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A POSTERIORI ESTIMATES USING AUXILIARY SUBSPACE
TECHNIQUES

HARRI HAKULA† , MICHAEL NEILAN‡ , AND JEFFREY S. OVALL§

Abstract. A posteriori error estimators based on auxiliary subspace techniques for second order
elliptic problems in Rd (d ≥ 2) are considered. In this approach, the solution of a global problem
is utilized as the error estimator. As the continuity and coercivity of the problem trivially leads
to an efficiency bound, the main focus of this paper is to derive an analogous effectivity bound
and to determine the computational complexity of the auxiliary approximation problem. With a
carefully chosen auxiliary subspace, we prove that the error is bounded above by the error estimate
up to oscillation terms. In addition, we show that the stiffness matrix of the auxiliary problem
is spectrally equivalent to its diagonal. Several numerical experiments are presented verifying the
theoretical results.

1. Introduction.

1.1. Problem Statement and Background. Let Ω ⊂ Rd (d ≥ 2) be a
bounded polytope, having boundary ∂Ω = ΓN ∪ ΓD, a disjoint union with ΓD closed
in the relative topology on ∂Ω. We define the space

H1
0,D(Ω) = {v ∈ H1(Ω) : v = 0 on ΓD in the sense of trace} ,

and adopt the following notation for norms and semi-norms on Hilbert spacesHk(ω) (k ≥
0) for ω ⊂ Ω,

‖v‖2k,ω =
∑
|α|≤k

‖Dαv‖2L2(ω) , |v|2k,ω =
∑
|α|=k

‖Dαv‖2L2(ω) .

When ω = Ω, we omit it from the subscript. We also employ these Sobolev spaces
and norms on subsets of Ω having lower dimension.

We consider variational problems of the form

Find u ∈ H1
0,D(Ω) 3:

∫
Ω

A∇u · ∇v + (b · ∇u+ cu)v︸ ︷︷ ︸
B(u,v)

=

∫
Ω

fv +

∫
ΓN

gv︸ ︷︷ ︸
F (v)

∀v ∈ H1
0,D(Ω) ,

(1.1)

where the data A : Ω→ Rd×d, b : Ω→ Rd, c, f : Ω→ R and g : ΓN → R are piecewise
smooth with respect to some polyhedral partition of Ω. The matrix A is symmetric
and uniformly positive definite a.e. in Ω, A(x)z · z ≥ α|z|2 for all z ∈ Rd and a.e.
x ∈ Ω. We further assume conditions on the coefficients so that B is continuous and
coercive,

|B(v, w)| ≤ C‖v‖1‖w‖1 , B(v, v) ≥ c‖v‖21 for all v, w ∈ H1
0,D(Ω) .(1.2)
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2 H. Hakula, M. Neilan and J. S. Ovall

Under these assumptions, the problem (1.1) is well-posed. We refer to C and c,
respectively, as the continuity constant and the coercivity constant.

Given a family {T} of conforming, shape-regular simplicial partitions of Ω, we
define the standard piecewise polynomial finite element spaces on T:

V = Vp = {v ∈ H1
0,D(Ω) : v|T ∈ Pp(T ) for each T ∈ T},(1.3)

where Pp(T ) is the space of polynomials of total degree ≤ p on T . More generally
Pp(S) is taken to be the space of polynomials of total degree ≤ p having domain
S ⊂ Rj for some 0 ≤ j ≤ d. Given an auxiliary “error space” W ⊂ H1

0,D(Ω) such
that V ∩W = {0}, we consider the approximation problem

Find û ∈ V 3: B(û, v) = F (v) (= B(u, v)) ∀v ∈ V ,(1.4)

and the error problem

Find ε ∈W 3: B(ε, v) = F (v)−B(û, v) (= B(u− û, v)) ∀v ∈W .(1.5)

Since V and W inherit the continuity and coercivity of B, these problems are also
well-posed. In the present work, W is also a piecewise polynomial space with respect
to T, but we postpone its definition to later sections. Throughout, we implicitly
assume that T is subordinate to the polyhedral partition of Ω on which the data is
piecewise smooth—i.e., the data is smooth on each simplex T ∈ T.

The computation of an approximate error function ε ≈ u− û via (1.5) has histori-
cally been called hierarchical basis error estimation, and its origins can be traced back
to [27, 12, 13], with what we will call the traditional analysis first presented in [7]. We
refer interested readers to [5, 2] for more detailed discussion of the traditional analysis
of hierarchical bases in error estimation and linear solvers, though we will mention
a few basic results below. We have opted to use auxiliary subspace error estimation
to describe (1.5) in the present work, instead of hierarchical basis error estimation,
primarily for two reasons. The first is that, in the traditional approach, W is gener-
ally chosen so that V ⊕W is a natural finite element space—for example, piecewise
polynomials of one higher degree than V on the same triangulation, or piecewise poly-
nomials of the same degree as V on a refined (nested) triangulation. Our choice of W
is motivated by different considerations, and becomes more obviously different from
what would be considered natural choices under the traditional approach when d ≥ 3.
The second reason for choosing a different descriptor is that hierarchical basis error
estimation is also being used in the literature (cf. [26, 20]) to describe an approach
which is quite different from (1.5), though it bears some superficial similarities in
terms of basic components (bubble-functions), in its development. The most obvious
distinction between the two is that (1.5) is clearly an implicit method, whereas the
approach put forth in [26] is an explicit method, which can be shown to be equivalent
to the standard residual method. In fact, it is this equivalence which is used in [20]
to assert that local indicators based on such a method can be used to drive a prov-
ably convergent adaptive algorithm. At present, there are no known results proving
that marking strategies based on local indicators computed from ε lead to convergent
adaptive algorithms, even in the energy norm setting, though there is a wealth of
empirical evidence that they work at least as well as any other local indicators. Here
we have used the term implicit method, in the manner of [2], to describe methods
which require the solution of local or global problems after having solved for û.

We briefly rehearse the key ideas and result of the traditional analysis, and then
make a few remarks on other work which might most readily be compared with our
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own. If B is an inner-product on H1
0,D(Ω), with corresponding energy norm ||| · |||, it

is clear that |||ε||| ≤ |||u− û|||, so ε provides (globally) efficient error estimation. There
is a constant γ = γ(B, V,W ) ∈ [0, 1) such that a strong Cauchy-Schwarz inequality
(cf. [15]), B(v, w) ≤ γ|||v||||||w|||, holds for all v ∈ V and w ∈ W . If the local spaces
V (T ) and W (T ) do not vary in type as the mesh is refined, e.g. they consist of some
fixed subspaces of polynomials on T , then it can be shown that γ does not deteriorate
(approach 1) as the mesh is refined, as long as shape-regularity is maintained. If a
saturation assumption,

∃β ∈ [0, 1) 3: |||u− û||| = inf
v∈V
|||u− v||| ≤ β inf

v∈V
|||u− v|||(1.6)

also holds, one obtains a complementary reliability result. We summarize both effi-
ciency and reliability with the two-sided bound

|||ε||| ≤ |||u− û||| ≤ [(1− γ2)(1− β2)]−1/2|||ε||| .(1.7)

Clearly (1.6) depends the specifics of u, and although it is generally expected to hold
on sufficiently fine meshes for problems likely to be encountered in practice, it is
not difficult to construct counter-examples (cf. [9, 14]). In [9, 14], notions of data
oscillation are used to replace the saturation assumption with a quantity which is
at least directly measurable in principle, even it if is not measured in practice. We
use a related notion of residual oscillation in the present work in a similar fashion,
although the approach to the analysis is quite different, and a potential link between
residual oscillation and the saturation assumption is not apparent. Most treatments
of hierarchical basis error estimation do not consider non-self-adjoint B. A few that
do are [7, 3], and some of our previous work [6, 17] concerning linear finite elements.
In both [7] and [3] an energy norm derived from the symmetric part of B plays a key
role in the construction and/or analysis of the derived estimator, and the analysis in
both cases is quite different from our own.

1.2. Main Results. In order to describe our basic approach to constructing
and analyzing ε, we introduce some basic notation. Let F denote the set of (d − 1)-
dimensional subsimplices, the “faces” of T, and further decompose this as F = FI ∪
FD∪FN , where FI comprises those faces in the interior of Ω, and FD and FN comprise
those faces in ΓD and ΓN , respectively. The starting point of our analysis is the
following error identity, which follows directly from (1.4) and (1.5) and elementwise
integration-by-parts as used in the derivation of residual methods:

Proposition 1.1. For any v ∈ H1
0,D(Ω), w ∈W and v̂ ∈ V , it holds that

B(u− û, v) = B(ε, w) + R(v − v̂ − w) ,

where

R(φ) = F (φ)−B(û, φ) =
∑
T∈T

∫
T

RTφ+
∑

F∈FI∪FN

∫
F

rFφ ,

and

RT = f − (−∇ ·A∇û+ b · ∇û+ cû)|T ,

rF =

{
g −A∇û · n , F ∈ FN

(−A∇û · nT )|T − (A∇û · nT ′)|T ′ , F ∈ FI
.
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Here, T and T ′ are the simplices sharing the face F , and nT and nT ′ are their outward
unit normals; for F ∈ FN , the outward normal to n for ∂Ω is used.

Remark 1.2. The identity B(u− û, v) = R(v− v̂) for v ∈ H1
0,D(Ω) and v̂ ∈ V is

the starting point for residual error estimates, which are obtained by choosing v̂ to be
a suitable interpolant of v, and deriving corresponding bounds on the weak residual,
|R(v − v̂)| ≤ Cη‖v‖1. Here η is comprised of appropriate weights, involving the local
mesh size, on the volumetric and face residuals, ‖RT ‖0,T and ‖rF ‖0,F . We note
that reliability bounds for residual estimators of this sort are very naturally obtained,
and it is efficiency bounds, involving oscillation terms, which require more ingenuity
to establish. This is the opposite of the situation for the auxiliary subspace error
estimators discussed here.

With an appropriate choice of error space W = Wp+d, described in detail later, we
obtain our key error theorem, the upper bound of which is proved in Section 2.3—the
lower bound is a trivial consequence of the coercivity and continuity conditions (1.2).

Theorem 1.3. There is a constant C depending only on the dimension d, poly-
nomial degree p, continuity and coercivity constants C and c, and the shape-regularity
of T such that

c

C
‖ε‖1 ≤ ‖u− û‖1 ≤ C (‖ε‖1 + osc(R, r,T)) ,

where the residual oscillation is defined by

osc(R, r,T)2 =
∑
T∈T

h2
T inf
κ∈Pp−1(T )

‖RT − κ‖20,T +
∑

F∈FI∪FN

hF inf
κ∈Pp−1(F )

‖rF − κ‖20,F .

Here and following, hT is the diameter of T and hF is the diameter of F . The
space Wp+d will be spanned by appropriate “face bubble functions” supported in the
two (or one) simplices sharing a face, and “interior bubble functions” supported in a
simplex. In [17, 6] it was shown that interior bubbles are not needed for lowest order
elements when d = 2, 3. A very different sort of analysis was used in [23, 21] for lowest
order elements and d = 2 to show that the (H1 or energy) error estimates based on ε
are often asymptotically identical to the actual error.

As stated, the computation of ε requires the formation and solution of a global
system, so one might naturally be concerned that the approach is too expensive for
practical consideration. However, even those implicit methods which are based on the
solution local (elementwise or patchwise) problems require the computation of local
stiffness matrices. In Section 3 we argue that the size and sparsity structure of the
system for computing ε is comparable to that of setting up all of the local systems
for other implicit methods. So when comparing the cost of this and other implicit
methods, the real issue is whether or not it is more expensive to solve a single global
system or a collection of local systems. Our key result in this regard is

Theorem 1.4. The global stiffness matrix for Wp+d is spectrally-equivalent to
its diagonal. Although this result implies that we could get away with solving a
diagonal system, and that the modified ε̃ would still provide two-sided bounds as in
Theorem 1.3, with suitably adjusted constants, we instead advocate (approximately)
solving the full system using a few steps of a Krylov solver (CG, BiCG-Stab, GMRES)
either with no preconditioning (e.g. when d = 2) or a simple Jacobi or Gauss-Seidel
preconditioner.

We offer a few more remarks concerning the solution of local or global problems
in the construction of error estimates. An approximate error function ε ≈ u − û is
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very naturally obtained through the solution of the global problem (1.5), and can
be used for driving anisotropic h-refinement or r-refinement (mesh smoothing). Al-
though local problems might also be used in this regard, empirical evidence [18, 19]
suggests that the solution of global problems are better suited for this purpose. A
point in which some approaches based on local problems currently have a theoretical
advantage over the approach presented here is that they are provably robust with
respect to polynomial degree [10, 16], a property which is known not to hold for stan-
dard residual-based error estimates [22]. The efficiency (lower) bound in Theorem 1.3
is clearly independent of the polynomial degree p, but the proof presented here for
the reliability bound suggests that the constant C could depend on p, which is not
ideal. Extensive numerical experiments, as reported in Section 4, provide empirical
evidence that our estimate is robust with respect to p, and we hope to prove this in
future work.

Before outlining the rest of the paper, we finally provide some motivation for the
development in Section 2 by considering the residual oscillation term. We define the
local residual oscillation for each T ∈ T by

osc(R, r, T )2 = h2
T inf
κ∈Pp−1(T )

‖RT − κ‖20,T +
1

2

∑
F∈FI,T

hF inf
κ∈Pp−1(F )

‖rF − κ‖20,F

+
∑

F∈FN,T

hF inf
κ∈Pp−1(F )

‖rF − κ‖20,F ,

where FI,T are the faces of T in FI and FN,T are the faces of T in FN . By definition,

osc(R, r,T)2 =
∑
T∈T

osc(R, r, T )2 .

The choice of Wp+d is such that, if the data is piecewise smooth (for example), then
the local oscillation is of higher order than the local best-approximation error:

osc(R, r, T )

infv∈Pp(T ) ‖u− v‖1,T
→ 0 as |T | → 0 .(1.8)

This is illustrated more explicitly in the following example.
Example 1.5. Suppose that A and b are piecewise constant and c = 0. In this

case it holds that (−∇ ·A∇û+ b · ∇û)|T ∈ Pp−1(T ) and A∇û|T ∈ [Pp−1(T )]d, so we
have

osc(R, r, T )2 = h2
T inf
κ∈Pp−1(T )

‖f − κ‖20,T +
∑

F∈FN,T

hF inf
κ∈Pp−1(F )

‖g − κ‖20,F .

If f ∈ Hp(T ) and g ∈ Hp(F ), then osc(R, r, T ) = O(h
p+1/2
T ). If f ∈ Hp(T ) and

g ∈ Pp−1(F ), then osc(R, r, T ) = O(hp+1
T ). Finally, if f ∈ Pp−1(T ) and g ∈ Pp−1(F ),

then osc(R, r, T ) = 0.

1.3. Outline of Paper. The rest of the paper is organized as follows. In Section
2 we provide additional notation, define the auxiliary finite element space W , and
state and prove some crucial properties of this space. With these results established,
we prove Theorem 1.3 in Section 2.3. In Section 3 we discuss the computational
complexity of the auxiliary problem, including the size and structure of the resulting
system as well as its spectral properties. The proof of Theorem 1.4 is presented here.
Finally, in Section 4, we give several numerical experiments verifying the theoretical
results.
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2. Reliability Analysis.

2.1. Local and Global Polynomial Spaces for Estimating Error. Given
a (non-degenerate) simplex T ⊂ Rd of diameter hT , we define Sj(T ), 0 ≤ j ≤ d to

be the set of sub-simplices of T of dimension j; its cardinality is Sj(T ) =
(
d+1
j+1

)
. We

denote by Sj the set of subsub-simplex-simplices of the triangulation of dimension j,
and point out the overlap of notation Sd−1 = FI ∪ FD ∪ FN and Sd = T.

Recall that Pm(S) is the set of polynomials of total degree ≤ m with domain
S, and note that dimPm(S) =

(
m+j
j

)
for S ∈ Sj(T ). Taking the vertices of T to

be {z0, . . . , zd}; we let λi ∈ P1(Rd), 0 ≤ i ≤ d, be the corresponding barycentric
coordinates, uniquely defined by the relations λi(zj) = δij . We let the face Fj ∈
Sd−1(T ) be the sub-simplex not containing zj , and nj be the outward-pointing unit
normal to Fj .

Definition 2.1 (Element and Face Bubbles). The fundamental element and face
bubbles for T are given by (j = 0, 1, . . . , d)

bT =

d∏
k=0

λk ∈ Pd+1(T ) , bFj
=

d∏
k=0
k 6=j

λk ∈ Pd(T ) .(2.1)

We also define general volume and face bubbles of degree m,

Qm,T = {v = bTw ∈ Pm(T ) : w ∈ Pm−d−1(T )}(2.2)

Qm,Fj = {v = bFjw ∈ Pm(T ) : w ∈ Pm−d(T )} 	Qm,T .(2.3)

The functions in Qm,T are precisely those in Pm(T ) which vanish on ∂T ; and the
functions in Qm,Fj

are precisely those in Pm(T ) which vanish on ∂T \ Fj , with the
additional constraint that, if v ∈ Qm,Fj and v vanishes on Fj , then v vanishes on T .
It is evident from their definitions that

Qm,T ∩Qm,Fj = {0} , Qm,Fi ∩Qm,Fj = {0} for i 6= j ,

(2.4)

dimQm,T = dimPm−d−1(T ) =

(
m− 1

d

)
,(2.5)

dimQm,Fj
= dim

(
Pm−d(T )	 Pm−d−1(T )

)
=

(
m

d

)
−
(
m− 1

d

)
=

(
m− 1

d− 1

)
.(2.6)

Here and elsewhere, we use the conventions that
(
n
k

)
= 0 when k > n, and Pn = {0}

when n < 0. It will be useful to characterize the volume and face bubbles in terms of
moments, as we do in the following lemma.

Lemma 2.2. A function v ∈ Qm,T is uniquely determined by the moments∫
T

vκ , ∀κ ∈ Pm−d−1(T ) ,(2.7)

and a function v ∈ Qm,Fj
is uniquely determined by the moments∫

Fj

vκ , ∀κ ∈ Pm−d(Fj) .(2.8)
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Proof. As is shown, for example, in [4], a function v ∈ Pm(T ) is uniquely deter-
mined by the moments∫

S

vκ , ∀κ ∈ Pm−`−1(S) , ∀S ∈ S`(T ) , 0 ≤ ` ≤ d ,(2.9)

where
∫
S
vκ with S ∈ S0(T ) is understood to be the evaluation of v at the vertex

S. Since v ∈ Qm,T vanishes on S for S ∈ Sj(T ) and j < d, v is determined by the
moments on T alone. Similarly, any v ∈ {v = bFjw ∈ Pm(T ) : w ∈ Pm−d(T )}
is uniquely determined by its moments on T and Fj , so any v ∈ Qm,Fj

is uniquely
determined by its moments on Fj alone.

Definition 2.3 (Local Error Space). Given m ∈ N, we define the local space

Rm(T ) = Qm,T ⊕

 d⊕
j=0

Qm−1,Fj

 .(2.10)

Given p ∈ N, we define the local error space

Wp+d(T ) = (Qp+d,T 	Qp,T )⊕

 d⊕
j=0

(Qp+d−1,Fj
	Qp,Fj

)

 = Rp+d(T )	Rp(T ) ,

(2.11)

so that Pp(T ) +Rp+d(T ) = Pp(T )⊕Wp+d(T ). The dimension of Wp+d(T ) is readily
deduced from (2.4)–(2.6),

dimWp+d(T ) =

(
p+ d− 1

d

)
−
(
p− 1

d

)
+ (d+ 1)

((
p+ d− 2

d− 1

)
−
(
p− 1

d− 1

))
.

(2.12)

We further note that, by Lemma 2.2 and its proof, a function v ∈ Rp+d(T ) is uniquely
determined by the values∫

S

vκ ∀κ ∈ Pp−1(S), ∀S ∈ S`(T ), d− 1 ≤ ` ≤ d.(2.13)

Remark 2.4. Starting with the standard basis for P1(T ), {λj : 0 ≤ j ≤ d}, a
p-hierarchical basis for Pm(T ), m > 1, is built from a p-hierarchical basis for Pm−1(T )
by adding basis functions of degree m. Three approaches to such constructions, at least
in d = 2, 3, are described in [25, 11, 8], with a useful summary of the constructions
from [11, 25] provided in [1]. In these constructions, hierarchical basis functions are
associated with each sub–simplex S ∈ S`, 0 ≤ ` ≤ d, so it is simple in this setting to
construct a basis for Wp+d(T ).

The corresponding global finite element spaces, defined by the degrees of freedom
and local spaces, are given by

Rp+d : = {v ∈ H1
0,D : v|T ∈ Rp+d(T ) for each T ∈ T},

Wp+d : = {w ∈ H1
0,D(Ω) : v|T ∈Wp+d(T ) for each T ∈ T},

and we recall that the Lagrange finite element space Vp is defined by (1.3). Similar
to the local setting, the global spaces satisfy the relation Rp+d = Rp ⊕Wp+d so that
Vp +Rp+d = Vp ⊕Wp+d.
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2.2. A Quasi-Interpolant Based on Moment Conditions. Lemma 2.5.
Given v ∈ H1(Ω), there exits a v̂ ∈ Vp and ŵ ∈Wp+d such that

(i)
∫
T

(v − v̂ − ŵ)κ = 0 for all κ ∈ Pp−1(T ) and T ∈ T.
(ii)

∫
F

(v − v̂ − ŵ)κ = 0 for all κ ∈ Pp−1(F ) and F ∈ FI ∪ FN .

(iii) |v − v̂ − ŵ|m,T ≤ Ch1−m
T |v|1,ΩT

, where ΩT is a local patch of elements con-
taining T .

(iv) |v − v̂ − ŵ|0,F ≤ Ch
1/2
F |v|1,ΩF

, where hF is the diameter of F ∈ F, and
ΩF = ΩT for some T ∈ T with F ⊂ ∂T .

(v) |ŵ|1,T ≤ C|v|1,ΩT
for each T ∈ T.

Proof. Since functions in Rp+d(T ) are uniquely determined by the values (2.13),
the function ||| · |||m,T : Rp+d(T )→ R+ defined by

|||φ|||m,T = max
S∈S`(T )

d−1≤`≤d

sup
κ∈Pp−1(S)

h
d/2−`/2−m
T

‖κ‖0,S

∫
S

φκ(2.14)

is a norm on Rp+d(T ).

Let T̃ = {y = h−1
T x : x ∈ T}, and for each ψ : T → R, define ψ̃ : T̃ → R by

ψ(y) = ψ(hTx). Analogous definitions are given for the sub-simplices of T and T̃ and

functions defined on them. It is clear that |φ|j,T = h
d/2−j
T |φ̃|j,T̃ . We also have for any

S ∈ S`(T )

h
d/2−`/2−m
T

‖κ‖0,S

∫
S

φκ =
h
d/2−`/2−m
T

h
`/2
T ‖κ̃‖0,S̃

∫
S̃

φ̃κ̃h`T =
h
d/2−m
T

‖κ̃‖0,S̃

∫
S̃

φ̃κ̃.

Since hT̃ = 1, we see that |||φ|||m,T = h
d/2−m
T |||φ̃|||m,T̃ . Therefore there exists a

scale-invariant constant C > 0 which depends solely on p, d and m such that

|φ|m,T = h
d/2−m
T |φ̃|m,T̃ ≤ Ch

d/2−m
T |||φ̃|||m,T̃ = C|||φ|||m,T .(2.15)

Next, denote by v̂1 ∈ Vp the Scott-Zhang interpolant of v satisfying [24]

‖v − v̂‖m,T ≤ Ch1−m
T |v̂|1,ΩT

(m = 0, 1) ,(2.16a)

‖v − v̂‖0,∂T ≤ Ch1/2
T |v̂|1,ΩT

,(2.16b)

on each T ∈ T. Set v̂2 ∈ Rp+d such that∫
S

v̂2κ =

∫
S

(v − v̂1)κ ∀κ ∈ Pp−1(S), ∀S ∈ S`, d− 1 ≤ ` ≤ d.

By (2.15) and (2.16) we find

|v̂2|Hm(T ) ≤ C max
S∈S`(T )

d−1≤`≤d

sup
κ∈Pp−1(S)

h
d/2−`/2−m
T

‖κ‖0,S

∫
S

v̂2κ

= C max
S∈S`(T )

d−1≤`≤d

sup
κ∈Pp−1(S)

h
d/2−`/2−m
T

‖κ‖0,S

∫
S

(v − v̂1)κ

≤ C
(
h

1/2−m
T ‖v − v̂1‖0,∂T + h−mT ‖v − v̂1‖0,T

)
≤ Ch1−m

T |v|1,ΩT
.
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Uniquely decomposing v̂2 as v̂2 = v̂3 + ŵ with v̂3 ∈ Rp and ŵ ∈Wp+d, and setting
v̂ := v̂1 + v̂3 so that v̂ + ŵ = v̂1 + v̂2, we see that properties (i)–(ii) clearly hold, and

‖v − v̂ − ŵ‖m,T ≤ ‖v − v̂1‖m,T + ‖v̂2‖m,T ≤ Ch1−m
T |v|1,ΩT

.

Therefore by standard trace inequalities and the shape regularity of the mesh, we also
have on F ⊂ ∂T

‖v − v̂ − ŵ‖0,F ≤ C
(
h
−1/2
F ‖v − v̂ − ŵ‖0,T + h

1/2
F |v − v̂ − ŵ|1,T

)
≤ Ch1/2

F |v|1,ΩF
.

Hence, properties (iii)–(iv) are satisfied.
Finally, since Rp(T )∩Wp+d(T ) = {0}, the strengthened Cauchy–Schwarz inequal-

ity [2] gives the existence of a constant γ ∈ [0, 1) such that
∫
T
∇ŵ·∇v̂3 ≤ γ|ŵ|1,T |v̂3|1,T

Consequently, we have

|v̂2|21,T = |ŵ|21,T + |v̂3|21,T + 2

∫
T

∇ŵ · ∇v̂3

≥ |ŵ|21,T + |v̂3|21,T − 2γ|ŵ|1,T |v̂3|1,T ≥ (1− γ2)|ŵ|21,T .

Therefore we find |ŵ|H1(T ) ≤
√

(1− γ2)−1|v̂2|H1(T ) ≤ C|v|H1(ΩT ).
Remark 2.6. The moment conditions (i)-(ii) of Lemma 2.5 imply the conditions∫

T

∇(v − v̂ − ŵ) · φ = 0 for all φ ∈ RTp−1(T ) and all T ∈ T ,(2.17)

where RTp−1(T ) = xPp−1(T )+[Pp−1(T )]d = {φ =
∑d
j=0(x−zj)κj : κj ∈ Pp−1(T )} is

the local Raviart-Thomas space. Recalling the vertex, face and normal vector notation
above, this equivalence is most readily seen through the following simple consequence
of integration-by-parts on a simplex:

For f ∈ H1(T ),

∫
T

(x− zj) · ∇f = aj

∫
Fj

f − d
∫
T

f ,(2.18)

where aj is the distance (altitude) between zj and Fj. Choosing f = (v− v̂− ŵ)κj for
κj ∈ Pp−1(T ), and combining results for each j, makes the comparison between (2.17)
and (i)-(ii) apparent. The conditions (2.17) are not independent, so they do not
impose dim(RTp−1(T )) = d

(
p+d−1
d

)
+
(
p+d−2
d−1

)
independent constraints on Rp+d(T ),

whose dimension,
(
p+d−1
d

)
+ (d+ 1)

(
p+d−2
d−1

)
, is generally smaller.

2.3. Proof of Theorem 1.3. Proof. [Proof of Theorem 1.3] Combining Propo-
sition 1.1 and Lemma 2.5, we determine that

|B(u− û, v)| ≤ |B(ε, ŵ)|+
∑
T∈T

inf
κ∈Pp−1(T )

‖RT − κ‖0,T ‖v − v̂ − ŵ‖0,F

+
∑

F∈FI∪FN

inf
κ∈Pp−1(F )

‖rF − κ‖0,F ‖v − v̂ − ŵ‖0,F

. ‖ε‖1‖ŵ‖1 +
∑
T∈T

hT ‖v‖1,ΩT
inf

κ∈Pp−1(T )
‖RT − κ‖0,T

+
∑

F∈FI∪FN

h
1/2
F ‖v‖1,ΩT

inf
κ∈Pp−1(F )

‖rF − κ‖0,F

. ‖ε‖1‖v‖1 + osc(R, r,T)‖v‖1 .
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For the final inequality, we have used Lemma 2.5 (v), the (discrete) Cauchy-Schwarz
Inequality and the bounded overlap of the patches ΩT and ΩF (which is also a con-
sequence of shape-regularity). Finally, we choose v = u− û and use the coercivity of
B to complete the proof.

Remark 2.7. We note that the continuity constant enters in the bound |B(ε, ŵ)| ≤
C‖ε‖1,Ω‖ŵ‖1, and only affects the term ‖ε‖1 in the reliability bound of Theorem 1.3.
The coercivity constant c affects both terms in the reliability bound.

Remark 2.8. Although our approach is analyzed as an h-method with global
fixed p, the general approach is very naturally adjusted to both p and hp-methods. As
indicated in the introduction, the driving motivation for the choice of Wp+d(T ) is to
make sure that the local oscillation is of higher order than the local best approximation
error. The development suggests that, if the local approximation space is V (T ) =
PpT (T ), then the local error space W (T ) should be spanned by face bubbles of degree
pT + d − 1 and interior bubbles of degree pT + d which are not already represented
in PpT (T ). Again, although our approach is analyzed for simplicial elements, the
shapes of the elements are irrelevant for much of our development. In particular, it is
straight-forward to apply the prescription above for choosing W (T ) on tensor-product
elements such as quadrilaterals or bricks. In Section 4 we investigate our approach as
a p-method on meshes which include tensorial elements.

3. Computational Considerations. As presented above, the computation of
ε requires the solution of a global system involving the stiffness matrix associated
with Wp+d. At first glance this would seem to rule out the approach as too expensive
for practical computations, but we argue herein that this is not the case. Our argu-
ment is based on considerations of sparsity structure and size of the linear systems,
and on their spectral properties. Using standard (p-hierarchical) bases for the spaces
Vp and Wp+d, we compare and contrast the corresponding global and element stiff-
ness matrices. We assume that global stiffness matrices are assembled by summing
contributions from element stiffness matrices computed on each simplex T ∈ T.

3.1. Size and Sparsity Structure. We begin by comparing the sizes of the el-
ement stiffness matrices for Vp(T ) and Wp+d(T ), as well as the amount of information
which must be transferred to the global stiffness matrices in each case if static conden-
sation is used locally to eliminate interior degrees of freedom. Letting n = n(p, d) and
m = m(p, d) be the number of degrees of freedom associated with Vp(T ) and Wp+d(T ),
respectively, and n̂ = n̂(p, d) and m̂ = m̂(p, d) denote the analogous quantities after
interior degrees of freedom have been eliminated, we have

n =

(
p+ d

d

)
, m =

(
p+ d− 1

d

)
−
(
p− 1

d

)
+ (d+ 1)

((
p+ d− 2

d− 1

)
−
(
p− 1

d− 1

))
,

(3.1)

n̂ =

(
p+ d

d

)
−
(
p− 1

d

)
, m̂ = (d+ 1)

((
p+ d− 2

d− 1

)
−
(
p− 1

d− 1

))
.

(3.2)

We note that n is a polynomial of degree d in p and m is a polynomial of degree d− 1
in p, so it is clear that n > m when p is large enough, for any fixed d. The polynomial
degrees for n̂ and m̂ are of degrees d − 1 and d − 2 in p, respectively. In Table 1 we
list values of the the four quantities (3.1)-(3.2) for 1 ≤ p ≤ 7 and d = 2, 3.

Recall that Sj denotes the set of subsimplices of dimension j in T, and Sj denotes
its cardinality, 0 ≤ j ≤ d. Without static condensation to eliminate the degrees of
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Table 1
Size of the local stiffness matrices for Vp(T ) and Wp+d(T ) with and without static condensation,

for d = 2, 3.

d = 2 d = 3
p n m n̂ m̂ n m n̂ m̂
1 3 4 3 3 4 5 4 4
2 6 6 6 3 10 16 10 12
3 10 8 9 3 20 30 20 20
4 15 10 12 3 35 47 34 28
5 21 12 15 3 56 67 52 36
6 28 14 18 3 84 90 74 44
7 36 16 21 3 120 116 100 52

freedom associated with the interiors of each T ∈ T, the sizes of the global stiffness
matrices for Vp and Wp+d are, respectively,

N =

d∑
j=0

Sj
(
p− 1

j

)
, M = Sd

((
p+ d− 1

d

)
−
(
p− 1

d

))
+ Sd−1

((
p+ d− 2

d− 1

)
−
(
p− 1

d− 1

))
.

When the interior degrees of freedom are eliminated, the sizes become

N̂ =

d−1∑
j=0

Sj
(
p− 1

j

)
, M̂ = Sd−1

((
p+ d− 2

d− 1

)
−
(
p− 1

d− 1

))
.

The formulas count degrees of freedom on ΓD, though these are not truly unknowns
in the problem, because many practical implementations proceed in this way when
assembling global matrices, and encode Dirichlet boundary conditions in the system
as a final step. Recognizing that

(
p−1
d

)
and

(
p−1
d−1

)
are polynomials of degree d and

d − 1 in p, respectively, we see again that, for any fixed d, N > M and N̂ > M̂ for
sufficiently large p. To illustrate this, consider a standard uniform triangulation of the
unit square by isosceles right triangles (half-squares) with side-length 1/s. For such
triangulations, N = (p(s− 1) + 1)2 and M = 4p(s− 1)2 + (s2 − 1), so N > M for all
s ≥ 2 when p ≥ 5. For such triangulations we also have N̂ = (3p−2)s2−4(p−1)s+p−1
and M̂ = 3s2 − 4s+ 1, so N̂ > M̂ for all s ≥ 2 when p ≥ 2.

We now turn to the discussion of sparsity for the global matrices for Vp and
Wp+d. Given S ∈ Sj , let TS be the set of simplices T ∈ T which have S as a sub-
simplex. We also define Si(TS) = ∪T∈TS

Si(T ) and denote its cardinality by Si(TS).
If S = T ∈ Sd = T, then TS = {T} and Si(TS) =

(
d+1
i+1

)
. If S = F ∈ Sd−1, then

TS consists of the one or two simplices which have F as a face; in the first case
Si(TS) =

(
d+1
i+1

)
as before, and in the second Si(TS) = 2

(
d+1
i+1

)
−
(
d
i+1

)
. For j < d− 1,

the cardinalities of TS and Si(TS) for a given S ∈ Sj cannot be determined a priori for
general unstructured meshes. To compute the sparsity structure of the global stiffness
matrix, the sets Si(TS) for each S ∈ Sj (and each i and j) must be determined, at
least indirectly. For Wp+d this task is greatly simplified by the fact that we need
only consider Si(TS) for each S ∈ Sj with i, j ∈ {d − 1, d}—these are the two cases
which are easiest to resolve! More specifically, let φ ∈ Wp+d be a basis function, and
let S be the (sub-)simplex of minimal dimension j ∈ {d − 1, d} on which φ does not
vanish identically. The number of possible non-zeros in the the row of the matrix
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corresponding to φ is

Sd−1(TS)

((
p+ d− 2

d− 1

)
−
(
p− 1

d− 1

))
+ Sd−1(TS)

((
p+ d− 1

d

)
−
(
p− 1

d

))
.

If static condensation is used, the number of non-zeros in a row for φ associated with
an interior face is

(2d+ 1)

((
p+ d− 2

d− 1

)
−
(
p− 1

d− 1

))
.

For a boundary face, 2d + 1 is replaced by d + 1. We see that, in the case of Wp+d,
the sparsity structure is known in advance. For example, when d = 2 and static
condensation is used, the number of non-zeros in any row does not exceed 5, regardless
of p and the mesh topology. When d = 3 and static condensation is used, the number
of non-zeros in any row does not exceed 7(2p− 1).

For comparison, we briefly discuss the situation for Vp. Let φ ∈ Vp be a basis
function, and let S be the (sub-)simplex of minimal dimension j on which φ does not
vanish identically. The number of possible non-zeros in the the row of B corresponding
to φ, and the total number of possible non-zeros are, respectively,

d∑
i=0

Si(TS)

(
p− 1

i

)
,

d∑
j=0

∑
S∈Sj

d∑
i=0

Si(TS)

(
p− 1

i

)
.

If static condensation is used to eliminate interior degrees of freedom, the sums are
terminated at d− 1 instead instead of d.

3.2. Spectral Behavior of the Stiffness Matrix for Wp+d. We argue in
Theorem 1.4 and Remark 3.4 below that the spectral behavior of the global stiffness
matrix for Wp+d, with or without static condensation, makes it amenable to solution
techniques which are simpler/faster than those for Vp. In brief, the conditioning
of the stiffness matrix for Wp+d, perhaps after simple diagonal rescaling, does not
deteriorate as the triangulation is refined, unlike that for Vp. Before specifically
commenting on the spectral behavior of the global stiffness matrix for Wp+d, we first
make comparison with matrices arising from the H1-inner-product for a general finite
dimensional subspace X ⊂ H1

0,D(Ω), having basis {φi : 1 ≤ i ≤ N}. We define the
stiffness matrices

Bij = B(φj , φi) , B̂ij = (φj , φi)1 =

∫
Ω

∇φj · ∇φi + φjφi .

Making the obvious identification between v ∈ RN and v ∈ X, we see that

B(v, w) = wtBv , (v, w)1 = wtB̂v .

Stated in terms of the matrices B and B̂, the continuity and coercivity of the bilinear
form B are

|wtBv| ≤ C
(
vtB̂v

)1/2 (
wtB̂w

)1/2

, vtBv ≥ cvtB̂v ∀v,w ∈ RN .

Proposition 3.1. Let µ = µ1 + iµ2, µ1, µ2 ∈ R, be an eigenvalue of B. Then

cλmin(B̂) ≤ µ1 ≤ Cλmax(B̂) , |µ2| ≤ Cλmax(B̂) .
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Proof. Let v = v1 + iv2, v1,v2 ∈ RN , be an eigenvector for µ; and assume,
without loss of generality, that ‖v‖ = 1, where ‖ · ‖ is the Euclidean norm on CN . It
is straightforward to show that

vt1Bv1 + vt2Bv2 = µ1 , vt1Bv2 − vt2Bv1 = µ2 .

So we see that

cλmin(B̂) ≤ c
(
vt1B̂v1 + vt2B̂v2

)
≤ µ1 ≤ C

(
vt1B̂v1 + vt2B̂v2

)
≤ Cλmax(B̂) .

Furthermore,

|µ2| ≤ 2|vt2Bv1| ≤ 2C
(
vt1B̂v1

)1/2 (
vt2B̂v2

)1/2

≤ 2Cλmax(B̂)‖v1‖‖v2‖ ≤ Cλmax(B̂) .

We have used the Cauchy Inequality, 2ab ≤ a2 + b2 for the final inequality above.
To get a better handle on the spectral properties of B̂, we we now consider

element stiffness matrices for X. Given T ∈ T, let I(T ) = {j : T ∩ supp(φj) 6= ∅} and

n = n(T ) = |I(T )|. We define B̂T ∈ Rn×n via

(B̂T )ij = (φj , φi)1,T =

∫
T

∇φj · ∇φi + φjφi for i, j ∈ I(T ) .

Again making the obvious association between v ∈ RN and v ∈ X, we define vT ∈ Rn
such that ‖v‖21,T = vtT B̂TvT ; it is clear that vT consists of the components of v whose

indices are in I(T ). We also define D̂ = diag(B̂) and D̂T = diag(B̂T ). It is apparent
from these definitions that

vtB̂v =
∑
T∈T

vtT B̂TvT , vtD̂v =
∑
T∈T

vtT D̂TvT .

The next result follows immediately from this discussion.

Proposition 3.2. Suppose there are constants c, C > 0 such that c ≤ wtB̂Tw

wtD̂Tw
≤

C for all non-zero w ∈ Rn. Then c ≤ wtB̂w
wtD̂w

≤ C for all non-zero w ∈ RN . As a

consequence, the spectrum of D̂−1/2B̂D̂−1/2 is contained in [c, C].
Suppose X = Wp+d and we use a hierarchical basis (cf. Remark 2.4). Fixing

T ∈ T and using the corresponding basis for Wp+d(T ), we may use simple scaling

arguments to see that that B̂T can be expressed in the form

B̂T = hd−2
T B1 + hdTB2 ,

where B1, B2 depend only on p, d and the shape-regularity of T . The matrix B1,
whose entries are h2−d

T

∫
T
∇φj ·∇φi, has full-rank because (·, ·)1,T is an inner-product

on Wp+d(T ). The matrix B2, whose entries are h−dT
∫
T
φjφi is clearly a full-rank Gram

matrix. This implies that there are constants cT , CT > 0 depending only on p, d and
the shape-regularity of T for which

cTw
tD̂Tw ≤ wtB̂Tw ≤ CTwtD̂Tw for all w ∈ Rn .(3.3)

Invoking the shape-regularity of the family {T}, we can replace the local constants
cT , CT with universal constants c, C and apply Proposition 3.2. We are now ready to
prove Theorem 1.4 our key result concerning the spectral properties of B for Wp+d:
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Proof. [Proof of Theorem 1.4] Letting B̂ and D̂ be as in the discussion above,
and D be the diagonal of B, we have already seen in Proposition 3.1 that B and B̂
are spectrally equivalent to each other. It is trivial to see that D and D̂ are spectrally
equivalent to each other. So, to prove that B and D are spectrally equivalent to each
other, we need merely show that B̂ and D̂ are spectrally equivalent to each other.
But this was established by Proposition 3.2 and the discussion that followed.

Remark 3.3. Had we chosen X = Vp, the corresponding matrix B1 has a one-
dimensional nullspace spanned by the vector e ∈ Rn of ones, corresponding to the
constant functions in Vp(T ). We deduce that eT B̂Te =

∫
T

1 = |T | ∼ hdT , whereas

eT B̂Te ∼ hd−2
T . For any other non-zero w ∈ Rn, wT B̂Tw and wT D̂Tw scale in

precisely the same way, so there are no scale-invariant cT , CT for which (3.3) holds.
Therefore, Proposition 3.2 cannot be applied.

Remark 3.4 (Effect of Static Condensation). To analyze the effect of static
condensation on the global stiffness matrix B for Wp+d, we split the space as Wp+d =
Wp+d,1 ⊕Wp+d,2, where Wp+d,1 is spanned by the “interior” basis functions—those
supported on a single element. This splitting of the space induces the natural 2 × 2
block structure on B

B =

(
B11 B12

B21 B22

)
,

and we must investigate the spectral properties of the Schur complement S = B22 −
B21B

−1
11 B12. Given z ∈ RM̂ , we extend it to a vector z̃ ∈ RM by appending it to

the vector −B−1
11 B12z ∈ RM−M̂ . For v,w ∈ RM̂ , we have wtSv = w̃tBṽ, so our

analysis above suffices to show that the spectral properties of S cannot be worse than
those of B.

4. Numerical Experiments. We recall that our results concerning the reliabil-
ity and computational cost of our estimator were obtained for fixed p and (adaptive)
h-refinement on simplicial meshes, with reliability shown in the H1-norm. In the first
subsection, we numerically illustrate these results on a standard test problem in R2

for modest p. The second subsection is devoted to extensive testing of the robustness
of the estimator with respect to polynomial degree. Here we consider the behavior of
the error estimator under uniform p-refinement on fixed (adapted) meshes of quadri-
laterals/bricks and/or simplices for several different types of problems, one of which
is in R3. We did not use static condensation for any of the linear systems.

A key measure of the quality of the estimator is its effectivity in a norm of interest,

EFF = ‖ε‖/‖u− û‖ .

In most cases, we will report effectivities in the global H1 or appropriate energy
norm, because our theory deals with such cases. But as a matter of interest, for the
h-refinement study we also report global L2-effectivity and local H1-effectivity—the
latter of which provides a good measure of the efficiency of local indicators ‖ε‖1,T for
driving an adaptive algorithm.

4.1. Verification of Properties of the Estimator Under Adaptive h-
Refinement. We consider a prototypical problem on the L-shaped domain

−∆u = f in Ω = (−1, 1)2\(0, 1)× (−1, 0) , u = 0 on ∂Ω ,

with f chosen so that the exact solution is given by u = r2/3 sin( 2
3θ)(x

2
1 − 1)(x2

2 − 1).
This solution exhibits the typical singular behavior at the origin for generic f . We
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Fig. 1. Global H1 (solid) and L2 (dashed) effectivities for the L-shaped domain on a sequence
of 20 adaptively-refined meshes.

note that, in this case, the oscillation term in the reliability bound reduces to purely
data oscillation which has the local form osc(R, r, T ) = hT infκ∈Pp−1(T ) ‖f − κ‖0,T .

We study the performance of the a posteriori error estimator with an h-refinement
algorithm for fixed p = 1, 2, 3 on a starting uniform mesh with h = 1/8. The marking
strategy for refinement is performed in the following manner: if we denote by Tmax ∈ T

the simplex with the largest estimated error, i.e, ‖ε‖H1(Tmax) ≥ ‖ε‖H1(T ) ∀T ∈ T, then
we set T for refinement if ‖ε‖H1(T ) ≥ γ‖ε‖H1(Tmax) for some user–defined parameter
γ ∈ [0, 1]. In all of the tests below we take γ = 0.3.

For each p, relevant data was collected for a sequence of nested 20 meshes obtained
by the adaptive scheme described above. Global H1 and L2 effectivities are given in
Figure 1. The global effectivities in both norms are quite good, with some indication
of asymptotic exactness (or at least effectivities very near 1) in H1 for each p, and
in L2 when p ≥ 2. In terms of local H1 effectivities, we observe that the maximum
local effectivities range from [1.02, 2.17] for all tested polynomial degrees and for all
meshes, which bodes well for their efficiency as local indicators for driving adaptive
refinement.

As a verification of the claims of Section 3 we briefly summarize the ratios
dimWp+d/ dimVp and the condition numbers of the diagonally-rescaled stiffness ma-
trices for Wp+d, B → D−1/2BD−1/2. In all cases the largest value of the dimension
ratio corresponds to the coarsest mesh, and the smallest ratio to the finest mesh. For
p = 1, we have dimWp+d/ dimVp ∈ [5.09, 5.77], for p = 2 the ratios were in [2.32, 2.41],
and for p = 3 the ratios were in [1.49, 1.51]. Again, for each p and all meshes the
computed condition numbers for Wp+d remained in a relatively narrow range, neither
monotonically increasing nor decreasing as the mesh was refined. For p = 1 the range
of condition numbers was [28.4, 37.3], for p = 2 this range was [15.0, 16.9], and for
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p = 3 this range was [30.1, 33.2].

4.2. Investigation of Properties of the Estimator Under Uniform p-
Refinement. In the experiments that follow, we investigate the behavior of our
estimator with respect to uniform p refinement on fixed (adapted) meshes which may
consist of quadrilaterals (or bricks), triangles, or a combination of the two. In the
case of quadrilateral or brick elements, we use the full tensor-product space indexed
by maximal degree in each variable, not a reduced space indexed by total degree.
The choice of full tensor-product space more naturally fits with our theoretical de-
velopment of the error estimator, and it provides better convergence for some of the
more challenging problems below. The auxiliary space Wp+d for the tensor elements
still consists of the interior bubbles of degree up to p + d and face bubbles of degree
up to p + d − 1 which were not already present in Vp. The problems are chosen to
illustrate the behavior of the estimator in a variety of situations in which certain
problem-dependent parameters might reasonably affect performance.

In nearly all cases below, we observe that the error estimates stay within a factor
of two of the actual errors, and the one case in which the factor reaches roughly 2.5 is
where both quantities are smaller than 10−15. The conditioning varied widely between
problems due to problem parameters and the use of an integrated Legendre basis for
tensor elements versus a standard Legendre basis for triangular elements, but the
ratio of condition numbers (Wp+d over Vp) indicates that the cost of computing ε is
acceptable. For example, for all choices of β in Subsection 4.2.1, the condition number
ratios for rectangular elements remained O(1) and the condition numbers themselves
remained O(10) for all p. For the same problem on triangular elements this ratio
decreased steadily to reach O(10−4) when p = 8, with the condition number for Wp+d

at O(100). The size of the stiffness matrix and number of non-zeros for Wp+d tended
to drop below that of Vp at either p = 4 or p = 5 for all 2D problems.

4.2.1. Discontinuous and Anisotropic Diffusion on the Square. Letting
Ω = (−1, 1)× (−1, 1), we consider problems of the form

−∇ · (A∇u) = f in Ω , u = 0 on ∂Ω , A =

(
α 0
0 1

)
, α =

{
1 x < 0

β x > 0
,

for various choices of β > 1. Because the jump discontinuity in the diffusion matrix
happens along a straight line, one does not expect singularities in u for generic f . This
allows us to isolate potential effects of varying β on the effectivity of the estimator from
those which might arise due to singularities in u—singular solutions are considered in
the two subsequent problems. The function f is chosen so that the solution is given
by

u = cos(πy/2)


(
e−1 − ex + (e−1)(β+e)

e(β+1) (x+ 1)
)

x < 0

β−1
(
e− ex + (e−1)(β+e)

e(β+1) (x− 1)
)

x > 0
.

We note that u = cos(πy/2)w(x), where w is the solution of the 1D problem−(αw′)′ =
ex in (−1, 1) with w(−1) = w(1) = 0, so u exhibits the typical behavior of having
relatively small magnitude where β is large.

We report convergence and effectivity for β = 10, 100, 1000 on two different
meshes—the first consisting of two rectangles obtained by dividing the domain along
the line x = 0, and the second consisting of four triangles obtained by dividing the
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Fig. 2. Convergence of the error (solid) and error estimates (dashed) with respect to p for both
rectangular elements (left) and triangular elements(right) and β = 10, 100, 100. Global effectivities
(solid) for both types of elements are given below their respective convergence plots.

two rectangles along their diagonals. Convergence and effectivity plots, for the energy
norm, are provided in Figure 2 for both types of elements. To save space, each of the
four plots contain graphs for all three values of β. The convergence and effectivity
behavior for β = 100 and β = 1000 is nearly identical, so their graphs are almost
indistinguishable—the case β = 10 is more clearly distinguishable from the other for
both types of elements. The effectivities stay within the range [0.7, 1) in all cases.

4.2.2. Slit Disk. Let Ω be the unit disk with a slit along the positive x-axis,
with Γ1 consisting of the boundary of the disk (r = 1) and the top of the slit (θ = 0+,
0 ≤ r ≤ 1), and Γ2 consisting of the bottom of the slit (θ = 2π−, 0 < r < 1); see
Figure 3. We consider the problem

−∆u = f = (4− σ2) sin(σθ) in Ω , u = 0 on Γ1 , condition on Γ2 ,

for two choices of σ. If u = 0 on Γ2, we take σ = 1/2 and refer to the problem as
the Dirichlet-Dirichlet slit; and if ∂u/∂n = 0 on Γ2 we take σ = 1/4 call this the
Dirichlet-Neumann slit. In both cases, the solution is given by

u = (rσ − r2) sin(σθ) ,

and it exhibits the typical singularities present for generic f . In Figure 3 we see the
mesh and a close-up of the central portion of the mesh. It is clear from these images
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Fig. 3. The slit disk, together with its mesh and a close-up of the central portion.
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Fig. 4. Convergence of the error (solid) and error estimates (dashed) with respect to p for
both the Dirichlet-Dirichlet case (left) and the Dirichlet-Neumann case (right). Global effectivities
(solid) for both problems are given below their respective convergence plots.

that the mesh includes both curved and straight quadrilaterals, but it also includes
triangles touching the origin. Despite the difference in singularity strength for the two
types of boundary conditions, the same mesh is used in both cases. Convergence and
effectivity plots are given in Figure 4 for both problems, with respect to polynomial
degree p. We emphasize that the effectivities in both cases do not deteriorate with p,
and indicate that the error estimate is generally within a factor of two of the actual
error.
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Fig. 5. The Kellogg problem, together with its mesh for β = 5 (center) and β = 10 (right).

4.2.3. Kellogg Problem. Let Ω be the unit disk and β > 1, and define σ =
arctan(β−1)/(π/4). We consider the problem

−∇ · (α∇u) = f = (4− σ2)α g in Ω , u = 0 on ∂Ω ,

where

g(θ) =


− cos(σ(π/4− θ))/β , θ ∈ [0, π/2)

− sin(σ(3π/4− θ)) , θ ∈ [π/2, π)

cos(σ(5π/4− θ))/β , θ ∈ [π, 3π/2)

sin(σ(7π/4− θ)) , θ ∈ [3π/2, 2π)

, α(θ) =

{
β2 , θ ∈ [0, π/2) ∪ [π, 3π/2)

1 , θ ∈ [π/2, π) ∪ [3π/2, 2π)
,

and we require that both u and α∂u/∂n are continuous across the interfaces between
the four quadrants (see Figure 5). We may naturally think of α and g as functions on
R via 2π-periodic extension. The solution is given by

u = (rσ − r2)g(θ) ,

and it exhibits the typical leading singularity present for generic f . By increasing
β, we can make σ > 0 as small as we like, thereby generating an increasingly strong
singularity at the origin. For our experiments we consider the cases β = 5 and β = 10,
for which the solution has leading singularities r0.251332 and r0.126902, respectively.
Again, the meshes have a mix of curved and straight triangles and quadrilaterals, as
seen in Figure 5. Convergence and effectivity plots are given in Figure 6 for both
β = 5 and β = 10, with respect to polynomial degree p. As before, we see that
the effectivities in both cases do not deteriorate with p, and indicate that the error
estimate is generally within a factor of two of the actual error.

4.2.4. Boundary Layers. Letting Ω be either the unit square or the unit cube,
we consider the problem

−ε∆u+
∂u

∂x
+ 2u/α = 1 in Ω ,

with homogenous Dirichlet conditions at x = 0 and x = 1, and homogeneous Neumann
conditions on the rest of the boundary. The solution is given by

u =
α

2

(
1 +

(
er
− − 1

er+ − er−

)
er

+x −

(
er

+ − 1

er+ − er−

)
er
−x

)
, r± =

1±
√

1 + 8ε/α

2ε
.
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Fig. 6. Convergence of the error (solid) and error estimates (dashed) with respect to p for the
Kellogg problem with β = 5 (left) and β = 10 (right). Global effectivities (solid) in the energy norm
for both problems are given below their respective convergence plots.

Such solutions exhibit boundary layers near both x = 0 and x = 1 when 0 < ε� 1 and
0 < α� 1. The quadrilateral meshes for ε = 10−1, α = 10−2 and ε = 10−2, α = 10−2

are given in Figure 7. The convergence and effectivity plots for these problems are
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Fig. 7. Rectangular meshes for the cases ε = 10−2, α = 10−3 and ε = 10−3, α = 10−3 of the
Boundary Layer problem.
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given in Figure 8. These are given in the energy-norm,

‖v‖2 =

∫
Ω

ε|∇v|2 + 2u2/α dx ,

derived from the symmetric part of the associated bilinear form. Since the errors are
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Fig. 8. Convergence of the error (solid) and error estimates (dashed) with respect to p for the
Boundary Layer problem with ε = 10−1, α = 10−2 (left) and ε = 10−2, α = 10−2 (right). Global
effectivities (solid) for both problems are given below their respective convergence plots.

near machine-precision for p ≥ 7, it is expected that the reported effectivities may
not be as accurate in that range. Finally, we consider the case ε = α = 10−2 in 3D
with hexahedral bricks with an appropriate x-grading, and whose yz-aspect ratio is 1
for each brick. The convergence and effectivity information are given in Figure 9.
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right.
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