
}

we can perform a destructuring match using the Point type pattern:

match (pt)
case { p:Point(x, 0) −> "The point ({x}, 0)" }

This translates to a use of the DestructuringMatchPattern.

class DestructuringMatchPattern.new(pat, items) {
method match(o) {
def m = pat.match(o)
if (!m) then { return FailedMatch.new(o) }
var matchbindings := m.bindings
if (matchbindings. size == 0) then {

matchbindings := pat. extract (m. result )
}
var bindings := aTuple.new
for (items) and (matchbindings) do { it , mb −>
def b = it .match(mb)
if (!b) then { return FailedMatch.new(o) }
bindings := bindings ++ b.bindings
}
SuccessfulMatch.new(o, bindings)
}
}

The DestructuringMatchPattern ensures two things: that the pa-
rameter pat successfully matches, and that the sub-patterns items
match the bindings returned in that SuccessfulMatch. The pattern
syntax Point(x, 0) corresponds to the pattern

DestructuringMatchPattern.new(
Point, aTuple.new(VariablePattern .new "x", 0))

In this example, the destructuring pattern would ensure that
the pattern Point matches the target of the match, and that the
bindings returned by requesting extract match the sub-patterns x
and 0. The variable pattern x always matches, so it will succeed
and accrue one binding, the first extracted value, while the constant

pattern matches only when the second extracted value is zero. The
DestructuringMatchPattern then has just one binding, to x, and
will succeed only when the target is a Point with y-coordinate zero.
A programmer can also define their own destructuring patterns with
customized bindings. An example is given in Section 7.

Pattern objects may be nested to represent nested patterns. A
nested pattern like

case { p : Pair(Pair (0, y:Number),
Pair(w, 1)) −> ... }

results in the pattern object

DestructuringMatchPattern.new(Pair,
aTuple.new(DestructuringMatchPattern.new(Pair,

aTuple.new(0, AndPattern.new(
VariablePattern .new "y", Number))),

DestructuringMatchPattern.new(
Pair , aTuple.new(VariablePattern .new "w", 1))))

A destructuring match may match recursively on any of its destruc-
tured values. The values may also be bound to variables or ignored
entirely.

All of the patterns expressible in the pattern syntax described in
Section 3 are represented as objects. Programmers can also construct
pattern objects directly, and mix them with the pattern objects
generated from the pattern syntax.

Now that we understand how patterns are represented as objects,
we can explain how the match()case() method is implemented. The
case parameters are LambdaPatterns, which combine a pattern, rep-
resenting the domain of the function, with a block of executable code,
representing the body. The match() method of a LambdaPattern
first attempts to match the pattern. Only if the match succeeds does
it attempt to execute the block with the accrued bindings. The return
value of the block is used as the result of the SuccessfulMatch.

class LambdaPattern.new(pattern, block) {
method match(obj) {

def result = pattern.match(obj)
if (! result ) then {

return FailedMatch.new(obj)
}
def returnValue = block.applyWithArguments(result

.bindings)
SuccessfulMatch.new(returnValue, aTuple.new)

}
}

A lambda pattern may also be used as a sub-pattern when side
effects are desirable during matching, or when a simple way of
computing the result of a match is required. Lambda patterns are
automatically created from every one-parameter block in the source
code.

The match-case method tries to apply each LambdaPattern in
turn until one succeeds. This behaviour is equivalent to that of the |
combinator — try to match each pattern in turn, returning the first
success. The two-clause match()case()case() method would look
like this:

method match(val) case(b1) case(b2) {
(b1 | b2 | { −> error "Failed match-case" })

.match(val). result
}

5. Types and Patterns
How does pattern-matching mesh with Grace’s optional, gradual
type system? All of the patterns that we have seen so far can be
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statically typed. Most importantly, when a variable is bound in a
match, either at the top level or via destructuring, that variable can
be given a valid static type.

The Pattern and MatchResult types are generic, parameterized
over the types of the result and the bindings:

type Pattern<R,T> = {
match(o:Object) −> MatchResult<R,T>
}
type MatchResult<R,T> = {

result −> R
bindings −> T
}

In untyped code, these parameters are instantiated with type
Dynamic, but patterns may declare types for themselves if desired.

The simplest pattern that assigns a type is a type pattern itself. A
variable associated with a type pattern has the corresponding type,
so the variable n in the pattern n:Number is given type Number.
The pattern object would instantiate the parameter R to Number in
this case.

In the case:

case { p:Pair −> "Pair ({p.left}, {p.right})" }

the new variable p has static type Pair, making the operations p.
left and p. right statically type safe. The pattern object for Pair

would have the type:

type PairPattern = {
match(target:Object) −> MatchResult<Pair,Tuple<>>
}

Destructuring matches are handled similarly to Scala [4], though
without any need for special “case classes.” The values to match
must be returned as a tuple from a method named extract . Thus, to
destructure a Point, the type Point must have an extract method.
As shown previously, this method has signature

extract −> Tuple<Number,Number>

The parameters of the Tuple type determine the types of the new
identifiers introduced by the destructuring.

Note that the signature of the extract method is taken from the
type rather than the target of the match. Thus, any object conforming
to type Point will work properly with the destructuring match
expression { : Point(x : Number, y : Number)−> x ∗ y }.

The Point type pattern object will have type:

type PointPattern = {
match(target:Object) −> MatchResult<Point,

Tuple<Number,Number>>
}

The correct type can then be statically associated with both the
matched object and the destructured values.

When combinators are used, the types of variables become more
complex. The & combinator gives the variable the types from both
patterns. In the following example, o has a type conforming to both
X and Y, so both x and y methods may be requested:

type X = { x } // type with x method
type Y = { y } // type with y method
match (val)

case { o : X & Y −> "Point ({o.x}, {o.y})" }

Grace’s type system uses the notation X & Y for the type that
conforms to both X and Y, so this is all consistent, and we can say
that o has type X & Y.

By contrast, | matches when either pattern does. In this case,
only methods that are shared by all objects matching either one of

the patterns may be requested in statically type-safe code. This type
corresponds to Grace’s untagged variant types, also written with | .
Any object that conforms to X and any object that conforms to Y
will conform to the untagged variant type X | Y — and these are
exactly the objects that the pattern X | Y will match.

Untagged variant types also serve another role. A match-case
expression can be statically determined to be exhaustive when the
target of the match has a variant type, and all branches of the
variant have associated cases. A warning can be given both for
non-exhaustive matches, which may have unintended behaviour,
and for unreachable branches of the match:

var x : Number | String | Boolean
...

match (x)
// Doesn’t execute anything if x is a String
case { n : Number −> ... }
case { b : Boolean −> ... }

...
match (x)

case { n : Number −> ... }
case { s : String −> ... }
case { b : Boolean −> ... }
case { −> // Unreachable! }

Particularly in student code, it can be useful to report errors
for missed or impossible cases. The ability to do so is a natural
consequence of variant types and the structure of pattern objects.
More stringent restrictions would be possible, and the language is
designed so that an instructor who wanted stricter static typing could
construct a dialect with additional checking.

6. Case study
We implemented an existing system, a pretty-printer for Grace code,
using match-case instead of methods on AST nodes. The pretty-
printer is a part of the existing Minigrace compiler, and was extended
to include the new implementation alongside the existing version.

Both implementations output code that is semantically identical
to the input, but with possible changes to layout or low-level
structure. The implementations are almost identical in length and
substantive content. One uses a “toGrace” method defined inside
each AST node, and the other a single method defined outside,
containing a match expression with a case for each kind of node. The
method and case bodies are the same up to the necessary changes.

Both implementations perform correctly for all of the cases in
the Minigrace test suite, producing output semantically identical
to their input, and producing identical output on all available files.
Each comes to approximately 400 lines of code.

We measured the time taken to pretty-print files of varying sizes
and complexities, all from the Minigrace distribution; the results
are reported in Table 1. All measurements were made on an Acer
Aspire 5745G machine with an Intel Core i7-720QM 1.60GHz
processor and 4GB of memory running Linux 3.4.4 with glibc
2.16.0, in 64-bit mode. Tests were run using the “performance”
CPU frequency governor, pegging the clock at 1.60GHz, and with
CPU affinity fixed to a single processor. A modified version of
Minigrace 0.0.7.1072/3ae003b with match-case pretty printing was
used1, compiled with GCC 4.7.1. Times are CPU time given by
clock(3), from immediately before pretty-printing to immediately
after, using the arithmetic mean of five runs. Heap memory is the

1 Mainline Minigrace is available from https://github.com/mwh/
minigrace and should build on any POSIX-compatible system. A tar-
ball of the modified version used for these tests is available from http:
//ecs.vuw.ac.nz/∼mwh/dls2012-snapshot.tar.bz2.
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total allocated by the entire compiler through parsing and pretty-
printing, as reported by the runtime’s internal memory tracker by
setting the GRACE STATS environment variable. Objects is the total
number of objects allocated by the entire compiler through parsing
and pretty-printing.

The match-case version is significantly slower than the method-
based version, in part because of inefficiencies in the current
prototype compiler. A large amount of the time is in allocating
objects to represent the blocks, and garbage-collecting those objects
subsequently. An object is allocated for every case block — 26
blocks here — each time the match-case clause is executed. Match-
case is also ordering-dependent: because every pattern is tested
until one matches, the further down the list the successful pattern
is, the more methods must be run and the longer it will take. If
the most common cases are moved to the top of the match-case
statement some speedup is obtained, but which cases these are
varies according to the input. With careful profiling we were able
to improve the times an average of 17.8% over the version with
the cases in more-or-less random order. By removing cases that
would never be reached in practice (representing purely-internal or
deprecated nodes), speedups of nearly 30% were reached. For code
that will be used in heavy loops or recursively, such profiling will be
worthwhile, but many uses of match-case are in less performance-
critical pathways and will not notice a significant slowdown.

While the match-case version is currently significantly slower,
and likely to remain slower even with optimization, it is much
more contained. The original addition of the pretty-printer was quite
intrusive, requiring new methods to be added to 26 different classes,
scattered throughout the code. Using match-case all of the pretty-
printing behaviour is centralized in one place. The Visitor pattern [5]
is another approach with this property, but which is also somewhat
less clear. Match-case can be slightly more concise than either of
the alternative approachs, and has substantially greater cohesion.

7. Discussion and Related Work
While object orientation and pattern matching are often contrasted,
even in purely object oriented code there are times when we need
to know more precisely the type of an object, as when operating
on elements of a heterogeneous collection. This is one reason why
Java has an instanceof operator, and even Smalltalk programmers
must sometimes ask an object if it accepts a particular message.
Unfortunately such a construct is awkward to use, often requiring
type casts and redundant checks. Odersky also argues that pattern-
matching is simpler and clearer in many circumstances that would
otherwise require use of the Visitor pattern with its extra overhead.
He also argues that pattern matching arises naturally in situations
that require handling different kinds of exceptions.

For these reasons, and also because we would like to enable
instructors and students to compare programs that achieve the same
goals using pattern matching and polymorphic dispatch, we include
pattern matching in Grace.

Grace’s pattern matching was inspired by, and partly based upon,
the designs for pattern matching in Scala [4] and in Newspeak [6]:
these references also provide good general coverage of the topic
of object-oriented pattern-matching. The overall “look” of our
match()case() statement is derived from Scala, along with much
of Grace’s surface syntax. However, in Grace each case is an
independent block, whereas one of Scala’s blocks encompasses
multiple partial functions. Grace’s extract method is based on (and
named after) Scala’s extractors, but instead of using an implicit
unapply method we simply request a method called extract . Where
Scala supports multiple different extractions via different unapplys,
Grace programmers can build explicit patterns to extract whatever
features they require, assuming that the object’s interface provides
the methods needed to obtain the data. A PolarPointPattern , for

Figure 4. Matching sequence in Newspeak

example, can be defined that matches Points but extracts radius and
angle:

def PolarPointPattern = object {
method match(o : Object) −> MatchResult {

match(o)
case { p:Point(x,y) −>

SuccessfulMatch.new(p,
aTuple.new(((x∗x)+(y∗y)).sqrt , (y/x). arctan))

}
case { −> FailedMatch.new(o) }

}
}

The notion of first-class patterns and pattern combinators was
inspired by Newspeak’s design for pattern-matching. Although
powerful, and not requiring primitive “type” objects to match, the
Newspeak design seems rather more complex than Grace, being
based on a quadruple-dispatch between objects, cases, and patterns.
Newspeak arguably does the “right” thing (or at least the pure object-
oriented thing) in that the target of the match is always in control
of the protocol: Newspeak’s initial matching message is sent to
the subject of the match, passing the pattern as an argument; this
is the reverse of Grace’s design, in which the subject is passed as
argument to the match method. In Newspeak, the default response
to that initial message is to double-dispatch back, i.e., to send a
message to the pattern asking that it match itself against the subject.
In theory, this gives the subject complete control of the matching
process. However, when we looked at the use-cases for matching,
we noted this default method was never overridden: every use-case
used the double dispatch. Grace’s design benefits from a single
match interface implemented by many objects via the composite
pattern, and a simple afferent design where match requests are sent to
patterns, and extract requests are sent to the objects being matched.

At the bottom of the Newspeak pattern matching protocol, a
message characterizing the object is again double-dispatched back
to the pattern: a point might send the two-parameter message “x:y:”,
passing its rectangular coordinates as the arguments to the message,
whereas a string may simply send itself as the sole argument to a
one-parameter message “string:”. Patterns implement the message
that will be sent by the object that they match — other messages
raise a “does not understand” exception, which is interpreted as a
failed match. This design is also similar to Blume et al.’s proposal
for matching based on first class cases, rather than first class
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Source file LOC Time (s) Heap (MB) Objects
Method Match-1 Match-2 Method Match-1 Match-2 Method Match-1 Match-2

lexer.grace 667 0.05 0.88 0.69 42 156 145 290580 1015259 865830
compiler.grace 92 0.01 0.12 0.10 4 22 20 34802 144289 125207
parser.grace 1685 0.12 1.93 1.62 82 325 306 576147 2104009 1842650
genc.grace 1619 0.22 3.17 2.64 99 485 448 726524 3177327 2676071

Table 1. Statistics of method-based pretty-printer and match-case pretty-printer. Match-1 has the match cases in arbitrary order. Match-2
reorders them to place the common cases first.

patterns [3]. Both our design and Newspeak’s design need syntactic
extensions to support patterns and variable binding: our design
also needs the primitive “type pattern” objects to be supplied by
the runtime system. (In fact, type patterns could alternatively have
been implemented via reflection, but we did not have reflection in
Grace when we implemented pattern matching.) In spite of this
disadvantage, we consider our pattern matching protocol, shown
in Figure 2, significantly more straightforward than Newspeak’s
quadruple dispatch, shown in Figure 4.

The idea of reifying patterns (rather than cases) as first class
partial functions, and then building larger scale structures (e.g., case
statements, clausal function definitions) out of pattern combinators
goes back at least as far as Tullsen’s first-class patterns proposal for
Haskell [26]. Tullssen represents patterns as reified partial functions,
and pattern combinators are thus function combinators. Reinke’s
“lambda-match” proposal extends this approach to combine indi-
vidual cases into whole match statements with combinators [18].
Indeed, Barry Jay has developed an entire calculus of programming
based on patterns rather than functions [11]. Our design is similar to
these proposals, but reifies partial functions and patterns as objects
in an object-oriented language, rather than functions in a functional
language.

The idea of supporting programmer defined matching and de-
structing of abstract types in functional languages goes back at least
to Wadler’s “Views” proposal [29]. Peyton Jones proposed View
Patterns as one way to support views in Haskell: a view pattern
is a function that matches an abstract value and returns a concrete
data type that can be further matched-against [17]. While Haskell
(and most other functional languages) provide excellent syntactic
and semantic support for patterns — this support is generally built
in to the language — Haskell’s patterns are neither first class nor
extensible.

The Racket Scheme dialect also includes an extensible pattern
matching facility [25]. Uniquely amongst all the designs presented
here, Racket’s powerful macros enable the language to be extended
without any changes to its core implementation. Certainly the Racket
implementation is rather more optimized than our design. In contrast,
while our design requires semantic support for partial functions and
syntactic support for destructuring, the remainder of our design is
built using straightforward, non-reflexive, object-oriented design
techniques.

The F# language supports matching against abstract structures
via active patterns [23]. An active pattern is a function with a
structured name where that name indicates one or more alternative
cases. Although they can support partial matching, active patterns
support exhaustive matching particularly well, because a single
succinct pattern function matches and destructures every alternative,
returning a result indicating which case of the pattern is matched. In
contrast, our design, like Scala and Newspeak, requires individual
matching and extract functions for each case. As in our approach,
active patterns support first class patterns (as first-class functions)
and support a range of pattern combinators.

Pattern matching has also been supported natively in a variety of
recent object-oriented language proposals. Thorn [2], for example,

makes heavy use of pattern matching, with extensive syntax support-
ing matches as part of many of the language constructs, including
the control structures and clausal function definitions. Thorn offers a
wide array of built in data types, each with corresponding matching
destructors, and a set of algebraic pattern combinators. A Thorn
class’s formal parameters are used to initialize instance objects, and
they are also extracted if an object is matched against. Fortress [21],
another large and flexible language, has a relatively modest range of
pattern matching and destructuring object and tuples. Like Thorn
and Scala, but unlike Grace, patterns in Fortress may be used freely
in definitions, rather that just in a match statement (in Fortress, a
typecase statement).

Of course, pattern matching has been suggested as an extension
to the ubiquitous Java in a range of different ways. Machete
(a forerunner to Thorn) is the most conventional: introducing a
match statement, a rich library of patterns, and a separate type
of “deconstructor” declaration to objects that extract values when
objects are matched [9]. Again presaging Thorn, Machete includes
special patterns (and syntax) for matching with regular expressions,
arrays, bitpatterns, and XML. MatchO provides a flexible pattern
library but does not need (or provide) any specialized syntax —
although syntax can be supplied by invoking a generated parser
inline [28]. In MatchO, patterns are necessarily first-class, given that
they are implemented as a normal Java library, but MatchO does not
generalize patterns to pattern combinators. OOMatch [19] is a more
radical language design, similar to Fortress in that it fully integrates
pattern matching into Java, providing clausal function definitions
and multimethods.

As well as being in an object-oriented language, our design
differs from most of these designs in that Grace is gradually and
optionally typed, while all these languages are strongly statically
typed, typically via some mix of inference and explicit declarations.
(The outliers here are Racket, which is also optionally typed, and
Newspeak, which is purely dynamic). These languages’ pattern-
matching facilities are generally tied tightly into their type systems.
This is as true for Racket as it is for Scala or Fortress: objects are
matched and destructured based on their defining class. This is true
even in OCaml, which also has a structurally-typed object system,
but which supports pattern matching only on algebraic data types,
not on objects [13]. In contrast, Grace matches only on the publicly
visible interface of an object — its “duck type” if you will — and
this is completely decoupled from that object’s implementation.

We have considered a number of further extensions to our pattern-
matching design. One relatively straightforward extension is to sup-
port matching against regular expressions. The most straightforward
implementation is to incorporate an external regexp library such as
Perl-compatible regular expressions (PCRE) [8]. Here we provide
a simple syntax for regular expressions, a prefix / method (since
Grace supports prefix operators, but not postfix or matchfix), that
converts the string into a regexp object. To fit into the pattern match-
ing framework, all the regexp object needs to do is to support the
basic protocol captured by the Pattern type.

A more ambitious extension is to incorporate combinator pars-
ing into the matching framework. From one perspective, parsers,
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especially combinator parsers [12] are rather similar to matching:
parsers either complete successfully and return a representation of
the parsed input, or fail: that is, parsers are partial functions. The
key difference is that while patterns are matched against whole ob-
jects, combinator parsers typically parse an input sequence, and a
successful parse may consume some, all, or none of the remaining
input. For this extension, we extend MatchResult to maintain the
representation of the unparsed input: the sequence parser combinator
˜ starts the right-hand side parsing when the left-hand side parser
finishes. What is interesting about this embedding is that alternation
and parallel parser combinators correspond exactly to the “and” and
“or” pattern combinators. The resulting language is similar in many
ways to OMeta [30] — an object-oriented language for parsing —
because the parsers are integrated into the matching facility in the
language, rather than simply being a stand-alone library. Lua’s text
pattern matching library is built on Parsing Expression Grammars
in a similar style, without any syntactic support, but Lua matches
only against text, not arbitrary objects [10].

8. Conclusion
Pattern matching, of various kinds, once the domain of advanced
functional languages, or regular-expression-based scripting lan-
guages, is now an expected feature of mainstream programming:
indeed, the current draft of the forthcoming ACM Computer Sci-
ence curriculum [24] requires first year students to understand both
object-oriented programming with dynamic dispatch and functional
programming with pattern matching as two alternative styles of
program organisation.

As a language aimed particularly at teaching computer science,
we have found it useful for Grace to support pattern matching. This
paper describes how we incorporated pattern matching into Grace,
while maintaining (indeed leveraging) Grace’s nature as a dynamic,
pure, object-oriented language. While the detailed design is no doubt
specific to Grace, we consider that the general principles — reifying
partial functions, modeling both patterns and cases as first-class
objects, and building composite structures via pattern combinators
and the Composite pattern — can be used to incorporate pattern-
matching into most modern object-oriented languages.
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