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RESEARCH ARTICLE Open Access

Is protection against florivory consistent
with the optimal defense hypothesis?
Adrienne L. Godschalx* , Lauren Stady, Benjamin Watzig and Daniel J. Ballhorn

Abstract

Background: Plant defense traits require resources and energy that plants may otherwise use for growth and
reproduction. In order to most efficiently protect plant tissues from herbivory, one widely accepted assumption of
the optimal defense hypothesis states that plants protect tissues most relevant to fitness. Reproductive organs
directly determining plant fitness, including flowers and immature fruit, as well as young, productive leaf tissue thus
should be particularly well-defended. To test this hypothesis, we quantified the cyanogenic potential (HCNp)—a
direct, chemical defense—systemically expressed in vegetative and reproductive organs in lima bean (Phaseolus
lunatus), and we tested susceptibility of these organs in bioassays with a generalist insect herbivore, the Large
Yellow Underwing (Noctuidae: Noctua pronuba). To determine the actual impact of either florivory (herbivory on
flowers) or folivory on seed production as a measure of maternal fitness, we removed varying percentages of total
flowers or young leaf tissue and quantified developing fruit, seeds, and seed viability.

Results: We found extremely low HCNp in flowers (8.66 ± 2.19 μmol CN− g−1 FW in young, white flowers,
6.23 ± 1.25 μmol CN− g−1 FW in mature, yellow flowers) and in pods (ranging from 32.05 ± 7.08 to 0.09 ±
0.08 μmol CN− g−1 FW in young to mature pods, respectively) whereas young leaves showed high levels of
defense (67.35 ± 3.15 μmol CN− g−1 FW). Correspondingly, herbivores consumed more flowers than any other
tissue, which, when taken alone, appears to contradict the optimal defense hypothesis. However,
experimentally removing flowers did not significantly impact fitness, while leaf tissue removal significantly
reduced production of viable seeds.

Conclusions: Even though flowers were the least defended and most consumed, our results support the
optimal defense hypothesis due to i) the lack of flower removal effects on fitness and ii) the high defense
investment in young leaves, which have high consequences for fitness. These data highlight the importance
of considering plant defense interactions from multiple angles; interpreting where empirical data fit within
any plant defense hypothesis requires understanding the fitness consequences associated with the observed
defense pattern.

Keywords: Optimal defense hypothesis, Plant defense, Folivory, Florivory, Cyanogenesis, Lima bean, Direct
defense, Phaseolus lunatus

Background
Toxic, tough, or unpalatable compounds protect plant tis-
sues against herbivory, making plant defense the gate-
keeper mediating food web energy flow. Plant defense
patterns vary between plant species and within individuals.
To explain this variation, several plant defense theory hy-
potheses aim to predict the factors driving plant defense
patterns [1]. The optimal defense hypothesis (ODH)

predicts defense patterns that confer the greatest fitness
benefit to the plant and mitigate energetic costs [2]. One
cost-saving strategy is differentially protecting organs
within the plant, allocating more defense compounds to
organs with highest impacts on fitness. Organs predicted
to have a particularly high fitness role include reproductive
organs as well as active and young vegetative structures
that provide the current and future source of photosyn-
thates required for reproduction [1, 3–5]. Testing within-
plant defense allocation according to ODH predictions re-
quires understanding 1) the value of each plant part, 2) the
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benefit of defending that organ, and 3) probability that
organ will be attacked [6]. Using these parameters, the aim
of this study is to determine whether a plant well-
characterized to produce high levels of chemical defense
in leaf tissue also invests defensive compounds in flowers,
and the role of such pattern according to the ODH.
Plants use many compounds for defense that require

amino acids or carbon-based molecules as precursors as
well as energy-demanding enzymatic pathways to be
produced. Because these precursors would otherwise be
used to synthesize proteins or structural compounds,
chemical defenses can be costly to the plant [7, 8]. In
lima bean (Fabaceae: Phaseolus lunatus), one such ener-
getically costly defense, cyanogenesis, requires proteino-
genic amino acids and several enzymes to produce
cyanogenic precursors (cyanogenic glucosides). For ex-
ample, the cyanogenic glucosides in lima bean, linamarin
and lotaustralin are synthesized from valine and isoleu-
cine [9, 10]. When cells are damaged, two enzymes, β-
glucosidase and hydroxynitrile lyase, work sequentially
to efficiently release cyanide from the cyanogenic gluco-
sides [11–15]. Taken together, the machinery required to
release toxic hydrogen cyanide requires a significant in-
put of nitrogen, which is frequently limited in terrestrial
ecosystems. Even legumes, which form a symbiotic rela-
tionship with nitrogen-fixing rhizobia face allocation
costs due to the photosynthate required to maintain the
relationship [16]. Thus, efficiently allocating nitrogen-
rich cyanogenic precursors from the source organs to
specific and particularly valuable plant tissues would
likely lead to higher fitness [15].
Cyanogenesis is an efficient defense against various herbi-

vores, but also incurs costs to the plant in synthesis and
transport as well as in ecological interactions [17, 18]. To
prevent autotoxicity in the intact plant, vacuolar cyanogenic
glucosides are spatially separated from apoplastic β-
glucosidases, which combine when herbivores rupture cel-
lular barriers [12]. However, in the absence of herbivores,
when faced with plant-plant competition, investment in ex-
tensive cyanogenesis can reduce plant fitness [7], reempha-
sizing the intrinsic costs of this defense. Furthermore,
extensive cyanogenesis may make plants more susceptible
to fungal pathogens as it has been shown in studies on sev-
eral cyanogenic plant species such as rubber tree [19] as
well as lima bean [20, 21]. To minimize costs, plant cyano-
genesis varies among plant organs and in different condi-
tions [16, 22–24]. In lima bean, the experimental plant used
in this study, cyanogenic potential (HCNp) depends on
various factors. For example, individuals extensively colo-
nized with nitrogen-fixing rhizobia have higher HCNp than
conspecifics without the additional source of nitrogen
that rhizobia provide [16, 25], and within these plants,
young leaves are more cyanogenic. In some plants such
as Eucalyptus cladocalyx, cyanogenic glucosides are

found throughout both vegetative and reproductive
structures, and vary temporally resulting from a poten-
tial reallocation of cyanogenic resources from leaves to
flowering structures [26]. Although lima bean is a well-
established model plant in chemical ecology, cyanogen-
esis of flowers and fruit—organs directly associated
with plant fitness—has not yet been measured.
Here we test a key assumption of the ODH: that the

within-plant distribution of plant defense reflects the
plant organs’ relevance for fitness. To determine quanti-
tative defense investment patterns and resistance to her-
bivores, we measured cyanogenesis in flower buds,
flowers, seed pods as well as in leaves from varying de-
velopmental stages, and assessed how much a generalist
insect herbivore, the Large Yellow Underwing (Noctui-
dae: Noctua pronuba) would consume each organ. To
determine the impact of florivory on plant fitness (de-
fined as number of viable seeds produced per plant) and
to compare any impacts with the fitness consequences
of folivory (on young, productive leaves), we experimen-
tally removed different percentages of either flowers (0,
25, 50 and 75 %), or young leaf tissue (0, 33, 50 and
66 %). Combining measurements of flower and young
leaf HCNp with simulated florivory and folivory experi-
ments enables us to determine the fitness value of each
type of organ to the plant and benefit of defending them,
while bioassays visualize the probability of flowers and
leaves being attacked. If simulated folivory impacts fitness,
we expect to see high HCNp in young leaf tissue. If remov-
ing flowers significantly reduces plant fitness, we expect
flowers and pods will have higher HCNp than vegetative
plant tissues, consistent with the ODH. Alternatively, if re-
moving flowers has little or no measurable impact on plant
fitness, plants with low cyanogenic flowers and fruit will
support the optimal defense hypothesis.

Results
Within-plant distribution of chemical defense
As each organ matured (flower buds, flowers, pods, and
leaves), the cyanogenic potential (HCNp) for that organ
decreased. The reproductive organs with the highest
HCNp were young pods with 32.05 ± 7.08 μmol CN− g−1

FW, which decreased to almost non-detectable levels of
0.09 ± 0.08 μmol CN− g−1 FW as pods developed to inter-
mediate and mature pods, making mature pods that are
preparing for senescence the lowest cyanogenic plant or-
gans [Fig. 1a, one-way ANOVA: F1,9 = 381.64, p <0.001;
Tukey’s HSD, p <0.05]. These low levels of cyanide are
also found in the more mature developmental stages of
flowers. In small flower buds, HCNp is the second highest
among reproductive organs, which decreased as flower
buds grew larger, and further decreased when flowers first
bloomed (white petals), and then matured and changed
color to yellow. Yellow flower HCNp is not significantly
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different from the lowest cyanogenic organs (inter-
mediate and mature pods) with 6.23 ± 1.25 μmol CN−

g−1 FW (Fig. 1a). By contrast, young leaves contained
the highest concentration of cyanide with an average
HCNp of 67.35 ± 3.15 μmol CN− g−1 FW (Fig. 1a). As
leaves developed into intermediate and mature stages,
HCNp significantly decreased relative to the highly
cyanogenic young leaves (Fig. 1a, one way ANOVA:
F1,9 = 381.64, p <0.001). Intermediate leaves had simi-
lar HCNp values as young pods, and mature leaves
had HCNp values not significantly different from the
lower cyanogenic flower buds and flowers.

Soluble protein concentration
Similar to HCNp, soluble protein content (an important
nutritive trait: [27]) in lima bean organs decreased with
maturity (Fig. 1b). Between organs, protein content dif-
fered significantly (F1,9 = 21.68, p <0.001) with young
leaves, small flower buds, large flower buds, flowers, and
young pods all containing higher protein concentrations
than mature leaves, and both intermediate and mature
pods (Fig. 1b). We found no significant difference in
total soluble protein content between young leaves, the
most cyanogenic organ, and all flower developmental
stages, one of the least cyanogenic organs (Fig. 1b).
Thus, flowers have the highest nutritive value: low
defense, but high protein.

Cafeteria-style feeding trials
Variation in HCNp among organs resulted in significant
differences in fresh weight of food consumed, showing
variation in herbivore food choices (one-way ANOVA,
F1,9 = 31.369, p <0.001). Insects preferred organs with
the lowest HCNp, with the exception of mature pods
and leaves (Fig. 2). Among the low cyanogenic tissues,
herbivores preferred flowers more than any other tissue,
followed by large flower buds, and intermediate pods,
both of which released <20 μmol CN− g−1 FW. HCNp
decreased as pods developed, but the mature stage pods
also began to develop tougher, mechanically defended
tissue in preparation for senescence. Both young and
mature pods were consumed significantly less than inter-
mediate pods (Fig. 2). Compared with any leaf tissue,
herbivores in this experiment consumed three times
more flower tissues (Fig. 2).

Plant fitness consequences of florivory
Simulating florivory by removing flowers had no measur-
able impact on plant maternal fitness. The reproductive
output per plant, measured as the number of viable seeds,
was not affected by simulated florivory treatments (Fig. 3).
Removing 0, 25, 50 %, or 75 % of flowers did not signifi-
cantly affect pod number (one-way ANOVA, F1,3 = 0.466
p = 0.707), total seeds (F1,3 = 1.634, p = 0.189), or total vi-
able seeds (F1,3 = 2.098, p = 0.108).

Plant fitness consequences of young leaf folivory
Simulating folivory on young leaves did significantly de-
crease plant maternal fitness. The reproductive output per
plant, measured as the number of viable seeds, quantita-
tively decreased as leaf removal was experimentally in-
creased (Fig. 3). Removing 0, 33, 50 %, or 66 % of young
leaf tissue reduced final pod number (one-way ANOVA,
F1,3 = 80.475 p <0.001), total seeds (F1,3 = 77.530, p <0.001),
and total viable seeds (F1,3 = 94.261, p <0.001).

Fig. 1 Cyanogenic potential (HCNp; a) and soluble protein content
(b) of different lima bean organs. Boxplots show median plant trait
values in bold with rectangles representing the interquartile
range from the 1st to the 3rd quartile. Whiskers show minimum
and maximum values. Letters indicate significant differences
according to posthoc analyses (Tukey’s HSD; p <0.05) after one-
way ANOVA, N = 8
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Discussion
In this study we tested one prediction of the optimal
defense hypothesis (ODH), which states plants should
allocate defense compounds towards tissues that are
most relevant for plant fitness [1]. Testing such invest-
ment in defense traits across different plant organs re-
quires all organs to rely on the same kind of defense
[28]. We show here that lima bean plants accumulate
the defensive compounds, cyanogenic glucosides, in all
aboveground plant tissues tested [14, 18]. Comparing
the cyanogenic potential (HCNp) of flower buds,
flowers, pods, and leaves from several developmental
stages, we found that the organs with the highest HCNp
were not the reproductive organs (i.e., flower buds,
flowers, and pods), which directly determine plant fit-
ness, but instead were young leaves. These findings are
consistent with cyanogenic patterns in Eucalyptus clado-
calyx in which young leaves have the highest HCNp

among all organs [26]. In our study, we conducted feed-
ing trials with generalist insect herbivores to assess the
probability that herbivores would attack each organ and
found that—corresponding to their low HCNp and high
nutritive value—the insects preferred flowers among all
tested plant organs. In nature, lima bean is attacked by
various generalist and specialist herbivores [29, 30]. We
frequently observed noctuid generalist caterpillars feed-
ing during the night on various organs of lima bean
plants including all organs tested in this study as well as
generalist locusts feeding on the same tissues during the
day. Thus, larvae of the generalist noctuid moth species
(N. pronuba) selected for this study seem suitable for
bioassays with lima bean tissues.
According to the ODH, attack risk is one factor that

should increase defense compound allocation to that
organ, and in this case flowers seem to have a high risk
for attack but low defense, counter to theoretical

Fig. 3 Pod and seed production following simulated florivory or
folivory. Pod and seed production as well as the number of viable
seeds of lima bean plants with different percentages of either flower
or young leaf tissue removal were quantified. Tests for differences
between flower removal treatments from one-way ANOVAs: total pods,
p= 0.707, total seeds, p= 0.189, and viable seeds, p= 0.108, N= 20. Tests
for differences between young leaf tissue removal treatments from one-
way ANOVAs: total pods, p <0.001, total seeds, p <0.001, and viable seeds,
p <0.001, N= 20. Boxplots show median values in bold with rectangles
representing the interquartile range from the 1st to the 3rd quartile.
Whiskers show minimum and maximum values. Letters indicate significant
differences according to posthoc analyses (Tukey’s HSD; p <0.05)

Fig. 2 Tissue consumed by generalist herbivores. Different plant
organs were offered to Noctua pronuba larvae in choice feeding
trials and tissue consumption was determined. Boxplots show
median tissue consumption by in bold with rectangles representing
the interquartile range from the 1st to the 3rd quartile. Whiskers
show minimum and maximum values. Letters indicate significant
differences according to posthoc analyses (Tukey’s HSD; p <0.05)
after one-way ANOVA, N = 6 feeding trials
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predictions [1, 2, 31]. To experimentally quantify the
benefit to the plant associated with defending flowers,
we compared the flowers’ low HCNp to the fitness value
of that organ in simulated florivory experiments. The fit-
ness consequences associated with florivory revealed
support for the optimal defense hypothesis because re-
moving flowers does not impact our metric for measur-
able fitness: viable seed production. Thus, in our system,
the number of individual flowers does not critically de-
termine the reproductive output per plant individual.
If removing a portion of total flowers does not reduce

seed production, investing resources towards defense
compounds in flowers likely does not maximize fitness.
In fact, compared to plants with all flowers intact, in our
study removing any percent of flowers causes a slight,
but not significant, increase in number of pods, total
seeds, and viable seeds. This phenomenon has been de-
scribed in another study on Solanum carolinense, where
flower removal designed to simulate weevil damage
stimulates mature fruit production [32]. In Phaseolus
vulgaris, a plant species closely related to our experi-
mental plant, removing flowers between day 11 and 20
within the flowering period can increase seed yield [33].
Because flowers contribute differentially to final seed
yield depending on timing within the flowering period
[34], we removed a given percentage of flowers continu-
ously throughout the flowering period to exclude any
flowering timing effects. Overall, the lack of reduced seed
number and viability with varying degrees of simulated
florivory helps to explain the low concentrations of cyano-
genic glucosides in flowers. In fact, if some florivory stim-
ulates seed production, this could potentially select
against highly cyanogenic flowers. Whether slight florivory
is favored or whether cyanogenic glucoside costs outweigh
the benefits of defending flowers, the distribution of cy-
anogenic glucosides we observed suggests that lima bean
plants allocate chemical defense to young leaves rather
than to reproductive tissues.
High concentrations of cyanogenic glucosides in young

leaves as we observed suggests that plants allocate these
compounds from the source organs—likely intermediate,
fully photosynthetically active leaves (Ballhorn, unpubl.
data)—to the young leaf sinks. Young leaves likely have an
important fitness contribution due to their role as future
producers of photosynthates important for growth and
reproduction. In this line, plants with various levels of sim-
ulated folivory produced fewer pods, seeds, and viable
seeds in this study in a quantitative damage-response rela-
tionship. High protection of young, expanding leaves is a
consistent pattern with other studies that test the optimal
defense hypothesis [4, 5, 35–37]. Herbivores attack young
leaves >20 times more often than more mature leaves [38].
Given the risk for attack and value as a potential future car-
bon source organ, plants often protect young leaves

relatively more than mature leaves [39–41]. Young leaves
of Eucalyptus cladocalyx consistently have the highest con-
centrations of cyanogenic precursors [24, 26]. Terpenoid
concentrations are highest in the young leaves of Solidago
altissima, which impact capitula mass more than other tis-
sue when removed [5]. Barto and Cipollini [3] removed
leaves from various developmental stages of Arabidopsis
thaliana and also concluded young leaves can be the most
valuable plant organ for measurable plant fitness. Our
HCNp data in concert with our data showing fitness conse-
quences of removing young leaf area are consistent with
the optimal defense hypothesis with fitness-relevant or-
gans, young leaves in this case, being the most cyanogenic.

How do multiple defenses interact to shape organ-
specific levels of chemical defense?
In addition to having the highest cyanogenic potential in
our study, young lima bean leaves produce the highest
quantities of extrafloral nectar and volatile organic com-
pounds, both of which are indirect plant defenses,
attracting enemies of the plant’s herbivores to protect
the plant [16, 36]. Frequently plants employ multiple
defense strategies, including indirect defenses to protect
against their diversity of attackers [42–44]. Among these
defenses, tradeoffs between direct and indirect or indu-
cible defenses can be adaptive to conserve resources and
maximize fitness, consistent with the optimal defense
hypothesis [1, 28, 45]. Several traits in lima bean trade
off with cyanogenesis, including several mechanical, in-
ducible, and indirect defenses [43]. Lima bean genotypes
with consistently high cyanogenic potential produce less
extrafloral nectar, carbon-based volatile organic com-
pounds, and are more susceptible to pathogen attack
[20, 43, 46]. The sum of plant defense interactions
against attack on all plant parts, including both florivory
and folivory, may help explain the distribution of any in-
dividual defense compound within plant tissues. For ex-
ample, phenolic glycosides concentrations in Populus
tremuloides leaves were 30 % higher when leaves also
contained extrafloral nectaries [47], which follows the
pattern of extrafloral nectar secretion and cyanogenesis
in lima bean. This pattern could be consistent with opti-
mal defense predictions to protect against different feed-
ing guilds, or if investing resources towards one defense
makes that organ important to protect. For example,
leaves that secrete extrafloral nectar can serve as a sig-
nificant resource sink [48], and plants may have higher
fitness by protecting the carbon investment. However,
this dual protection pattern contradicts the optimal
defense hypothesis if investing in multiple defenses is re-
dundant, or if the plant’s defenses deter or harm benefi-
cial insects. An example of this occurs in Mentzelia
pumila plants, which have trichomes that trap and kill
predatory coccinellid beetles [49]. Trichome density as a
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mechanical defense covaries with cyanogenesis, with
hook-shaped trichomes expressed in greater frequency
in highly cyanogenic lima bean genotypes, putatively as
a mechanism to protect tissues against a broader range
of herbivores with different feeding strategies [43].
Chewing herbivores effectively rupture cellular barriers
between enzymes and precursors, but herbivores such as
phloem- or cell content feeders that can avoid extensive
damage may be more affected by barriers to accessibility,
including hook-shaped trichomes, or even tissue tough-
ness. In our study, the decreasing HCNp fruits and
leaves which goes hand in hand with simultaneously in-
creasing toughness of these organs may further indicate
an ontogenetically shift from chemical to mechanical
defense. The plant’s interacting defense traits and result-
ing within-plant distribution may be constrained by the
network of ecological interactions, both with herbivores
from various feeding guilds or with beneficial mutualists
that can contribute to plant fitness.

Ecological implications of florivory and folivory
Plant defense distribution throughout various organs likely
also depends on the ecological value of protecting those or-
gans. Some interspecific interactions greatly impact plant
fitness, such as plant-pollinator or plant-microbe interac-
tions, which may be significantly compromised by either
folivory or florivory. Symbiotic, nitrogen-fixing rhizobia in
legume root nodules can consume up to 20–30 % of the
plants’ total photosynthate pool [50], and intense leaf area
removal by folivores can starve other plant organs of car-
bon when photosynthesis is limited [51]. Quantitative leaf
removal also reduces extrafloral nectar secretion, a reward
plants use to attract natural predators such as ants [48].
Leaf removal, herbivory, and simulated herbivory alter
flower size and shape, which not only impacts the energy
reserves within the reproductive structure, but also may at-
tract fewer pollinators [52–54]. Pollen per plant and pollen
quality can decrease with leaf consumption [55]. Flower
consumption can reduce the strength of the visual or
chemical signals that attract pollinators [56]. Reduced pol-
lination decreases male fitness by limiting pollen transfer
[57]. By altering rates of outcrossing, florivores can act as a
selection pressure for entire mating systems, increasing the
frequency of selfing, which can have severe fitness conse-
quences [58]. Therefore, although we were not able to
measure the fitness consequences associated with eco-
logical interactions, protecting various organs with high
levels of chemical defense may be partly explained in the
context of plants maintaining mutualistic interactions.

Conclusions
In our study, we test the optimal defense hypothesis
(ODH) by assessing the cyanogenic potential of repro-
ductive and vegetative organs in a highly cyanogenic

plant. By comparing floral cyanogenesis, the risk that
generalist herbivores would consume floral tissue, and
the fitness value of flowers, we examined the factors ex-
pected to affect organ-specific defense: 1) value of organ,
2) benefit of defense, and 3) probability for attack [6].
Within-plant distribution of cyanogenic potential—low
in flowers, but highest in young leaves—reflects the fit-
ness relevance of the reproductive and vegetative organs,
and is consistent with the within-plant assumption of
the optimal defense hypothesis. Our HCNp data show
that measuring plant traits in various organs alone does
not provide a comprehensive picture of defense resource
allocation, but combining plant defense patterns with
bioassays and evaluating fitness is a more powerful ap-
proach to determine whether or not the observed pat-
terns align with any theoretical framework for plant
defense. The optimal defense hypothesis continues to be
a leading hypothesis because the underlying premise en-
ables many plant trait patterns to maximize fitness in
the right context. Although this is not the first call to ac-
tion requiring a big-picture perspective of how plant de-
fenses interact to shape defense allocation patterns, our
data emphasize the role of fitness benefits and conse-
quences shaping plant defense distribution patterns. As
we continue to measure empirical patterns in plant
defense allocation, it becomes increasingly apparent that
the fitness consequences and ecological context are both
essential for understanding how, when, and where plants
protect themselves.

Methods
Plant cultivation
Lima bean plants (genotype CV 8078, [20]) were culti-
vated in a greenhouse adjusted to resemble conditions at
natural lima bean habitats in Costa Rica (30 °C/24 °C,
75–85 % humidity, 14 h/10 h light/dark photoperiod).
Lights in the greenhouse were a combination (1:1) of
HQI-BT 400 W (Osram) and RNP-T/LR 400 W (Ra-
dium) lamps with a photon flux density of 550–700 mol
photons m−2 s−1 at table height. Plants were cultivated
in plastic pots of 15 cm in diameter in a 1:1 ratio of pot-
ting soil (Fox Farms, Arcata, CA) and sand (grain size
0.5 mm). Plants were watered daily and fertilized with
50 ml of a 0.1 % aqueous solution of Flory-3 fertilizer
[NPK plus magnesium (%); 15, 10, 15, +2; EUFLOR,
Munich, Germany] weekly. To simulate resource alloca-
tion patterns that more closely resemble organ tissue de-
velopment within natural populations, plants were
inoculated with 10 mL liquid culture of a lab-maintained
rhizobia strain isolated from wild lima bean plants in
Costa Rica. Position of plants in the greenhouse was ro-
tated every 3 days to exclude position effects. Feeding
experiments and analyses of plant chemical traits were
conducted after a cultivation period of 8 weeks.
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Insect rearing
Caterpillars of the Large Yellow Underwing (Noctua pro-
nuba) were used in the feeding trials. This insect species
represents an extremely polyphagous herbivore feeding on
a broad range of herbaceous and woody plants. Caterpil-
lars were reared from eggs in July 2012 and were fed with
non-cyanogenic raspberry leaves to avoid adaptations to
cyanide-containing food. Noctua pronuba is an invasive
pest insect in the United States. Eggs were collected on
private property in Raleigh Hills (DJ Ballhorn, Portland,
OR). Neither field work nor collection of caterpillar eggs
required permits. Our research is in compliance with all
relevant guidelines and/or appropriate permissions.

Cyanogenic potential (HCNp)
The cyanogenic potential (HCNp; total amount of cyanide
present accumulated in a given tissue) was quantified for
leaves, flower buds, flowers and fruit from different devel-
opmental stages. For preparation of plant extracts, fresh
samples weighed to the nearest 0.001 g were ground with
liquid nitrogen in a pre-cooled (4 °C) mortar and pestle.
Plant material was homogenized in 3 mL ice-cold aqueous
Na2HPO4 solution (67 mmol L−1). Enzymatic hydrolysis of
cyanogenic precursors was conducted with specific β-
glucosidase isolated from rubber tree (Euphorbiaceae:
Hevea brasiliensis), a plant containing the same cyanogenic
glucosides (linamarin and lotaustralin) as lima bean. We
used enzyme solution adjusted to an activity of 20 nkat.
Samples were incubated for 20 min at 30 °C in a water bath
in closed glass vessels (Thunberg vessels) [18, 59] and the
HCNp was quantified by enzymatic hydrolysis of cyano-
genic precursors and subsequent spectrophotometric de-
tection of released cyanide at 585 nm using the
Spectroquant® cyanide test (Merck, Darmstadt, Germany).

Soluble protein content
Concentration of soluble protein in flower, fruit and leaf
samples was quantified according to Bradford [60] with
modifications following Ballhorn et al. [17, 60]. Bradford
reagent (Biorad Laboratories, Munich, Germany) was di-
luted 1:5 with ddH2O and 20 μL of each homogenized
plant sample was combined with 1 mL of diluted Bradford
solution. Bovine serum albumin (BSA; Fluka ChemieAG,
Buchs, Switzerland) at different concentrations was used
to create a standard curve. After 5 min incubation time,
concentration of protein was spectrophotometrically mea-
sured at 595 nm. We used the same individual plant ex-
tracts for protein measurements as for HCNp analyses,
thus, both parameters were quantitatively attributed to the
same sample.

Feeding trials
Cafeteria-style feeding trials were conducted in Petri
dishes (9 cm; N = 6 feeding trials) lined with moist filter

paper to avoid water loss of samples. Each dish con-
tained one insect herbivore (3rd larval stage). Pre-
weighed plant leaf samples (leaf discs, 1 cm in diameter),
flower buds, flowers and fruits (large fruits were pre-
sented in form of discs cut out with a cork borer; 1 cm
in diameter) were offered simultaneously to the insects
over a time period of 2 h. Plant fresh material consump-
tion was determined by re-weighing the plant samples.
A control set of each organ was weighed and reweighed
after 2 h to control for potential evaporation and change
in mass due to non-consumptive effects. As we did not
observe detectable weight loss for any of the fresh plant
samples in this control we did not consider spontaneous
evaporation as a factor potentially affecting our results.

Flower removal effects on fitness
To assess fitness consequences of florivory, a given per-
centage of flowers were mechanically removed through-
out the experiment from each plant to create four
treatments: 0 % flowers removed, 25 % flowers removed,
50 % flowers removed, and 75 % flowers removed.
Flowers were removed at a medium flower bud stage
and treatments were repeated every 3 days throughout
the flowering period. The experimental duration covered
the whole period from the formation of the first inflores-
cence to the opening of the last flowers. After seeds ma-
tured fully, the pod and seed production for each plant
was counted and seed viability per plant was determined
by germinating seeds on moist paper towels until a
healthy radicle developed.

Young leaf removal effects on fitness
To assess fitness consequences of folivory, developing
young trifoliate leaves were mechanically damaged to
create four treatments: 0, 33, 50 and 66 % leaf area re-
moval (Fig. 4). These percentages were modified from
the ones utilized in the flower removal experiments
based on the nature of the trifoliate leaf (Fig. 4). Initial
leaf area removal was applied when plants developed
their first fully unfolded secondary leaf, and experimen-
tal leaf tissue removal was continuously applied (once
per week) to newly developed, but unfolded leaves
throughout the experimental period. Maternal fitness

Fig. 4 Simulated folivory treatment experimental design. Four treatment
groups with different percentages of young leaf tissue removal were
established as depicted
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including pod number, seed number and viability were
measured as in flower removal experiments.

Statistical analyses
Data for HCNp, protein content, cafeteria experiment
feeding trials, and flower removal experiments were all
analyzed using One-Way ANOVA tests followed by
Tukey’s post hoc tests in R Studio [61].

Availability of data
Data are found in supplementary files. All data have
been provided (See Additional files 1, 2, and 3).

Additional files

Additional file 1: Plant Trait and Bioassay Data. Organ indicates the
plant tissue tested, Protein indicates mg protein g−1 FW, and HCNp indicates
the cyanogenic potential as μmol CN− g−1 FW. Bioassay results appear in the
green box below plant chemical trait data. (XLSX 26 kb)

Additional file 2: Simulated Florivory Data. # of Flowers indicates the
total number of flowers, and for each of the flower removal treatments
(25, 50 and 75 %) the total number of flowers removed follows each
respective column. The total pods, seeds, and viable seeds are indicated
below #fruit, #seeds, and #viable seeds. (XLSX 14 kb)

Additional file 3: Simulated Folivory Data. Treatment indicates the
percentage of young leaf tissue removed from the plant; leaves indicates
the total leaves per plant prior to removal; fruit, seeds, and viable indicate
total pods, seeds, and viable seeds at the end of the experiment. (XLSX 11 kb)
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