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Abstract 

A phenomenological theory is developed for multicomponent diffusion, includ
ing thermal diffusion, in gas mixtures in which the components may have 
different temperatures. The theory is based on the hydrodynamic approach of 
Maxwell and Stefan, as extended and elaborated by Furry [1] and Williams [2]. 
The present development further extends these earlier treatments to multiple 
temperatures and multicomponent thermal diffusion. The resulting diffusion 
fluxes obey generalized Stefan-Maxwell relations which include the effects of 
ordinary, forced, pressure, and thermal diffusion. When thermal diffusion is 
neglected, these relations have the same form as the usual single-temperature 
ones, except that mole fractions are replaced by pressure fractions (i.e., ratios of 
partial pressures to total pressure). The binary ap.d thermal diffusion coefficients 
are given in terms of collision integrals. Single-temperature systems and binary 
systems are treated as special cases of the general theory. A self-consistent 
effective binary diffusion approximation for multitemperature systems is pre
sented. 

1. Introduction and summary 

The kinetic theory of gases provides an essentially exact description of multi
component diffusion in gas mixtures, based on the Chapman-Enskog method for 
solving the Boltzmann equation [3-5]. This theory is notorious for its extreme 
complexity; its intricacies are esoteric if not arcane, and it is relatively 
inaccessible to nonspecialists. The results of the theory, however, are of much 
wider interest and applicability. It is therefore desirable to develop an elementary 
approach to multicomponent diffusion which is simpler, easier to work with, and 
yields essentially correct results with much less effort. One might naively hope 
that mean free path theories would suffice for this purpose, as they capture the 

1 Work performed under the auspices of the U.S. Department of Energy under DOE Field Office, 
Idaho Contract DE-AC07-761D01570, supported in part by the Division of Engineering and 
Geosciences, Office of Basic Energy Sciences, DOE-OER. 
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essential physics of viscosity and thermal conduction quite' nicely. It has long 
been recognized, however, that such theories do not provide a satisfactory 
description of diffusion, especially thermal diffusion [1]. 

Fortunately, there is another approach which is especially well suited to 
diffusion, namely the hydrodynamical approach of Maxwell and Stefan [ 4, 6]. 
This approach has been further extended and elaborated by Furry [1], and 
Williams [2, 7]. Furry [1], restricted attention to binary mixtures, for which he 
showed that this approach yields precisely the same binary diffusion coefficients 
as first-order Chapman-Enskog (FOCE) theory! Moreover, he used the same 
approach in conjunction with mean-free-path ideas to obtain an approximate 
expression for the thermal diffusion coefficient in a binary mixture. He did not, 
however, consider forced and pressure diffusion. Williams [2, 7], extended the 
hydrodynamic theory to arbitrary multicomponent gases, including the effects of 
forced and pressure diffusion, but he neglected thermal diffusion. He also used · 
a simplified expression for the collisional rate of momentum exchange between 
components. The resulting binary diffusion coefficients consequently differ from 
those of FOCE theory by numerical factors of order unity. 

The purpose of the present paper is to further extend the hydrodynamic theory 
by combining the following ingredients within a single unified framework: 
(a) accurate expressions for collisional rates of momentum exchange between 
components, equivalent to those used by Furry, (b) a full multicomponent 
formulation similar to that of Williams, and (c) a more detailed and complete 
treatment of thermal diffusion than that given by Furry. We thereby remove the 
main restrictions and limitations in the·treatments of Furry and Williams to 
obtain a complete description of multicomponent diffusion in arbitrary gas 
mixtures, including thermal diffusion as well as forced and pressure diffusion. 

To obtain still further generality, we allow the individual components in the 
mixture to have different temperatures. This generalization presents serious 
complications in the full kinetic theory [5, 8, 9], but is straightforward in the 
hydrodynamic theory and does not significantly complicate the development. Of 
course, the resulting multitemperature description is useful only in situations 
where energy transfer. between components is much slower than momentum 
transfer. This occurs when there are large disparities in particle masses between 
some or all of the components in the mixture. The classic· example is a plasma, 
where the free electrons are much lighter than the other components. Energy 
exchange between free electrons and heavy particles is consequently inefficient, 
so that significant differences between electron and heavy-particle temperatures 
may persist for relatively long times [8-11]. Similar but less dramatic tempera
ture differences may also occur in mixtures of gases with very different molecular 
weights (e. g., H 2 and UF 6 ) if some mechanism exists for preferentially heating or 
cooling the different components. There may also be situations in which the 
multi temperature formulation provides a useful description of neutron diffusion. 

The development proceeds along the following outline. Momentum equations 
for the different components of the mixture are presented in Section 2. The 

~- Non-Equilib. Thermodyn., Vol.18, 1993, No.2 . 
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momentum exchange terms appearing in these equations are separated into 
frictional and thermophoretic parts containing appropriate phenomenological 
coefficients. These equations are then evaluated in the limit of large friction [12], 
in which they reduce to generalized Stefan-Maxwell relations for the diffusion 
velocities. The diffusion coefficients in these relations are simply related to the 
phenomenological coefficients. When thermal diffusion is neglected, the multi
temperature Stefan-Maxwell relations have the same form as the usual single
temperature ones, except that mole fractions are replaced by pressure fractions 
(i.e., ratios of partial pressures to total pressure). In Section 3, elementary kinetic 
theory arguments based on collision frequencies and the Maxwell-Boltzmann 
velocity distribution are used to evaluate the phenomenological coefficients. The 
multi temperature binary and thermal diffusion coefficients are thereby expressed 
in terms of collision integrals. These integrals turn out to be the same as their 
counterparts in single-temperature FOCE theory, evaluated at an effective 
temperature which is a weighted average of the relevant two component 
temperatures. The thermal diffusion coefficients are susceptible to a simple 
approximation in which they are very simply related to the binary diffusion 
coefficients. 

The general results are specialized to single-temperature systems in Section 4, 
and to binary mixtures in Section 5. The former specialization leads to an 
approximate expression for the conventional thermal diffusion coefficients in 
a multicomponent system. This expression is the multicomponent generalization 
of Furry's result for binary mixtures [1], to which it becomes essentially 
equivalent in that special case. A multitemperature generalization of the self
consistent effective binary diffusion approximation [13], is presented in Section 6. 

2. Momentum equations, exchange terms, and the diffusional limit 

We consider an arbitrary multicomponent gas mixture in which the different 
components or species may possess different mean velocities and temperatures. 
The continuity equation for species i is simply 

aei 17 C - ) 0 - +"'. n.u. = at ~~ ' (1) 

where ei and iii are respectively the partial mass density and mean velocity of 
species i. The momentum equation for species i is 

n. (a iii+ ii. · Vu.) = - Vp. + ~.F + "F:. 
~1 at 1 1 1 ~1 1 ~ 1J 

J 

(2) 

where Pi is the partial pressure of species i, ~is the body force per unit mass acting 
on species i, ~i = - Fji is the mean force per unit volume of species} on species i, 
thejsummation extends over theN components in the mixture, and viscosity has 
been neglected. Attention is restricted to ideal gases, for which 
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• r 
(3) 

where 7;, Mi, and ni are respectively the temperature, molecular weight, and 
number density of species i, R 9 is the universal gas constant, and kB is 
Boltzmann's constant. The mass-weighted velocity of the mixture is given by 

- 1 L: -U =- (}·U· 
Q i l 1 

(4) 

where e = Eiei is the total mass density. 

We shall presume that ~i is a linear combination of the available vectors 
pertaining to species i andj, namely iii, iii, 17~, and 171j. It must also be invariant 
to Galilean transfonnations, and it is antisymmetric in (i,j) as already noted. The 
most general such expression is 

(5) 

where a.ii and Pii are phenomenological coefficients characteri~ing frictional and 
thermophoretic forces respectively, and a.ii = a.ji· This form will be confirmed by 
simple kinetic theory considerations in Section 3. 

We now consider the limit of large friction, in which we anticipate that diffusional 
behavior will result [12]. This limit may be formally accomplished by replacing 
a.ii by a.ii I e and taking the limit as e ...-+ 0. In this limit u i ~ u i = 0 (e) and 
ui = u + 0 (e) for all i, so that equation (2) reduces to 

Du 
n.- = - Vp. + n.F +"F .. 
t::'l Dt l t::'1 l ~ , 1 

J 

(6) 

where Dii/Dt = 8uj8t + ii ·Vii. The total momentum equation for the ~ixture 
is obtained by summing equation (6) over all species, with the result 

(7) 

where p = 'E iPi is the total pressure of the mixture. Combining equations ( 5)-(7) 
in such a way as to eliminate DujDt, we obtain 

z.z. 1 
~ ~-~ (ui -,ui) = Vzi + (zi- Yi) Vlnp- P- (eiE;- Yi ~ eilj) 
J lJ J 

- ~ ~ (p .. 17lnT- p .. vlnl:) p 7 lJ J Jl 1 
(8) 

where Yi = eJe, zi = pJp, and the binary diffusion coefficients Dii are given by 
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(9) 

For the present we do not define thermal diffusion coefficients analogous to the 
conventional ones [3], as this would introduce unnecessary algebraic complica
tions. We simply regard and refer to the pii as thermal diffusion coefficients, 
albeit unconventional ones. 

Equations (8) are generalized Stefan-Maxwell relations for the diffusion velo
cities. Only N -1 of them are linearly independent, as their sum over i yields 
0 = 0. They must therefore be combined with equation ( 4) to determine a unique 
solution for the iii in terms of the mass-weighted velocity ii. The diffusional mass 
fluxes relative to ii are then given by 

(10) 

in terms of which equation (1) becomes 

(11) 

We note that when thermal diffusion is neglected (or V~ = 0 for all i), equations 
(8) have the same form as the usual single-temperature Stefan-Maxwell relations 
[3], except that the mole fraction xi is replaced by the pressure fraction zi. The 
latter of course reduces to the former when all the component temperatures are 
equal. 

3. Evaluation of the diffusion coefficients 

We now proceed to evaluate the coefficients rxii and Pii using elementary kinetic 
theory arguments. For this purpose it is convenient to presume that ii == 0, so that 
the iii may be considered small in an absolute sense. This entails no loss of 
generality, as it merely implies the use of a reference frame moving with the local 
mass-averaged velocity of the mixture. 

From a microscopic point of view, Fii represents momentum transfer between 
components due to molecular collisions. It may therefore be written as 

(12) 

where {) Pii is the mean momentum transfer per collision from a molecule of type 
jwith velocity ui to a molecule of type iwith velocity ui, and dviiis the number of 
collisions per unit volume per unit time between molecules of type i with 
velocities between ui and ui + dui and molecules oftypejwith velocities between 
ui and ui + dui. The mean momentum transfer per collision is given by 
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{>P .. = '"· .ju . . ) Q~~>(lu·- u.l) (u.- u.)· lJ VA-rJ lJ lJ J r J l 

. , 
(13) 

where flii = mim)(mi + m) is the reduced mass, mk is the mass of a single 
molecule of type k, u ii is the total cross-section for ij collisions, and Q~J> ( v) is the 
cross-section for relative speed v, which is an integral involving the angle of 
deflection over all impact parameters [3] and is symmetric in (i,j). The form of 
Q~J> depends on the intermolecular force law. For hard spheres, Q~J> (v) = uii = 
n (Ri + R)2 , where Rk is the hard sphere radius of a molecule of type k. 

The differential collision frequency is given by 

(14) 

where dnk is the number density for molecules of type k with velocities between uk 
and uk + duk. Clearly 

(15) 

where nk ( = f!k/mk) and A(uk) are respectively the total nu~ber density and 
normalized velocity distribution for molecules of type k. The normalization is 
such that J dnk = nk, so that J dukA(uk) = 1. Combining equations (12)-(15), we 
obtain 

(16) 

where ui and ui have been replaced by dummy integration variables u and u', 
v = u' - u, and v = I v 1. 

In order to proceed further it is necessary to specify the form of the velocity 
distributions A(s), where sis a dummy velocity variable. For this purpose it is 
convenient to define a standard normalized Maxwellian distribution of the form 

(17) 

which is normalized so that 

00 

J dsfo(s, y) = 4n J dss 2fo(s, y) = 1 (18) 
0 

where s = Is 1. We now make the physically reasonable assumption that h (s) in 
equation (16) is a normalized Maxwellian with mean velocity ilk in which the 
temperature 7i is evaluated at the point oflast collision. As will be seen, the latter 
condition is needed to obtain nonzero values for the pii and hence nonzero 
thermal diffusion. Thus we write · 

(19) 
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where r0 is the point in space at which Fii is to be evaluated, and 'tk is the mean 
time between collisions for a molecule of type k, an expression for which is 
derived in the Appendix. Here 

(20) 

where Tk (r) is the temperature of component kat the point r, and skis a parameter 
conjugate to iik. One might at first think that sk should in fact be equal to iik, but 
this is not correct because equation (19) implies that species k has a nonzero drift 
velocity even when sk = 0. (Indeed, this is the essence of thermal diffusion.) We 
must therefore regard sk as being implicitly determined by the condition that the 
mean velocity computed using_h(s) must be iik; i.e., 

(21) 

We note that sk--+- iik as 'tk--+- 0, so that sk = iik + O('tk) for small 'tk. 

Now diffusion velocities are much less than typical molecular velocities [1], and 
distribution functions change only slightly over distances of the order of a mean 
free path; i.e., of order 'tks. It follows that iik, -rk and sk may all be considered 
small, so that equation (19) may be linearized by expanding to first order in -rk 
and sk. This gives 

(22) 

where 

(23) 

Since we have linearized about the point r0 , the quantities yk, Vyk, ~' -rk, iik, and 
quantities derived from them are now all evaluated at r0 , and this will henceforth 
be understood. Combining equations (21)-(23), we obtain 

(24) 

so that equation (23) may be rewritte~ as 

(25) 

The corresponding linearization of J;(u)fj(u') is given by 

(26) 
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wherefok(s) = fo(s, yk), u =lui and u' = lu'l. Combining equations (16) and (26), 
we obtain 

(27) 

where 

(28) 

Note that the contribution of the zeroth-order term in equation (26) has vanished 
by symmetry, corresponding to the fact that there is no net momentum transfer 
when the diffusion velocities and temperature gradients vanish. 

Combining equations (25) and (28), we obtain 

(29) 

where 

Aii = 2yi J dudu'foi(u)foi(u') vQ~J>(v) vu (30) 

B,1 = r,Jdudu'f.,(u)f.1(u')vQl]l(v) (u 2 - ,}y.) vu. (31) 

These tensor coefficients must be isotropic, since they contain no preferred 
directions. They may therefore be replaced by equivalent scalars, so that 
equation (29) becomes. 

H .. = a .. u. +b .. V,,_ 
1] 1] 1 1) 11 (32) 

where 

(33) 

b,1 = :; J dudu'f.,(u)J.1(u') vQ!}l(v) ( u2 - 2
5y.) u · v. (34) 

We may express bii in terms of aii by using the fact that (ofoyi) exp( -yiu2 ) 

= -u2 exp( -yiu2 ). We thereby obtain 

b .. = - 'ti oaij 
lJ 2 :::1 • 'Yi uyi 

(35) 

The integral in equation (33) may be simplified by transforming to new integra
tion variables (v, w), where w = (yiu + yiu')/(yi + y). The inverse transforma
tion is given by u = w- 'Yiivfyi, u' = w + 'Yiivfyi, where 'Yii = 'Yi'Yil(Yi + y). 
It follows that · 

(36) 
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After a little algebra, one further finds that 

(37) 

where w = I w 1. Sincefo is normalized, integrating equation (37) over either (u, u') 
or (v, w) gives 1 = 1. It follows that dudu' = dvdw, so that equations (33), (36), 
and (37) may be combined to yield 

- 8 n coJ s (1) 
aii - - 3 Yii dvfo (v, Yi) v Qii (v) 

0 

(38) 

where use has been made of equation (18) and the fact that J dwfo(w, y) w = 0. 

Notice that aii is symmetric in (i,j), whereas bii is not. 

The integral in equation (38) can be expressed in terms of a standard first-order 
collision integral from kinetic theory. The relevant family of integrals is defined 
by [3] 

(1) _ n J.lij 211 + 3 (1) ( )
n co 

Qii (n, T) - 2 2 kB T ! dvfo(v, J.lii/2kBT) v Qii (v) (39) 

where T is a dummy temperature variable. This reduces to 
(n + 1)! uii(kBT/8 1tJ.li) 112 for hard spheres [3]. The binary diffusion coefficients 
in single-temperature FOCE theory are simply related to Q~j>(1, T). We see from 
equation (38) that the same integral occurs in the present context with J.liif2kB T 
replaced by yii. This correspondence makes it useful to define an effective 
temperature T;_i for the pair (i,j) at the point ro by J.liif2kB T;_i _.:_ Yii' which implies 
that 

When T;_ = 7J = T, T;_i reduces to T and yii reduces to Jlii/2kBT. 

Equation (38) now becomes 

- 16 (1) a .. - --Q .. (1 T.) 
l} 3 lJ ' l} 

and this combines with equation (35) to yield 

b .. = 8-ri a!l~j>(1, T;.) = 8-ri a!l~j>(1, T;_) a7ij ayij 
. l} 3 '"· a"'· 3 "'· · a r. a"'·. a"'· · ll ll ll lJ ll] ll 

(40) 

(41) 

(42) 

We readily find that oyiijayi = (Yiifya 2 and a7fijayii = -7fi/Yii' and it follows 
from equation (39) that 

a!l~j>(1 , T) = ___!__ .[2!1~~>(2 T)- 5!1~~>(1 T)] 
aT 2 T lJ ' lJ ' • 

(43) 
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Equation ( 42) therefore becomes 'r 

(44) 

We can now relate the phenomenological coefficients a.ii and Pu to aii and bii' and 
thereby to the collision integrals. Combining equations (20), (27), and (32) and
comparing the result to equation (5), we obtain 

(45) 

(46) 

where use has been made of equations (41) and (44). Notice that Pii = 0 if 
-r:i = 0, which shows that thermal diffusion would in~eed vanishif/k(s) had been 
evaluated at the point r0 rather than the point of last collision. Combining 
equations (3), (9), and (45), we obtain 

D - 3ki~1J 
.• - -- (1) • 
lJ 16pJlijQij {1, ~) 

(47) 

Note that Dii is independent of composition for given values of~' 1j, and p. In 
the special case ofhard spheres, equation (47) reduces to Dii = (3ki ~1j/8paii) · 
(rcf2JliikB~i)1'2 • In the special case of equal component temperatures, equation 
(47) reduces to precisely the expression for Dii obtained from FO~E theory [3]. 
This agreement is not unexpected, as it was previously obtained by Furry [1] in 
the case of binary mixtures. It is nevertheless remarkable that the elementary 
theory predicts Dii to such high accuracy. The theory does not, however, provide 
thermal diffusion coefficients Pii of comparable accuracy, for the simple reason 
that bii involves an inherently approximate collision time whereas aii does not. 

Since the Pii are inherently approximate in any case, it may be of interest to 
consider a further approximation in which they reduce to a considerably simpler 
form. This approximation consists in replacing u 2 in equation-(34) by its mean 
value J dufoi(u) u 2 = 3f2Yi· When this is done, it follows from equations (33) and 
(34) that bii = -(-r.d2yr) aii' which combines with equations (45)-(47) to yield 

(48) 

In this approximation, therefore, Pii is related to Dii ~n a direct and very simple 
way. 

J. Non-Equilib. Thennodyn., Vol.18, 1993, No.2 



Brought to you by | Portland State University (Portland State University)
Authenticated | 172.16.1.226

Download Date | 6/1/12 12:43 AM

Multicomponent diffusion in multitemperature gases 131 

4. Single-temperature systems 

Here we specialize the general results of the preceding sections to the case in 
which the individual component temperatures are all equal; i.e., ~ = T for all i. 
This is of course the most common situation of interest. In this case the pressure 
fractions zi reduce to the mole fractions xi= ndn (where n = Eini is the total 
number density), and as previously noted the D;i reduce to the usual single
temperature binary diffusivities. The Stefan-Maxwell relations of equation (8) 
then become 

Equation (49) is identical to the standard Stefan-Maxwell equations [3], if we 
make the identification 

(50) 

where the D[ are the conventional multicomponent thermal diffusion coeffi
cients for a single-temperature system [3], which are constrained by 

ID[ = 0. (51) 
k 

Equations (50) and (51) constitute a simultaneous linear system of equations 
which determine the D[ in terms of the Pij· 

The solution of this system is greatly simplified when the Pii are approximated by 
equation (48). Equation (50) then takes the form 

(52) 

which may be solved by inspection to give Dilfli = kBT-rJmi + C, where Cis 
a constant independent of i. This con~tant may be determined from equation 
(51), and we thereby obtain 

DT = kBT(ni-ri- Yi 2:ntc) 
j 

(53) 

which provides a remarkably simple approximation for the thermal diffusion 
coefficients in a multicomponent gas mixture. 
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5. Binary mixtures ' r 

In a binary mixture of components 1 and 2, equations (4), (8), and (10) combine 
to yield 

(54) 

In the special case of equal temperatures (I;_ == T2 = T), zi reduces to xi= ndn 
and equation (54) further reduces to 

(55) 

where d1 = Vx 1 + (x 1 - y 1 ) Vlnp + (fh(h/(!p)(F2 -}\).Moreover, in a binary 
mixture equations (50) and (51) combine to yield 

(56) 

so that equation (55) becomes 

(57) 
where the thermal diffusion ratio kr is defined by [3], 

(58) 

Combining equations.(46), (56), and (58), we obtain 

(59). 

It is of interest to compare this result with that of Furry [1], which he obtained by 
a somewhat different approach. Furry adopts a different sign convention, 
according to which his kr is the negative of ours. With this in mind, we find that 
our equation (59) agrees with Furry's equation (97) if we identify c).i with 
2kB Tr:dmi, where ci and A.i are respectively the mean speed and mean free path 
for molecules of type i in Furry's treatment. This identification is indeed sensible, 
as can be seen by estimating A.i = cir:i so that ci.A.i = c?r:i = 8kBTr:dnmi. This 
differs from the desired identification by only a factor of 4/ n = 1.27, which is just 
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the sort of discrepancy that one often encounters in simplified kinetic theories. 
The present theory is therefore in essential agreement with Furry in the special 
case of binary mixtures with equal temperatures. 

6. Self-consistent effective binary diffusion approximation 

The multicomponent Stefan-Maxwell relations of equation (8), together with 
equation ( 4), constitute a simultaneous linear system of equations for the 
diffusion velocities. Effective binary diffusion approximations are sometimes 
used to avoid solving this system. A self-consistent effective binary diffusion 
approximation for single-temperature gas mixtures was described in reference 
[13]. Here we generalize this approximation to the case of multiple component 
temperatures. 

Let Gi denote the entire right member of equation (8). This equation then 
becomes identical in form to equation (1) of reference [13], but with xi replaced 
by zi. With this replacement, the entire development of reference [13] may then 
be followed through with no further modifications. The resulting self-consistent 
approximation to the diffusion fluxes is 

(60) 

where the effective binary diffusivities Di are given by 

D.= 1- wi L zi ( ) ( )
-1 

1 w i*i Dii 
(61) 

Here the wi are weighting factors and w is their sum [13]. In the case of equal 
temperatures (i.e., T; = T for all i), zi reduces to xi, Dii and Gi reduce to their 
single-temperature forms, pI R9 T; reduces to the total molar concentration c, and 
equations (60) and (61) reduce to equations (16) and (15) of reference [13], 
respectively. We remark that the self-consistent effective binary diffusion 
approximation becomes exact in a binary mixture, regardless of the choice of the 
weighting factors w i. 
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Appendix: collision frequencies and times 

The total number of collisions per unit time experienced by a single molecule of 
type i may be written as 
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(A1) 

where the summation extends over all species in the mixture, including species i, 
and_h(u) in equation (15) has been replaced by fok(u) in accordance with the 
linearization of equation (22). The integral in equation (A1) may be evaluated by 
transforming to new integration variables ( v, w), just as in equation (33) of the 
main text. We thereby obtain 

{1\2) 

The collision time r:i is then simply the reciprocal of vi, 

1 1 (" n.u .. )-1 
7:. = - = - LJ J l} 

1 vi 2 1 ~ . 
(A3) 
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