
Patterns of Aspect-Oriented Design

James Noble1,2, Arno Schmidmeier3, David J. Pearce2, Andrew P. Black4

(1) Imperial College London
(2) Permantent: Victoria University of Wellington, {kjx,djp}@mcs.vuw.ac.nz

(3) AspectSoft, arno@aspectsoft.de
(4) Portland State University, black@cs.pdx.edu

January 18, 2008

Abstract

Aspect-oriented programming languages are becoming commonplace, and programmers are ac-
cumulating experience in building and maintaining aspect-oriented systems. This paper addresses
how the use of these languages affects program design: how aspect-oriented languages change the
design space, which designs should be emulated and which avoided, and the strengths and weak-
nesses of particular kinds of design. We identify five patterns of aspect-oriented design: Spectator,
Regulator, Patch, Extension, and Heterarchical Design. For each pattern, we describe the problem
it solves, show how aspect-oriented language features are used in the pattern, give characteristic
examples of the pattern’s use, and assess its benefits and liabilities.

Our patterns provide the beginnings of a taxonomy of aspect-oriented design. We believe that
they should help programmers to understand and evaluate existing aspect-oriented designs, to im-
prove new designs, to make better use of the aspect-oriented features of new programming languages,
and also guide those who wish to implement these patterns in non aspect-oriented languages.

1 Introduction

Aspect-orientation as a research area is at least ten years old — with AspectJ [30] first being described
in the late 1990s, and key precursors such as subject-oriented design [8], Composition Filters [1, 2], and
Adaptive Programming [33] emerging a good five years earlier. Aspect-oriented programming languages
or systems, especially AspectJ and web architectures [26, 25], have been used in production environments
for several years, and a range of new programming languages [35, 37, 38], and design and analysis
methods [6, 7, 24] are emerging from the research community.

This paper begins to characterise aspect-orientation according to the program designs that it enables,
supports and encourages. Thus, when we speak of design, we are referring to the actual structure of
the program, rather than the process used to produce that structure. We are less interested in particular
language constructs than in the shape of the programs that aspect-oriented languages (in a broad sense)
encourage.

We are also interested in programmer intent and motivation, in the rationale for particular designs,
and in their benefits and liabilities. In contrast to other taxonomies or critiques of AOP (which have
tended to focus on aspect-orientation as a whole [48, 6], the advocacy and analysis of various language

0Copyright c© 2006-2007 by James Noble, Arno Schmidmeier, David J. Pearce, and Andrew P. Black. Permission is granted
to Hillside Europe to copy, reproduce, republish, and post on servers as part of the Proceedings of EuroPLoP 2007.

features [14, 46, 9], or on case studies [29, 11, 28]), in this paper we pose and attempt to answer questions
such as: How should we think about aspect-oriented design? What are programmers’ intentions in
producing AO designs? How can we evaluate aspect-oriented designs? When are particular designs
appropriate, and what are their strengths and weaknesses? What examples of AO design are worth
emulating? What should we teach programmers when educating them about aspect-oriented design?

The key contribution of this paper is that we describe five patterns of aspect-oriented design: Specta-
tor, Regulator, Patch, Extension, and Heterarchical Design. We adopted a patterns approach for two
reasons: first, because it encouraged us to engage with the specifics of particular designs, and second,
because it became evident that aspect-oriented design was too diverse to be analysed as if it were a single
style. Each of these patterns provides a solution to a different problem, resolving a range of design issues;
and, each has been used in a number of exemplar systems. As with the Gamma et al. Design Patterns
[16], our patterns are not mutually exclusive: several patterns can be used in an aspect-oriented pro-
gram, and a particular pattern may appear several times. Also like the Gamma et al. patterns, we do not
propose an all-encompassing narrative or methodology of aspect-oriented design other than the patterns
themselves. We do not claim that these five patterns capture all (or even most) aspect-oriented designs;
but, almost every aspect-oriented program that we have seen has used one or more of these patterns. One
way in which these patterns differ from most other object-oriented design patterns, which describe par-
ticular structures of objects, is that these patterns are applicable at many scales, from individual objects,
via classes or aspects, up to whole systems.

We base our terminology and programming language examples in AspectJ simply because it is the
most well-known aspect-oriented language. The patterns we propose can be implemented in many other
aspect-oriented languages; indeed, for each pattern we give at least one example involving a non-aspect-
oriented language. We are more interested in the key features of the designs themselves than in the
language used to express those designs. By extension, we believe that the ability to express most or all
of these designs cleanly and succinctly can in some way can be regarded as an ostensive definition of an
aspect-oriented language.

The next five sections of this paper present each of these patterns in turn. We have adopted a some-
what abbreviated pattern form: each pattern starts with an italicised problem statement. This is followed
by a paragraph discussing the context of the problem the pattern solves; that is, the important design-
level issues (often called the forces) that the pattern must resolve. The context is further illustrated by
a motivating example. We then present the solution proposed by the pattern, and illustrate it by solving
the motivating example. The consequences of applying the pattern are then discussed; we also describe a
number of known uses (“killer examples”) of this pattern in successful, long-lived systems. Finally, each
pattern ends with a discussion. The concluding sections of the paper compare and contrast the patterns
at some length, and place them into the wider context of the analysis of and debate around AOP.

2 Spectator

How can you monitor the execution of a program?

Also known as: Harmless Advice, Introspection

Context

Programmers often need to examine or verify the execution of their programs. An execution trace or
program profile can be very useful when debugging almost any kind of program.

Motivating Example

Consider the following scenario. The middle tier of an enterprise web-shopping application is built from
a number of business objects, which we will call Beanz. For example, OrderBeanz represent orders from
the shop, taking requests from a Java server page and eventually storing them in a database. To operate
in the enterprise environment, the web application must log each action for audit; this should also help
in debugging. Logging is not difficult to handle — calls to system logs can be coded into the start and
end of each Beanz method:

class OrderBeanz extends Beanz {
private int orderNumber;
. . .
int orderNumber() {

beanzLogger.log(M ENT, “orderNumber”);
int rv = this.orderNumber;
beanzLogger.log(M RET, “orderNumber”, rv);
return rv;

}
}

Such code has several problems. First, it has low cohesion: the code that handles logging is tangled with
the code that handles business responsibilities, and the logging code takes up far more of the method
body than the business logic, which (in this example) is just a variable access. Secondly, the code
is tightly coupled with the infrastructure service that provides the systemic behaviour: changing the
logging service would require that every method using it be rewritten. Third, all the code that calls into
the infrastructure must be duplicated within every method on every Beanz class: every method needs to
have the same structure of calls to the logger. Moreover, that code is stereotyped since the entry and exit
code (and any necessary exception handling code) is found at the same point in every method. Making
such duplicated, stereotypical code correct and consistent is a problem that should be automated; it is
too easy for a programmer to miss one or two cases when inserting the code by hand, particularly during
maintenance. It seems clear that the main program logic (the business domain code) should be separated
from the stereotypical spectator code.

Therefore: Use an aspect to introspect on the behaviour of the program

In AspectJ, and many other aspect-oriented systems, we can move this kind of concern into a sepa-
rate aspect, which we call a spectator aspect. The resulting Beanz class then contains only the domain

code; at system configuration time or run time (depending on the particular aspect system) we can com-
bine the domain code — the so-called base program — with whichever aspects are required. Generally,
spectator aspects use homogeneous pointcuts, which treat all method invocations on domain objects uni-
formly [11]. They do not normally define new fields or methods on the domain objects; that is, they do
not use so-called “intertype declarations”, also known as “introductions”.

Example Resolved

In the example, the base class code reduces to the following:

class OrderBeanz extends Beanz {
private int orderNumber;
. . .
int orderNumber() {return this.orderNumber;}

}

The logging concern is then implemented separately as an aspect:

aspect BeanzLogging {
before(): execution(* Beanz+.*(..)) {

logger.log(M ENT, thisJoinPointStaticPart.getSignature().getName());
}

after(): execution(* Beanz+.*(..)) {
logger.log(M RET, thisJoinPointStaticPart.getSignature().getName());

}
}

Note that the pointcut of this aspect uses the wildcard * Beanz+.*(..) to identify the execution of any
method defined on class Beanz or on any of its subclasses, with any return type and any parameter list.
Thus, it is called a homogeneous pointcut because it treats all method executions uniformly.

Consequences

The key benefit of this pattern is that cohesion is restored: the domain class now refers only to domain
concerns, while each infrastructure concern is captured in an individual aspect. The nature of the cou-
pling has changed: whereas the plain Java version relied on design rules that required the business objects
to make stereotyped calls to the logging infrastructure, the aspectualized version relies on a different set
of design rules that forbid the business objects from invoking the infrastructure services directly. This is
important because such direct calls could interfere with any invariants maintained by the aspects [34].

Apart from the observance of such design rules, the base code is uncoupled from (that is, it is obliv-
ious to [14]) the various infrastructure services such as the logger. This is good because programmers
can change the interface to these services by changing the aspects, without having to change the base
code. However, the aspect code is closely coupled to the base code: depending on exactly how the point-
cut is defined, changes to the names of the business object classes, or their subclassing relationships, or
their result types, or their arguments, might disrupt the logging service in ways that will seem strange or
mysterious to a programmer who is actually oblivious to the presence of logging.

A major benefit of this pattern is that code duplication has been eliminated: the method-level quan-
tification provided by the homogeneous pointcuts (the ability to refer to all domain methods satisfying
some condition) means that the advice in the aspect is effectively parameterised by the base method it
advises. This means that a single piece of aspect code can replace many parametrically different calls in

the original version. A significant feature of an AO programming language is that it provides a means to
access these implicit parameters; in the example, AspectJ does this with thisJoinPointStaticPart, which
provides access to the method being advised.

Known Uses

The Spectator pattern captures one of the best-known applications of aspect-oriented techniques. Tracing
Aspects, as discussed above, are clearly Spectators [32]; they are also the first examples in most AspectJ
tutorials, and in tutorials for most other aspect-oriented systems.

Spectator aspects can be implemented using a range of different language constructs. Pointcut-based
languages such as AspectJ offer direct support for them, while others provide it indirectly through special
purpose preprocessors, virtual machine support (such as .Net’s Interception interface) and various object-
oriented design patterns (typically Proxy, also known as Interceptor, Encapsulator, or Wrapper). From
our perspective, whether or not we are using a language with direct support for AOP is secondary to the
question of whether we are implementing an aspect-oriented design. This is analogous to the idea that
an object-oriented design can be implemented in a procedural language such as Pascal or C, or even in
assembly language.

Spectators are indeed common in non-aspect-oriented languages. Many Lisp systems provide a
tracing facility that is implemented by re-writing the source code of the function being traced [23] .
Squeak Smalltalk implements services such as the ObjectTracer and the ObjectViewer using wrappers.
The same technique can be applied to the problem of logging all operations on a Beanz. All that need be
done is to wrap it in another object of class BeanzWrapper, which defines the following two methods.

doesNotUnderstand: aMessage
“Do logging and forward message”
↑(tracedObject respondsTo: aMessage selector)

ifTrue: [self pvtDoAround: aMessage]
ifFalse: [super doesNotUnderstand: aMessage]

pvtDoAround: aMessage
| result |
logger logSendOf: aMessage.
[↑result := aMessage sendTo: tracedObject]

ensure: [logger logAnswerOf: aMessage as: result]

Any messages (other than these two) sent to the wrapped object will not be understood, triggering
the doesNotUnderstand: method. Provided that the wrapped object can indeed respond to the message
in question, the message pvtDoAround: is sent to implement the “around advice” (note, the pvt prefix
designates a private method). pvtDoAround: delegates the actual logging actions to a logger object; this
makes it possible to re-use the wrapper mechanism for other purposes.

If, as in the AspectJ example, the application requires that all messages on all instances of all sub-
classes of Beanz be logged, then all of those instances must be wrapped. This is easily accomplished by
overriding the new method on Beanz:

new
↑BeanzWrapper wrap: super new

Alternatively, wrappers can be installed more selectively if that is what the application requires.
Finally, the DJProf profiler represents the archetypal example of the Spectator pattern using As-

pectJ [41]. This profiles various program metrics (e.g. heap usage and object lifetime) using aspects
which maintain state that characterises the current execution trace in various ways.

Discussion

The Spectator pattern seems to capture one of the most straightforward and most common kinds of
aspect-oriented design. The name “Spectator” comes from Clifton and Leavens’ analysis of meta-level
facilities [9]. Katz defines “Spectative aspects” with respect to properties of a base program, rather than
with respect to the program itself [27]. Thus, a particular piece of advice might be “spectative” with
respect to one property, but not to another. An obvious example is a Spectator aspect that maintains
an invariant on account balances, but nevertheless violates a security invariant because it prints “secret”
information.

Spectator aspects that do not change any part of the program state visible to the base program, and
thus maintain whatever total correctness properties that have been established for the base, have also
been called augmentation aspects [46].

3 Regulator

How can you control the execution of a program?

Also known as: Interception, Intercession

Context

Programmers often need to enforce invariants on the execution of their programs. Object invariants,
which capture relationships between the instance variables of an object, and class invariants, which
capture relationships that hold over all of the objects of a class, can be essential in any kind of object-
oriented program. Particular kinds of program may require more specialised monitoring or additional
behaviour while they are running. For example, enterprise applications often require that certain methods
be executed only within a transaction, or when holding appropriate security privileges.

Motivating Example

Consider again the web-shopping application. To operate in the enterprise environment, the application
must check the security of each method invoked on the RemoveBeanz class. Moreover, the database
server requires that any database updates be performed under transaction control. As with tracing, neither
of these concerns is difficult to handle individually: transaction entry and exit routines can be coded into
the start of each Beanz method, as could calls to the system security manager. However, unlike the
logging calls in Section 2, the transaction and security calls can change the control flow of the program,
raising an exception when their conditions are not met:

class OrderBeanz extends Beanz {
. . .
int orderNumber() {

if (!beanzSecurityManager.check(“orderNumber”)) {
throw new SecurityException(...);

}
Transaction txn = beanzTransactionManager.getTransaction(...);
try {

int rv = this.orderNumber;
txn.commit();
txn.close();
return rv;

} catch(TransactionException e) {
txn.rollback();
txn.close();
throw e;

}
}

}

Such code has similar problems to the logging code in the Spectator pattern (Section 2). It has
low cohesion, because the code handling infrastructure responsibilities is tangled with code handling
business responsibilities. The lack of cohesion is even more painful here because of the verbosity of the
exception handling machinery: security and transactions take up far more of the method body than the
business logic. Once again, the stereotypical code that calls into the infrastructure must be duplicated
within every method on every Beanz class: every method needs to have the same structure. Moreover,

the design rules that capture this structure — that tell the programmer where to place the infrastructure
method calls to obtain correct application behaviour — have become much more complicated. Changes
to the transaction or security policy may require that these rules be changed, and therefore that that many
methods be rewritten. The need to separate the main program logic (the business model domain code)
from the infrastructure “boilerplate” is even more apparent.

Therefore: Use an aspect to regulate the behaviour of the program

As in the Spectator pattern, in AspectJ (and in many other aspect-oriented systems), we can move
each of these concerns into a separate aspect, so that the Beanz class contains only the domain code. The
aspect-oriented programming system will then combine the domain code — the base program — with
whichever aspects are applied.

Regulator aspects also generally use homogeneous pointcuts [11] that identify all method invocations
on domain objects, and do not define new fields or methods (by means of intertype declarations or
introductions). Regulator’s pointcuts and advice will typically be more complex than those of Spectator,
because they may change or abort the execution of the base program.

Example Resolved

In the example, the base code again reduces to the following:

class OrderBeanz extends Beanz {
. . .
int orderNumber() { return this.orderNumber; }

}

while each of the regulatory concerns is implemented as an aspect. For security:

aspect BeanzSecurity {
before() : execution(* Beanz+.*(..)) {

if (!beanzSecurityManager.check(
thisJoinPointStaticPart.getSignature().getName()))

throw new SecurityException(...);
}

}

For transactions:

aspect BeanzTransactionMonitor{
Object around() : execution(* Beanz+.*(..)) {

Transaction txn = beanzTxnManager.getTransaction(...);
Object rv = null;
try {

rv = proceed();
txn.commit();
txn.close();
return rv;

} catch(TransactionException e) {
txn.rollback();
txn.close();

throw e;
}

}
}

Note that the pointcuts of these aspects use wildcards to catch all invocations of Beanz methods (homo-
geneous pointcuts).

Consequences

As with Spectator, the key benefit of this pattern is that cohesion is restored: the domain class now
refers only to domain concerns, while each infrastructure concern is captured in an individual aspect.
The nature of the coupling has also changed in the same way as with Spectator: the design rules have
changed. However, the design rules in the plain Java version were quite complex, and the design rules in
the AspectJ version are far simpler: perform no security checks or exception handling.

In AspectJ, the base code cannot be entirely uncoupled from (or, oblivious to [14]) the various infras-
tructure services (transaction manager, security manager, etc.), because the services may raise exceptions
that the base code must declare. Thus, if the security aspect needs to raise a new exception, the base code
may need to be changed. However, programmers can modify the services, and the circumstances under
which they raise exceptions, by changing the aspects alone.

The situation with respect to code duplication, and the importance of a mechanism for parameterising
the aspect code by the method that it is advising, is the same as with Spectator.

Known Uses

Regulator aspects are the second most well-known applications of Aspect-Oriented techniques, after
Spectator aspects. For example, Composition filters [2] are designed to filter messages — i.e., to act as
Regulators. Moreover, most of the uses of aspect-orientation in middleware systems, such as SpringAOP
and JBOSS, are applications of the Regulator pattern; for example, transactions, database access, and
security. Such middleware systems often employ some Spectator functions as well, such as for tracing,
profiling and logging [25, 26].

Discussion

Regulators can be implemented using a range of different language constructs — again like Spectators.
The key difference between Regulators and Spectators is whether or not they affect the execution of

the program: Regulators may intervene to regulate or control the execution of the base program, while
Spectators may not. Dantas and Walker have characterised “Harmless Advice” as advice that preserves
the partial correctness of the base program [12]. In other words, the base program must perform the
same computation with or without the Harmless Advice. However, if the program terminates abnormally,
partial correctness says nothing at all about its computation, so harmless advice can abort the program to
prevent it, for example, from violating a security condition. What Harmless Advice cannot do is raise an
exception which could be caught by the mainline code, since this might allow the program to terminate
normally and, hence, potentially violate a property that held in the absence of the advice.

The definition of Harmless Advice also assumes that the base code cannot make any assertions about
the state visible to the aspect code. Thus, harmless aspects cannot write to an output stream that is also
accessible to the base program, because this would make it possible for aspects to invalidate properties
of the stream that might be the subject of assertions made in the base code (since this would rule out one

of the most common uses of Spectators and Regulators, Dantas and Walker’s formalism treats output as
a special case. In the operational semantics of their language, print s reduces to the empty statement.)
Our Regulator pattern, because it allows aspects both to raise exceptions and to manipulate state that is
visible to the mainline code, is more general than Harmless Advice.

Regulator aspects that preserve partial correctness have also been called assistants, narrowing or
regulative aspects [9, 46, 27]. The name “Regulator” is derived from Katz’s “regulative aspects” [27].

Extensive use of Regulators is likely to result in the design of the base-program evolving to move
more and more behaviour into aspects. This requires that subsequent program evolution observe design
rules that ensure that the base program does not itself interfere with the concerns delegated to the aspects.
For example, if synchronisation is handled by a Regulator, the base program should not provide any
synchronisation directly. The overall design of the program gradually moves from Regulators to Planned
Extension, and ultimately to a Heterarchical design. Current advanced web frameworks seem to be
somewhere along this continuum [26].

4 Patch

How can you extend a program that you are unable to change directly?

Also known as: patch aspect; repair-person pattern; ad-hoc extension; hack aspect

Context

Software development is increasingly dependent on the re-use of existing programs: libraries, frame-
works, product lines, etc. Because re-use places new demands on old code, however, it is likely that
programmers will need to modify, extend or replace features in the programs that are being reused.

Motivating Example

The standard libraries of many languages include a String class with, for example, methods to make a
string upper or lower case. But some applications may need to transform a String into “title case” in
which the initial letter of each word is capitalised but the remainder of the word is in lowercase. For
example, title case might be used to give a common “look” to the names of products sold from the web
shop.

The first generation of object-oriented languages allow programmers to extend classes directly by
simply adding methods to existing classes. This feature is known as open classes [10] or class extensions,
and is supported by Smalltalk and Objective C. In contrast, Java’s classes are closed, although Clifton et
al. have proposed opening them in MultiJava [10]. With these extensions, it is easy to add a new method
titleCase to String:

package org.hacker.webShop;
. . .
public String String.titleCase() {

for (i=0; i < length; ++i) {
if ((i == 0) ‖ Character.isSpace(val[i-1]))

val[i] = Character.toUpperCase(val[i]);
else

val[i] = Character.toLowerCase(val[i]);
}

}

Unfortunately, standard Java does not allow this; neither do Eiffel or C#1. So, how can we deal with
this problem in Java? We can edit the source code of the String class, provided that we are legally entitled
to do so. Even then, this means that our program is using an incompatible version of the library. It also
means that whenever the “standard” library is updated, the edits will need to be repeated on the locally
modified version, and that the modified library must be shipped with all products that use it.

An alternative approach is to include the extension code in the client. Suppose that we create a utility
class in our application:

package org.hacker.webShop;
. . .
class StringUtil {

1C# 3.0 does include a provision for “extension methods”, which at first sight appear to be class extensions. However, closer
examination shows that they are not: extension methods are syntactic sugar for static procedure calls; they are not dispatched,
and hence cannot be changed in subclasses.

static String titleCase(String s) {
char result[] = new char[s.length()];
for (i=0; i < s.length(); ++i) {

if ((i == 0) ‖ Character.isSpace(s.getChar(i-1)))
result[i] = Character.toUpperCase(s.getChar(i));

else
result[i] = Character.toLowerCase(s.getChar(i));

}
return new String(result);

}
}

Such code is inevitably in the “wrong” place: attached to the wrong class, unable to access encapsulated
implementation details and so likely to be inefficient, and unavailable to other components of the system
that may reuse the library. Furthermore, using client-side auxiliary methods is harder to read and to
understand than invoking the operation directly on the objects concerned.

Note that subclassing — the standard object-oriented extension mechanism — doesn’t really work
here. For the moment, let’s ignore the fact that java.lang.String is declared to be “final” and thus cannot
be subclassed, and pretend that we could create a subclass WebString. The problem is that all existing
code will still create java.lang.String instances, which will not respond to the titleCase method.

Therefore: Use an aspect to modify the behaviour of an existing component

In AspectJ (and, again, many other aspect-oriented languages), we can provide the extension code
as an aspect within the client system. Because it is an aspect rather than a class, the extension code
can modify or replace the base code, adding functionality or fixing bugs as required. Extension code
can access encapsulated representations, so it can be implemented as efficiently and straightforwardly as
would be possible if it had been part of the base class. Nevertheless, the aspect remains part of the client
code: the library code is not modified. When the system is woven together, the aspect code is inserted
into the library class, so is available wherever it is needed; and, if the library is upgraded, the extension
code may still weave correctly (if the changes to the base do not interfere with the aspect).

Generally, patch aspects will use introductions (also known as intertype declarations) [11] to add
behaviour into the base code, and around advice to modify existing code. Pointcuts will primarily be
heterogeneous: that is, they will target a few pieces of base code that need to be modified or extended.

Example Resolved

The titleCase method can be supplied as a standalone aspect:

privileged aspect TitleCase {
void String.titleCase() {

for (i = 0; i < length; ++i) {
if ((i==0) ‖ Character.isSpace(val[i-0]))

val[i] = Character.toUpperCase(val[i]);
else

val[i] = Character.toLowerCase(val[i]);
}

}
}

The body of the method is exactly the same as the changes that would be made to the String class if it
could be directly modified. That is, the aspect code can access the internal representation of the string.

Consequences

The key benefit of this pattern is that the base code can be extended without having to be physically
modified: the aspect applies to the code, but remains separate from it.

An important liability of this pattern is that because there is no explicit, predefined interface be-
tween base code and extension — precisely because these extensions are ad-hoc — the pattern is brittle.
Changes to the base code may break the aspect. Moreover, it is just as easy for the aspect to break the
base code in return. In our example, the class extension in MultiJava and the patch in AspectJ both vio-
late the invariant of the java.lang.String that instances are immutable. Because this invariant is implicit
(there are no immutability declarations in Java), such violations cannot be caught by the compiler, and
may well go unnoticed until they cause errors.

Another problem is that multiple patches affecting the same piece of base code will be very tightly
coupled, and can easily adversely interfere with each other.

Furthermore, patch aspects reduce the cohesion of the whole system. The aspect appears to be
cohesive with the base code, not the extension, so it is in some sense in the “wrong place” within the
static structure of the program. Of course, that is the underlying problem — the right code was not
included in the base program, so we have to put it somewhere else! This pattern also increases the
coupling of the client to the base code, especially if the extension aspect (which is still part of the client)
uses privileged access to the base code.

Known Uses

Early Smalltalk systems were developed this way [42]: patches were packaged into “Goodies” that —
like aspects — could redefine methods anywhere in the system. Current Smalltalk systems (both Visual-
works and Squeak) support package systems that explicitly institutionalise this usage: a package consists
of a collection of new classes, and a collection of extensions to existing classes. Finally, many systems
are maintained by Larry Wall’s patch program [51]; patch aspects are a structured, language supported
alternative to patching [13].

Discussion

The key difference between Patch and Regulator is that, in this pattern, the base code is not oblivious to
the introduced aspect (i.e. it must be able to use titleCase, since this was the objective) and the changed
behaviour — but, unlike later patterns, without any pre-planning.

We have seen Patch aspects used in two different situations. The titleCase example is about missing
functionality: the titleCase method would have been a reasonable one to include in the String class if
anyone had thought to do so, and, once the need for it has become apparent, we could over time expect
refactorings to move these extension aspects into the base code. In practice, this will happen only when
it is easy for developers to change the base code. If the base code is a third-party library, even seeing
its source code may be impossible for legal reasons. Even for open-source base code, the time and cost
for releases to incorporate the extensions, or to fork the project and support the fork, will typically be
greater than simply writing a local extension aspect. Thus, in Java code that does not use AOP, we find
a proliferation of extension libraries and static helper methods because Java library classes cannot be
extended.

The other situation has to do with the interface between a modular extension and the existing system.
Consider adding a regular expression package to the system, perhaps to support user-defined searches.
The package will define several new classes to represent the different kinds of regular expression and to
recognise them. However, it would also be convenient to add a conversion method toRE to String, which
would translate a string such as “a+b” into an instance of an REUnion class. It would never be reasonable

for such a method to migrate into the base String class: the method makes sense only in the context of
the regular expression extensions. Indeed, the implementation of toRE would depend on the existence of
the RE classes.

Compared with the other patterns in this paper, this pattern may seem to have only a peripheral
connection with the philosophy of “separation of concerns” — in many cases all the technical concerns
such as cohesion, coupling, understandability and efficiency mean that rather than patching we should
just refactor the base code. Non-technical concerns also affect the structure of systems, however. Patch
aspects are often used to organise systems according to non-technical concerns, be they legal, political,
or sociological. These concerns cannot be ignored when developing large systems using two or more
development teams and building on diverse third-party components that are used across multiple projects.

5 Extension

How can you design a program so that it can be extended in multiple ways?

Also known as: Extension Aspect, Extension Points, XPIs, Hotspots, Plug-in Architecture, Planned
Extension

Context

Many programs, systems, and software product lines have to be designed so that they can be extended
later — even though the ways in which they will be extended cannot generally be predicted at design time.
Perhaps the system is a framework that other programmers or systems will extend; perhaps resources for
building the whole system are unavailable at the start of the project; perhaps only the core requirements
are known at the outset, and while some additional features are expected, the details of those features are
not known in advance.

Motivating Example

Consider the design of an Integrated Development Environment (IDE) that provides syntax-dependent
text highlighting. Obviously, the highlighting must depend on the programming language being edited —
if the IDE is to be extensible, programmers must be able to add support for more programming languages.

In the earliest formulations of object-oriented design [36] systems were supposed to be extended by
two mechanisms: inheritance and component composition. Using inheritance, for example, one could
provide support for a new programming language (say, Visual Algol) by extending the part of the system
that provided the highlighting — the TextEditor class.

class VisualAlgolEditor extends TextEditor {
void drawDisplay() {

// draw display using Algol highlighting
}

}

The problems with this approach are well known. The main problem is that (re)writing the draw-
Display method will not be a simple task. Programmers will need to read and understand the full code of
the TextEditor class (and probably its subclasses) to identify where highlighting is implemented and then
to work out how to override some parts of them to support VisualAlgol. Moreover, even if a working
VisualAlgolEditor class can be written, the rest of the system will still have to be modified somehow to
be aware of the new class. For example, the IDE may have to instantiate different TextEditor subclasses
when editing different programming languages, which implies that other parts of the IDE will need to be
augmented.

Since the publication of Design Patterns [16], however, there has been another object-oriented design
practice: use patterns to make it possible to reuse particular parts of a larger framework. Indeed, this is
the aim of many of the patterns, as captured in the subtitle of the book: Elements of Reusable Object-
Oriented Software. In the IDE example, when designing the TextEditor class we could use the Strategy
pattern: we could define a HighlightStrategy interface, and have the editor delegate highlighting decisions
to an object implementing that interface.

class TextEditor {
TextBuffer buffer; // text to be edited
HighlightStrategy highlighter = new NullHighlighter;

void setHighlighter(HighlightStrategy h) { highlighter = h; }

void drawDisplay() {
. . .
highlighter.highlightBuffer(buffer)
. . .

}
}

The wider IDE framework will still need some way to configure the TextEditor class with the correct
Highlighter. There are pattern-based solutions to this problem too, but increasingly complex ones. We
might use the Abstract Factory pattern to combine all the extensions (say, for file name conventions,
highlighting, editing, compiler interfacing, and debugging) required for a particular programming lan-
guage. We might use the Prototype pattern so that we have pre-existing instances to query so that we can
determine the appropriate configuration for a particular file that we wish to create.

In spite of this complexity, a pattern-based design is a great improvement on a naı̈ve object-oriented
design. The strategy pattern works best when separate programs in a product line each make one choice
of configuration, as when a company sells separate editors for VisualPascal, Visual Fortran and VisualAl-
gol, and produces them by re-using the same TextEditor class with different strategies. The complexity
increases, but is still manageable, if all the editors must be available together in one program, because
the program must now also include the logic to instantiate and inject the correct strategy.

However, this approach has a number of problems. Most importantly, the patterns are implicit:
there is nothing in the code that says “here we use the strategy pattern” or “here we use the abstract
factory pattern”. This makes the code hard to read, even by programmers who have been educated about
patterns, and a veritable puzzle for programmers who have not met patterns before. Programmers must
build (or generate) extra mechanism to implement the structure of the pattern, for example, the Highlight-
ingStrategy interface, the AbstractHighlightingStrategy and NullHighlightingStrategy classes, along with
a more-or-less complex mechanism to instantiate the correct strategy object. In larger systems, especially
where different configurations are required simultaneously, these issues become quite significant. Finally,
extending these systems can still be a black art, because different patterns must be related: supporting
a new language will require not only a new highlighting strategy, but also new file name conventions,
new compiler and debugger interfaces, and so on. Of course, we can deploy further patterns (Façade?
Builder?) to address these problems, but each pattern increases the complexity and amount of structural
code in the system, and makes the actual logic of the IDE harder to follow.

Therefore: Define extension points to extend the base component’s behaviour

In aspect-oriented languages we can explicitly mark extension points in the base code, using features
such as abstract aspects, delegates, or virtual classes, depending on the language. Then, to extend the
base component, we write concrete extension aspects that bind to those extension points and provide state
and behaviour to support the new concern. Generally, while Extension aspects will use introductions [11]
to supply behaviour, or around advice to modify existing methods, they do so in a very stylised manner.
As a result, pointcuts are primarily heterogeneous: they will target one or more of the defined extension
points.

Example Resolved

In our example, we can reify a potential extension point for highlighting by separating out the high-
lighting behaviour into a method, just as in the Template Method pattern. For the default case (no
highlighting) we simply write a null method:

class TextEditor {
TextBuffer buffer; // text to be edited

void drawDisplay() {
... highlight(); ...

}

void highlight() {};
}

Note that compared with the Strategy pattern solution all we have to do is untangle the highlighting
behaviour from the rest of the display behaviour. We do not have to establish a complex supporting
structure involving a HighlightStrategy interface, NullHighlighter default implementation, and a range of
subclasses for different subclassing algorithms. All that we must (somehow) do is separate highlighting
from display drawing.

Then, we can reify the extension point by declaring an abstract aspect, including an extension point
for highlighting. In fact, this aspect can declare a number of other extension points related to language-
specific behaviour, such as recognising that a particular filename should be handled by this extension.

aspect LanguageExtension {
public pointcut handleFile(String s): args(s) && (call(static bool Buffer.canOpen(s)));
public pointcut highlight(Buffer b): target(b) && (call(void Buffer+.highlight(..)));

}

Finally to implement an extension, we can simply extend the abstract aspect, and provide advice on
pointcuts as necessary to implement the extension.

aspect VisualAlgol extends LanguageExtension {

// Wrap all calls matching handleFile pointcut to check whether
// file extension for language supported by this LanguageExtension.
bool around(String s) : handleFile(s) {

return s.endsWith(“.alg”) ? true : return proceed(s);
}

// Wrap all calls matching highlight pointcut and intercept those
// intended for this LanguageExtension
void around(Buffer b) : highlight(b) {

if(b.fileName().endsWith(“.alg”)) {
// draw display using Algol highlighting

} else {
// Continue original call (including any remaining intercepts)
proceed(b);

}
}

}

Consequences

The core of this pattern is parameterising the base code to facilitate extensions. Compared with the ad-
hoc patch aspect pattern which enables patches to be attached anywhere, planned extension points are
defined explicitly within the base code we are extending, and extension aspects identify one or more
extension points to which they belong. In other words, rather than language level joinpoints and point-
cuts, each base level component defines abstract, domain-level joinpoints to which extensions bind using
domain-level pointcuts.

These abstract definitions are the key liability of the pattern: base code is not oblivious to the possi-
bility of extension but must define (in some way) the extension points (of course, base code does remain
oblivious to any particular extension or even the presence or absence or any extension). On the other
hand, the definitions provide the key benefit of the pattern: by establishing an extension interface, the
base code and extensions can evolve independently — the extensions (that is the aspects) are much more
oblivious (i.e. much more loosely coupled) to base code than in any of the other patterns we present
in this paper. The extension points provide an interface (or a contract) which simultaneously insulates
base code from the aspects, and aspects from the base code, providing each side interacts only via the
interface.

As with many aspect-oriented designs, this pattern increases the cohesion of the whole system. But
this pattern also decreases the coupling of the system, as base code and aspect are coupled via the
interface defined by the extension points, rather than directly to each other.

Known Uses

Building systems with explicit extension points has a long history: some notable examples include
Emacs’ hooks [47], Smalltalk’s dependencies [18], Eclipse’s extension points, and .Net’s delegates.
The J& [37] nested type language has been used to declare and combine multiple extensions to the Poly-
glot compiler. Many uses of design patterns in OO frameworks are to provide precisely this extension
capability. The Extension Object pattern [15] describes how extensions can be reified in object-oriented
design: this pattern shows how aspects can provide more straightforward extensions.

Discussion

There are a range of techniques used (and proposed) to support Extension aspects. We can distinguish a
continuum of implementation techniques: pointcut-based “implicit” definitions (such as extension inter-
faces [20], eXtension Point Interfaces (XPI)s [19], and pointcut declarations in open modules [3, 39]),
and hook or delegate or observer pattern based implementations, where the base code explicitly2 calls the
extension point as in Emacs hooks, Eclipse extension points, or C# delegates. For example, in something
approaching C# programmers would write:

class TextEditor {
TextBuffer buffer; // text to be edited

public delegate void Highlighter(Buffer); // delegate type declaration

public event Highlighter highlight(); // event declaration

2We call these “explicit” calls because the base code contains explicit message sends to the extensions. These kind of
message sends are also known as “implicit invocation” [17] because the “target” of the calls, that is the methods and objects
that will be run (and whether or not there are any methods attached to the extension point that will be run) are not explicit in
the source code.

void drawDisplay() {
... highlight(); // invokes event

}
}

to declare an extension point (C# delegate type and an event of that type), and then to invoke that event
from the mainline code.

AspectJ 5’s annotation-based pointcuts [4] are in some way a mid-point in the continuum. As with
explicit extensions, programmers decorate base code to indicate where it may invoke extensions, but as
with implicit extensions, no changes are made to executable code. In the annotation-based style, the
parameterisation mechanism is metadata annotations: the annotations form part of the interface used by
extension pointcuts. However they may be implemented, all forms of Extension aspect designs rely on a
“two-way” contract between base code and extension, The base code will call the extension as described
in the interface, and the extension code will not interact with the base code except as permitted via the
interface [19, 20].

6 Heterarchical Design

How can you design a program as a network of interpenetrating concerns?

Also known as: Subject-oriented design; role-based design; big ball of mud

Context

Alan Peris has described the structure of the systems that we build as an “intricately interlocked software
elephant” [5]. For some systems, especially smaller ones, the hierarchical structure of a Pascal-style
functional decomposition, or an OO inheritance hierarchy suffices to capture its essential complexity. For
other systems, especially large ones, there is no dominant decomposition (whether tyrannous or benign)
[49] that can possibly do the system justice. This is because the problem space imposes a network of
interpenetrating, interdependent concerns, none of which is clearly more important or more significant
that all others across the whole domain of the program.

Motivating Example

The MetroSim urban planning project simulates a range of different concerns in the urban environment:
political structures (city, county and district boundaries), transport (car, buses, rail, public and private),
housing, mail delivery, recycling and solid waste removal, water supply, electricity supply, sewerage,
telecommunications, road and city infrastructure maintenance, and so on. Each of these concerns takes
its own view of the city, which may or may not be related to other views. Similarly, each concern can be
modelled with its own individual class hierarchy — which may or may not relate to the decomposition
required for other concerns.

For example, in the political and legal structure of a city, the basic unit is a Lot – a plot of land with
a legal designation. Lots are aggregated into wards, suburbs, localities and then eventually cities,
metropolitan boroughs, or counties. Furthermore, for town planning reasons, each Lot may also contain
a number of Buildings.

Mail delivery can be simulated in MetroSim, again using Lots. For Mail delivery, each Lot belongs to
a delivery area, identified by a postcode – and these areas may have very little relationship to the political
or utility or even transport networks. Refuse collection, again, forms another overlapping system, as do
roads, public transport, and so on.

The key problem with this approach is that in an object-oriented design (indeed in most program
designs) the resulting program is a monolith: all these crosscutting domain concerns are tangled together
[43]. The resulting design will be hard to understand, to modify, and to use, particularly because most
programmers will not need to understand the entire design. Rather, programmers will want to work on
small concerns — such as mail delivery or refuse collection – rather than the system as a whole.

Classical, object-oriented design patterns once again are no help here; or rather, they are crucial to
a functioning OO design but do not address its architectural confusion. Every concern can use many
patterns: Composite to model hierarchical structure; Strategy to allow choice of algorithms; Observer to
handle updates to shared state, and so on; but these patterns will be implicit in the code, will themselves
be tangled across concerns, and also lead to concerns further tangling together. To see how this plays
out, consider part of the interface of the Lot class:

class Lot {
// intrinsic state
String designation;

// political hierarchy — Composite pattern
Section locality; // upwards
List<Buildings> buildings; // downwards

// mail delivery
MailDeliveryPostcode postcode;
int incoming mail volume;

// refuse collection
RefuseCollection route;
double refuse load;
double recycle;
//... many more concerns in here too

}

This shows how the various concerns are tangled into the Lot class; but each concern will also be scattered
over a number of other classes in the system. How can you design such a complex system so that each
concern is a separate module in the program’s structure?

Therefore: Build your program from mutually interrelated aspects,
where each aspect models a single concern.

While — like classes — aspects can define the structure and behaviour of their own instances, unlike
classes, aspects can also add to or modify the behaviour of other parts of the system. Heterarchical
designs model crosscutting concerns explicitly as individual aspects — without a distinguished “base”
program to which aspects are applied. Programs are composed of modules (which may be classes, or
aspects, or some combination) that can communicate and interact via a wide range of mechanisms, such
as message sending, crosscutting advice, implicit invocation, events, depending on the implementation
technologies.

Example Resolved

Using aspects, we can separate out the various concerns of the MetroSim design so that each can be
described implicitly and independently. First, we can write a class declaring only Lot’s intrinsic state:

class Lot {
String designation;

}

Then, we can model mail delivery as aspect that uses intertype declarations (introductions) to define the
postcode and incoming mail volume fields into the Lot class. The code that manipulates and models
routes can also be moved into this aspect and out of the Lot class.

aspect MailDelivery {
MailDeliveryPostcode Lot.postcode;
int Lot.incoming mail volume;

... // code to manipulate routes
}

Similarly we can model refuse collection as a second aspect which inserts further fields into the Lot class.
Again, this has the advantage that every Lot instance contains these fields, but they are not defined in
the Lot class — the textual Lot class is a partial description of the Lot class that will exist in the final
program, because each aspect can continue further attributes to the Lot definition.

aspect RefuseCollection {
RefuseRoute Lot.route;
double Lot.refuse load;
double Lot.recycle;

... // refuse collection methods
}

Finally, the political organisation — buildings, lots, suburbs, localities — modelled via the Composite
pattern can also be described using an aspect. The key here is to realise that Composite is effectively a
role-based design, and then to employ Aspect-oriented design techniques [45, 28, 22]. Because Com-
posite is a reusable pattern, we will use two aspects: an abstract CompositePattern aspect to model the
generic pattern, and a concrete PoliticalModel aspect to describe how that pattern is instantiated in this
case [21].

The CompositePattern aspect defines inner interfaces Composite, Component, and Leaf to represent
the three main roles (participants) in the pattern. Then the aspect uses intertype declarations to describe
the fields and methods that belong to those roles. This is a common AspectJ idiom for supporting a
role-based design .

public abstract aspect CompositePattern {
// declare top level Composite interface
interface Component {

void add(Component);
void remove(Component);
List<Component> children();

}

// declare Leaf interface (mostly a placeholder)
interface Leaf extends Component { }

// declare Composite interface
interface Composite extends Component { }

// declare Component field
Component Component.parent;

// declare Leaf methods – as in GOF they throw exceptions
void Leaf.add(Component c) {throw UnsupportedException(); }
void Leaf.remove(Component c) {throw UnsupportedException(); }
List<Component> Component.children() {throw UnsupportedException(); }

// declare Composite methods and fields
List<Component> Composite.children = new ArrayList<Component>();
void Composite.add(Component c) {children.add(c); c.parent = this;}
void Composite.remove(Component c) {children.remove(c); c.parent = null;}
List<Component> Composite.children() {

return Collections.unmodifiableList(children);
}

}

The key to the aspect-oriented implementation is that a second PoliticalModel aspect binds the roles in
the CompositePattern to the classes in the program, including, eventually, Lot. Of these classes, Building
is the only leaf class: all the others play the composite role in the pattern (because they can contain other
components in the pattern). In idiomatic AspectJ, the aspect binds roles to classes by declaring that the
classes implement the interfaces representing the roles: then, the introductions in the CompositePattern
aspect will add the appropriate fields into every class that implement the roles.

aspect PoliticalModel extends CompositePattern {
// classes implementing the Leaf role
declare parents: Building implements Leaf;

// classes implementing the Composite role
declare parents: Suburb implements Composite;
declare parents: Ward implements Composite;
declare parents: Lot implements Composite;

}

Again, we can see that the PoliticalModel aspect describes how the composite pattern is instantiated in
the program, and the abstract CompositePattern aspect gathers all the code and data structures required
for the composite pattern. The aspect weaver will combine all the relevant features into the Lot class
(and into the other base classes in the program) resulting in the same effective class definition as the
object-oriented design shown above — but with very different modularity structures in the source code.

Consequences

The key benefit of this pattern is decomposing a monolithic design into a series of smaller, local, crosscut-
ting aspects that are then recomposed to reconstitute a whole system. As with most other aspect-oriented
designs, this pattern prefers high cohesion to low coupling: individual aspects will model only one con-
cern in the program, but can be highly coupled to many other aspects in the program. The key liability of
this pattern is this coupling: either the aspects have to be carefully designed to avoid malign interactions,
or their interference must somehow be mediated. Where these interactions cannot be managed, they
will make programs more difficult to understand and debug than monolithic designs: on the other hand,
inasmuch as each aspect can be understood locally the program will be easier to use, extend, or modify.

Compared with the other patterns, the distinguishing feature of Heterarchical design is that there is
generally no privileged “base” program that aspects monitor, patch, or extend: rather the structure of
the program is an heterarchy, a rhizome, a collage of interconnected crosscutting parts. The distinction
between classes (or components) and aspects dissolves: as all the modules are partial definitions of
the system, acting simultaneously as components — defining objects, types, fields, methods, — and
crosscutting aspects, advising and introducing behaviour onto other system components — as required by
the overall nature of the problem concerns. Designing this kind of system is hard! In practice, it is most
likely that “some aspects will be more equal than others”, that is some aspects will define fundamental
structure, while others may decorate that structure. But because this distinction is not hardwired into the
programming language or the pattern, there can be many aspects that act as a base program for certain
concerns, other aspects can work as extensions to that concern, and different programmers can consider
different aspects in different ways depending on the concerns they are focused upon.

Known Uses

There are relatively few large, long-lived systems built as heterarchical designs — mostly due to software
engineering’s long focus on hierarchical designs. Two important precursor systems are Knuth’s TeX [31]
built using the WEB weaver; and later versions of the Self programming language which uses a weaver
known as the Transporter [50].

Discussion

The principles of heterarchical design can be applied at many scales within a system. At a relatively small
scale, aspects can be used to implement relationships [40] or design patterns [21] as we’ve sketched
in the example above. At an intermediate level, role-based designs techniques produce heterarchical
systems [22, 28], although generally the last step in such methodologies converts the design to use object-
oriented programming languages [44, 52] in the same way early object-oriented methods included a step
to translate designs into procedural languages, although a range of studies have described implementing
(or refactoring) role-based designs to use aspects. At a large scale, Subject-oriented design aims to merge
whole or partial programs [8].

As well as the AspectJ style used in the example, heterarchical designs can be built with languages
supporting forms of multiple inheritance, open classes, module composition, nested types, or open mod-
ules [3, 35, 37, 38, 39]. The difference between these techniques parallels (in some sense) the variants
of the Planned Extension pattern between implicit pointcut-based extension points and explicit calls to
extensions: aspects “push” behaviour implicitly into other classes, while nested classes, modules, etc.
“pull” that behaviour explicitly into the class being defined. In the explicit style the intrinsic behaviour
of a Lot could be moved into a BasicLot class, and then the Lot class configured into the system
would inherit from BasicLot and bind the roles from other nested classes, something like:

class Lot extends BasicLot,
extends Politics<Section>.Leaf,
extends MailDeliver.Source,
extends RefuseCollection.Sink {

}

noting that this example uses multiple inheritance directly.
The advantage of the explicit style here is that it is much easier to ascertain everything that has gone

to make up the Lot object; the disadvantage is that Lot’s definition now must mention all the aspects that
will be combined (rather than leaving that to the aspect definition). The overall structure of the design is
the same in both cases.

Finally, although heterarchical designs can avoid the “tyranny of the dominant decomposition” [49]
because they do not have a single dominant decomposition, this does not mean that a heterarchical
design is necessarily better (against some criteria) than a hierarchical design, or that two heterarchical
designs cannot be distinguished. Measuring coupling via option values [34], for example, can distinguish
between two alternative heterarchical designs.

7 Conclusion

The immediate contribution of this paper is the identification and presentation of five patterns of aspect-
oriented design: Spectator, Regulator, Patch, Extension, and Heterarchical design. For each pattern we
present a brief example, analysis, and known uses in several successful systems. The underlying virtue
of identifying these four patterns is the hypothesis that there is not one just one “ideal” or “exemplary”
style of aspect-oriented software development, but rather a range of styles applicable in different circum-
stances, addressing different concerns, and with a range of benefits and liabilities. Rather than treating
Aspect-Orientation as though it is a monolith, we hope that researchers, critics and programmers will be
able to use these patterns to identify which aspect-oriented design is being attempted, and then use the
appropriate patterns for the task at hand.

References

[1] M. Aksit and L. Bergmans. Obstacles in object-oriented software development. In OOPSLA, 1992.

[2] M. Aksit, K. Wakita, J. Bosch, L. Bergmans, and A. Yonezawa. Abstracting object interactions
using composition filters. In Proceedings of the ECOOP ’93 Workshop on Object-Based Distributed
Programming, LNCS 791, 1994.

[3] J. Aldrich. Open modules: Modular reasoning about advice. In ECOOP, 2005.

[4] The AspectJ 5 development kit developers notebook, http://www.aspectj.org/.

[5] F. P. Brooks, Jr. No silver bullet: Essence and accidents of software engineering. IEEE Computer,
20(4), Apr. 1987.

[6] R. Chitchyan, I. Sommerville, and A. Rashid. An analysis of design approaches for crosscutting
concerns. In Ws. on Identifying, Separating and Verifying Concerns in the Design, 2002.

[7] S. Clarke and E. Baniassad. Aspect-Oriented Analysis and Design: The Theme Approach. Addison-
Wesley, 2005.

[8] S. Clarke, W. Harrison, H. Ossher, and P. Tarr. Subject-oriented design: Towards improved align-
ment of requirements, design, and code. In OOPSLA, 1999.

[9] C. Clifton and G. T. Leavens. Observers and assistants: A proposal for modular aspect-oriented
reasoning. In FOAL, 2002.

[10] C. Clifton, G. T. Leavens, C. Chambers, and T. Millstein. MultiJava: Modular open classes and
symmetric multiple dispatch for Java. In OOPSLA 2000 Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications, pages 130–145, 2000.

[11] A. Colyer and A. Clement. Large-scale aosd for middleware. In AOSD, 2004.

[12] D. S. Dantas and D. Walker. Harmless advice. In POPL, 2006.

[13] R. Dunn-Krahn, J. Maple, and Y. Coady. The crisis in systems code maintenance: Sourceforge, we
have a problem. In OOPSLA Onward! Film, 2005.

[14] R. E. Filman and D. P. Friedman. Aspect-oriented programming is quantification and obliviousness.
In Aspect-Oriented Software Development. Addison-Wesley, 2005.

[15] E. Gamma. Extension object. In Pattern Languages of Program Design, volume 3. Addison-Wesley,
1997.

[16] E. Gamma, R. Helm, R. E. Johnson, and J. Vlissides. Design Patterns. Addison-Wesley, 1994.

[17] D. Garlan, G. E. Kaiser, and D. Notkin. Using tool abstraction to compose systems. IEEE Com-
puter, 25(6):30, June 1992.

[18] A. Goldberg and D. Robson. Smalltalk-80: The Language and its Implementation. Addison-
Wesley, 1983.

[19] W. G. Griswold, K. Sullivan, Y. Song, M. Shonle, N. Tewari, Y. Cai, and H. Rajan. Modular
software design with crosscutting interfaces. IEEE Software, Jan/Feb 2006.

[20] S. Gudmundson and G. Kiczales. Addressing practical software development issues in AspectJ
with a pointcut interface. In ECOOP Workshop on Advanced Separation of Concerns, 2001.

[21] J. Hannemann and G. Kiczales. Design pattern implementations in Java and AspectJ. In OOPSLA,
pages 161–173. ACM Press, 2002.

[22] J. Hannemann, G. C. Murphy, and G. Kiczales. Role-based refactoring of crosscutting concerns.
In AOSD, pages 135–145. ACM Press, 2005.

[23] IBM Corporation. LISP/370 Program Description/Operations Manual, Mar. 1978. SH20-2076.
Available through IBM branch offices.

[24] I. Jacobson and P.-W. Ng. Aspect-Oriented Softare Development with Use Cases. AW, 2005.

[25] JBoss.org. JBoss AOP. http://labs.jboss.com/jbossaop, 2006.

[26] R. Johnson. The spring framework - reference documentation.
http://www.springframework.org/docs/reference, 2006.

[27] S. Katz. Aspect categories and classes of temporal properties. TAOSD, LNCS 3880, 2006.

[28] E. A. Kendall. Role model designs and implementations with aspect-oriented programming. In
OOPSLA, pages 353–370. ACM Press, 1999.

[29] M. Kersten and G. Murphy. Atlas: A case study in building a web-based leadning environment
using aspect-oriented programming. In oopsla, 1999.

[30] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J.-M. Loingtier, and J. Irwin.
Aspect oriented programming. In ECOOP, 1997.

[31] D. E. Knuth. TEX: The Program, volume B of Computers & Typesetting. Addison-Wesley, 1986.

[32] R. Laddad. AspectJ in Action: Practical Aspect-Oriented Programming. Manning, 2003.

[33] K. Lieberherr. Controlling the complexity of software designs. In Proceedings of the International
Conference on Software Engineering (ICSE), pages 2–11. ACM Press, 2004.

[34] C. Lopes and S. Bajracharya. Assessing aspect modularizations using design structure matrix and
net option value. TAOSD, LNCS 3880, 2006.

[35] S. McDirmid and W. Hsieh. Aspect-oriented programming in Jiazzi. In AOSD, 2003.

[36] B. Meyer. Object-oriented Software Construction. Prentice Hall, 1988.

[37] N. Nystrom, X. Qi, and A. C. Myers. J&: Nested intersection for scalable software composition.
In OOPSLA, 2006. To Appear.

[38] M. Odersky and M. Zenger. Scalable component abstractions. In OOPSLA, 2005.

[39] N. Ongkingco, P. Avgustinov, J. Tibble, L. Hendren, O. de Moor, and G. Sittampalam. Adding
open modules to AspectJ. In AOSD, 2006.

[40] D. J. Pearce and J. Noble. Relationship aspects. In AOSD, 2006.

[41] D. J. Pearce, M. Webster, R. Berry, and P. H. Kelly. Profiling with AspectJ. Software: Practice and
Experience, 37(7):747–777, 2007.

[42] S. Putz. Managing the evolution of Smalltalk-80 systems. In Smalltalk-80: Bits of History, Words
of Advice. Addison-Wesley, 1984.

[43] A. Rashid and A. Moreira. Domain models are not aspect free. In MODELS, 2006.

[44] T. Reenskaug. Working with Objects: The OOram Software Engineering Method. Manning Publi-
cations, 1996.

[45] D. Riehle. Composite design patterns. In ECOOP, 1997.

[46] M. Rinard, A. Salcianu, and S. Bugrara. A classification system and analysis for aspect-oriented
programs. In FSE, 2004.

[47] R. M. Stallman. EMACS the extensible, customizable self-documenting display editor. In Sym. on
Text Manipulation, 1981.

[48] F. Steimann. The paradoxical success of aspect-oriented programming. In OOPSLA, 2006.

[49] P. Tarr, H. Ossher, S. M. Sutton Jr., and W. Harrison. N degrees of separation: Multi-dimensional
separation of concerns. In Aspect-Oriented Software Development, pages 37–61. Addison-Wesley,
2005.

[50] D. Ungar. Annotating objects for transport to other worlds. In OOPSLA, 1995.

[51] L. Wall. patch (1), 1985. Posted to mod.sources.

[52] R. Wirfs-Brock, B. Wilkerson, and L. Wiener. Designing Object-Oriented Software. P-H, 1990.

	Introduction
	Spectator
	Regulator
	Patch
	Extension
	Heterarchical Design
	Conclusion

