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Abstract 27 

Understanding the supply of nutrients from various soil sources and the sensitivity of tree 28 

species to soil nutrient availability is critical for predicting the effects on forest health and 29 

productivity of declines in base cations due to acid rain and forest harvesting.  We collected 30 

soil samples from 19 sites in the northeastern US, chemically analyzed them using a 31 

sequential extraction procedure, and compared them to the chemical composition of foliage of 32 

the dominant tree species.  Concentrations of calcium and magnesium in foliage were 33 

correlated with exchangeable Ca and Mg concentrations in the upper mineral soil; for most 34 

tree species they were also correlated to acid-extractable Ca and Mg in the parent material (C 35 

horizon).  Foliar phosphorus was better correlated with soil P in the upper mineral soil than 36 

the C horizon, while foliar aluminum was insensitive to soil Al concentrations.  In five sites in 37 

New Hampshire, the Ca/Sr of foliage was consistent with that of the Oie horizon, after taking 38 

the reported discrimination of Ca over Sr into account.  In sites in New York, without an Oie 39 

horizon, the Ca/Sr of foliage was too high to be explained by any of the soil pools.  A 40 

comparison of Ca/Sr ratios of foliage among species at common sites showed oak to have 41 

higher Ca/Sr ratios than sugar maple, birch, red maple and beech.  The interpretation of soil 42 

Ca sources from Ca/Sr ratios is complicated at sites where a single horizon does not dominate 43 

the source. 44 
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Introduction 45 

Soil base cations have declined in soils in the northeastern US in the 20th century (Likens et 46 

al., 1998) due to forest harvesting (Federer et al., 1989, Johnson et al., 1992) and acidic 47 

deposition (Likens et al., 1996).  Reductions in exchangeable soil calcium and magnesium 48 

have been associated with declines of sugar maple (Bailey et al., 2004; Juice et al., 2006), an 49 

economically and ecologically important species.  Sugar maple is thought to have high Ca 50 

requirements (Fujinuma et al., 2005; Page et al., 2008) while other species, such as beech, are 51 

less sensitive to soil base cation status (Duchesne et al., 2005; Park and Yanai, 2009).  Acid 52 

deposition has also increased the concentration of dissolved inorganic aluminum in soil, 53 

which is toxic to plants (Foy et al., 1978; Delhaize and Ryan, 1995).  Differences in the 54 

responses of tree species to regional variation in soil conditions may provide clues as to which 55 

species will be most sensitive to continued soil acidification and base cation depletion.   56 

Sources of nutrients to forest soils include atmospheric deposition and mineral 57 

weathering (e.g., Graustein and Armstrong, 1983).  Apatite, a ubiquitous but trace mineral in 58 

parent material, has been shown to be disproportionately important as a source of Ca and 59 

phosphorus in young soils, because of its high weathering rate (Blum et al., 2002; Nezat et al., 60 

2004).  In a site in the White Mountains of New Hampshire, 52-69% of the foliar Ca was 61 

estimated to be derived from apatite in some tree species (Dasch et al., 2006) based on Ca/Sr 62 

and 87Sr/86Sr ratios of foliage and soil (Blum et al., 2002; Dasch et al., 2006).  The annual 63 

input of Ca to foliage from weathering of apatite and silicates combined is only ~1% of the Ca 64 

in the vegetation and forest floor (Nezat et a., 2004; Blum et al., 2008), since weathering 65 

inputs are small compared to biological recycling rates.  Determining the role of weathering 66 

of apatite and other minerals in replenishing soil Ca will aid in determining whether 67 
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weathering will help ameliorate the negative effects of acid rain on forest soils (Hamburg et 68 

al., 2003; Yanai et al., 2005). 69 

Because strontium is chemically similar to Ca and is taken up and incorporated into 70 

plant tissue along with Ca (Runia, 1987), the Ca/Sr ratios of plant tissue have been compared 71 

to Ca/Sr ratios of parent materials and atmospheric sources to determine the relative 72 

importance of different sources of Ca for vegetation (Blum et al., 2008; Miller et al., 1993; 73 

Bailey et al., 1996).  Differences in the uptake and use of Ca and Sr by trees are represented 74 

as a discrimination factor (DF), where the DF = (Ca/Sr)plant tissue / (Ca/Sr)nutrient source.  The 75 

discrimination factors for sugar maple, yellow birch and beech have been determined from the 76 

Ca/Sr ratio of the vegetation after wollastonite (CaSiO3) with a known Ca/Sr ratio was applied 77 

to a watershed in the White Mountains of NH (Dasch et al. 2006). Tissues had different 78 

discrimination factors, with leaves discriminating for Ca over Sr (DF>1, Blum et al., 2008; 79 

Blum et al., in review), while roots had greater Sr than Ca relative to the source (DF<1, Dasch 80 

et al. 2006).   81 

These discrimination factors have been used at other sites in the White Mountain 82 

region, in which the Oie horizon had a Ca/Sr ratio consistent with being the nutrient source 83 

for the foliage of sugar maple, yellow birch, beech, and red maple (Blum et al., 2008; Blum et 84 

al., in review).  It is not known whether Ca/Sr ratios can be used to identify Ca sources in sites 85 

lacking the thick organic layer characteristic of Spodosols in the White Mountains.  Also, the 86 

discrimination factors for many common tree species are unknown, limiting the use of Ca/Sr 87 

ratios to identify Ca sources to only those species for which DFs have been determined. 88 

In this paper, we compare Ca, Sr, Mg, P, and aluminum in tree leaves and soils from a 89 

range of soil and parent material types in 19 sites in NH and NY.  Our first objective was to 90 
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compare the sensitivity of foliar nutrients to variation in soil concentrations obtained by 91 

neutral-salt and acid extractions, for a variety of tree species (10 species or species groups).  92 

We hypothesized that foliar concentrations would increase with soil Ca, Mg and P, but remain 93 

constant across a range of soil Al.  We also expected sugar maple to show a greater response 94 

of foliar Ca to soil Ca, because of its known sensitivity to Ca depletion.   95 

Second, we compared Ca/Sr ratios in leaves and soils to determine whether there was 96 

a soil pool, likely the upper (0-10 cm) exchangeable pool, that had a Ca/Sr ratio consistent 97 

with the known discrimination factors for particular species.  Since previous studies showing 98 

that the Oie was supplying most of the Ca to foliage were conducted in Spodosols (Blum et 99 

al., 2008; Blum et al., in review), we wanted to see if this approach was valid across a wider 100 

range of soil types.  Finally, we compared Ca/Sr ratios of foliage among co-occurring species, 101 

in an attempt to identify species groups of distinguishable discrimination factors.   102 

Materials and methods 103 

Study sites 104 

Twenty-nine stands in nineteen sites in NY and NH were used for this study (Figure 1, Table 105 

1).  Soil chemical properties were previously studied at these sites (Yanai et al., 2000; Nezat 106 

et al., 2008) and they range in amount of total soil Ca in the parent material from 5 mmol Ca 107 

kg-1 in the Adirondacks to 1890 mmol kg-1 in carbonate sites in NY (Nezat et al., 2008).  The 108 

sites with low soil Ca had sedimentary clastic (n=6) or crystalline silicate (n=9) parent 109 

material, while the high soil Ca sites had sedimentary carbonate (n=4) parent material. 110 
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Leaf and soil collection 111 

We collected leaf litter from each of the dominant tree species at each stand.  We combined 112 

the tree species into ten groups because many of the twenty-four species were represented at 113 

only a few sites (Tables 2 and 3).  At the stands in NH (n=12), we collected leaves using 114 

multiple litter baskets or tarps in each stand, while at the stands in NY (n=15) we collected 115 

samples from the soil surface near the soil pit.  Our previous comparisons of freshly fallen 116 

litter collected on tarps to litter collected in baskets showed no bias in Ca or Sr concentrations 117 

(Blum et al., 2008).  For more mobile elements, such as K, the method of litter collection is 118 

important to the results (data not shown) and therefore we do not present results for K.   119 

Three soil pits were excavated to the C horizon at each of the stands in NH (Yanai et 120 

al., 2006; Park et al., 2007; Blum et al., 2008; Schaller et al., 2010).  Pits were separated by 121 

about 50 m.  In the stands in NY, only one soil pit was excavated, and samples were collected 122 

from the wall of the pit.  Soil samples were collected from the Oie and Oa horizons, when 123 

present.  At all sites, samples were collected from the following depth increments in the 124 

mineral soil: 0-10 cm, 10-30 cm, and 30 cm to the top of the C horizon.  Samples were also 125 

collected from the C horizon.  At some sites, finer depth increments were sampled (10-20, 20-126 

30, 30-50 and 50-C) and we used the average concentrations to estimate the 10-30-cm or 30-C 127 

increments.  At some sites, samples were taken to multiple depths in the C horizon, and we 128 

used the uppermost C horizon sample in all cases.  129 
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Sample processing and chemical analyses 130 

Leaves and Oie samples were oven dried at 50ºC and finely ground to increase sample 131 

homogeneity and facilitate digestion.  Approximately 0.5 g of each leaf sample was digested 132 

in ultra-pure distilled HNO3 and HCl using high-pressure microwave digestion in reinforced 133 

XP-1500 Teflon vessels (MARS 5, CEM Corporation, Matthews, NC).  Samples were 134 

evaporated to dryness and then re-dissolved in ultra-pure 5% HNO3 for analysis. 135 

Oa and mineral soil samples were dried (105°C), sieved (2-mm), and subjected to a 136 

sequential extraction (Nezat et al., 2007).  The exchangeable fraction was extracted by 137 

shaking 0.5 g of soil with 5 ml of 1 mol L-1 NH4Cl at 20°C for ~18 h.  The supernatant was 138 

collected and filtered through a 0.45-µm membrane.  The residual material was extracted with 139 

5 ml of 1 mol L-1 HNO3 for 18 h at 10°C to dissolve the readily weathered mineral forms 140 

(apatite and carbonates).  The more aggressive extractions used by Nezat et al. (2008) were 141 

not used in this analysis because these soil fractions are not readily available to plants. In the 142 

NH sites, a hydrogen peroxide extraction followed the neutral-salt extraction.  This fraction 143 

was small in comparison to the neutral-salt extraction and was added numerically to the acid-144 

extractable fraction for consistency with the other sites.  145 

The leaf digests and soil extracts were analyzed for Ca, Mg, P, Al and Sr using 146 

inductively coupled plasma optical emission spectrometry (ICP-OES, PE-3300DV, Perkin 147 

Elmer, Norwalk, CT) with a five- to eight-point calibration curve.  Analysis of a certified 148 

reference material (CRM Soil Solution A, High Purity Standards Inc.) indicated an accuracy 149 

of about ±5% for all elements. 150 
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Data Analysis 151 

Prior to statistical analysis, we combined the tree species into ten groups (Table 2) and 152 

averaged the soil concentrations at the NH sites where three soil pits were collected.  To 153 

determine the relationship between foliar and soil nutrients by tree species group, we used 154 

analysis of covariance for each nutrient (SAS Institute, Inc. 2004).  Each element (Ca, Mg, P 155 

Al) and soil depth (0-10cm, C horizon) was run separately with tree species as a fixed factor 156 

and soil nutrient concentration as a covariate.  If the slopes were significantly different (α= 157 

0.05) among species, we used Tukey’s multiple comparison procedure (Zar, 1996).  We also 158 

used this statistical approach using only the sites that had exchangeable Ca below 60 159 

mmol/kg. 160 

Results  161 

Relation between foliar and soil chemistry 162 

We compared the relationship between foliar and soil nutrients in the exchangeable pool in 163 

the upper mineral soil (0-10cm) and the readily weathered pool of apatite and/or calcite in the 164 

parent material (C horizon). Foliar Ca was generally higher at sites with higher exchangeable 165 

Ca at the 0-10 cm soil depth (p<0.0003, Figure 2a-b).  For acid-extractable Ca in the C 166 

horizon, aspen, birch, red maple and sugar maple had significantly higher foliar Ca with 167 

greater soil Ca, but beech and “other conifers” had foliage that was not correlated with soil Ca 168 

(Figure 2c).  When sites with high Ca (>100mmol Ca kg-1) were excluded from the analysis, 169 

red maple was no longer correlated with soil Ca and the slope of red maple was significantly 170 
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less than the slopes of birch, “other hardwoods” and oak (Figure 2d).  The size of the 171 

exchangeable pool in the C horizon was negligible (< 56 mmol kg-1; data not shown). 172 

Foliar Mg was higher at sites with higher exchangeable Mg (p=0.01, Figure 3a-b) as 173 

expected.  Species differed in their response to acid-extractable Mg in the C horizon (Figure 174 

3c).  The foliage of birch was the most highly correlated with soil Mg; the slope of birch was 175 

higher than aspen, beech, other hardwoods, and sugar maple.  Differences in species were 176 

primarily driven by the high foliar Mg at sites with high Ca.  When the sites with high soil Ca 177 

were excluded from the analyses, foliar Mg was significantly correlated with soil Mg 178 

(p<0.001) but species were not significantly different (p=0.5, Figure 3d).   179 

Unlike Ca and Mg, the relationship between foliar and soil P was similar across 180 

species.  Foliar P was higher at sites with higher soil P in the upper mineral soil (p<0.0001, 181 

Figure 4a).  Surprisingly, there was no significant relationship of foliar P to C-horizon acid-182 

extractable P (p=0.9, Figure 4b). 183 

Aluminum concentrations in foliage were not sensitive to soil exchangeable Al (p=0.8, 184 

Figure 5a).  There were no significant relationships of foliar Al to C-horizon acid-extractable 185 

Al (p=0.1).  In fact, the highest foliar Al concentrations were observed at sites with relatively 186 

low Al in the parent material (Figure 5b).   187 

Ca/Sr as an indicator of soil sources 188 

We compared the Ca/Sr ratio of foliage to the Ca/Sr ratios of soil exchangeable and acid-189 

extractable soil fractions at different soil depths (Figure 6).  A consistent soil source of Ca to 190 

trees across sites would be indicated by a foliar Ca/Sr ratio that differed consistently from the 191 

Ca/Sr ratio of the soil pool, namely by the discrimination factor: 1.16 ± 0.13 (SD) for sugar 192 
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maple, 1.90 ± 0.15 for red maple, 1.78 ± 0.17 for beech and 1.31 ± 0.10 for yellow birch 193 

(Blum et al., in review).  These values are shown as slopes (with upper and lower confidence 194 

limits) in Figure 6. 195 

For sugar maple and birch, at sites in NH with the highest Ca/Sr ratios (C6, C9 and 196 

M6), the Ca/Sr of foliage was higher than predicted by the Ca/Sr of the Oie, but at the other 197 

sites, the Oie was generally consistent with the Ca/Sr predicted for the source (Figure 6). For 198 

beech at the same sites, there was less consistency in the relationship between foliar and soil 199 

Ca/Sr ratios; no pool consistently fell within the range predicted by the discrimination factor.  200 

In red maple, the Ca/Sr ratio of the Oie horizon fell close to the value predicted by the 201 

discrimination factor of red maple (Blum et al., in review).   202 

In the sites in NY, an organic horizon was not present (except at Ferris Lake and 203 

Happy Valley), so we cannot compare the foliar Ca/Sr to an organically cycling pool.  In the 204 

sites in NY, none of the horizons consistently fell within the confidence interval defined by 205 

the discrimination factor for any of the species groups we studied (Figure 6).  In fact, in many 206 

sites, all the soil pools had lower Ca/Sr ratios than a possible source to the foliage, so the 207 

Ca/Sr of the foliage cannot be explained by a simple mixing between the soil pools that were 208 

sampled.  Only for beech do a majority of sites have possible sources with both higher and 209 

lower Ca/Sr than the foliage.  However, in most cases the only source pool with a higher 210 

Ca/Sr than beech leaves is the unweathered apatite pool, indicated by the acid-extractable Ca.  211 

We compared the Ca/Sr of sugar maple foliage to the Ca/Sr soil pools, referenced to 212 

the 0-10 cm exchangeable pool (Figure 7).  If the 0-10 cm exchangeable pool were the source 213 

of Ca and Sr to the vegetation, the Ca/Sr of the foliage divided by the soil pool would be the 214 

same as the discrimination factor, shown as the line in Figure 7.  Instead, Ca/Sr of the foliage 215 
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is much higher than predicted by any of the measured soil pools, except in one of the stands 216 

(C1 at Bartlett).  Exchangeable pools at greater depths are generally lower in Ca/Sr than the 0-217 

10 cm exchangeable pool; the foliar Ca/Sr would appear even higher relative to possible 218 

sources if compared to these pools.   219 

Comparing Ca/Sr across species 220 

We compared the Ca/Sr of foliage of different tree species sharing the same site (Figure 8).  221 

The comparisons support the reported differences in discrimination factors, which were 222 

developed at common sites (Dasch et al., 2006; Blum et al., in review).  Specifically, beech 223 

and red maple have higher foliar Ca/Sr relative to the soil source by a factor of 1.8-1.9, while 224 

sugar maple and yellow birch differ by a factor of 1.2-1.3 (Figure 8a).  The “other 225 

hardwoods” (Table 2) are similar to sugar maple and yellow birch.  Oak has higher foliar 226 

Ca/Sr than the four species for which discrimination factors have been defined (Figure 8b), 227 

suggesting that it has a higher discrimination factor than 1.9 or has a different source of Ca.    228 

Species differences in Ca/Sr ratios are evident regardless of the species chosen for the 229 

x-axis on Figure 8, but the choice of a reference species does affect which species are 230 

statistically different.  For example, red maple and beech have higher Ca/Sr ratios than birch 231 

and sugar maple when beech is used as the reference (Figure 8a) but they are 232 

indistinguishable when compared to birch (Figure 8b).  Not all species are present at all sites 233 

and thus the data set available for comparison depends on the choice of the reference species. 234 
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Discussion 235 

Foliar response to soil nutrients 236 

Foliage showed a strong relationship to soil Ca, Mg and P but not Al in the exchangeable 237 

fraction of the upper mineral soil (Figures 2-4).  Correlations between foliar and soil 238 

exchangeable Ca have been observed in sugar maple in the northeastern US (Schaberg et al., 239 

2006).  In 33 plantations across New Zealand, foliar Ca was correlated with exchangeable Ca 240 

in Pinus radiata but not by Cupressus lusitanica (Davis et al., 2007).  Contrary to our study, 241 

foliar Mg was not correlated with soil exchangeable Mg in sugar maple (Schaberg et al., 242 

2006) but was correlated in P. radiata and C. lusitanica. (Davis et al., 2007).  Differences in 243 

the relationship between foliar and soil nutrients indicates that the relationship might be site 244 

or species-specific for exchangeable Ca and Mg. 245 

The strong control that parent materials exert over Ca availability is reflected in the 246 

correlations we found between the foliar Ca and the C horizon for aspen, birch, red maple and 247 

sugar maple.  As expected, sugar maple was higher in foliar Ca with increasing soil Ca 248 

(Fujinuma et al., 2005; Page et al., 2008), while beech foliage was not (Park and Yanai, 249 

2009).  Aspen, birch and red maple were also responsive to soil Ca, indicating that they may 250 

be more sensitive to base cation depletion than the “other conifers” (eastern hemlock and 251 

northern white cedar, Table 2).  Birch was the most responsive to soil Mg in the C horizon, 252 

though Mg is not thought to be limiting in northeastern forests.  However, the foliage of some 253 

species, such as American beech and “other conifers,” reflects the Ca availability of the 254 

exchangeable nutrients more than the parent material.   255 
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Foliar P was correlated with P in the upper mineral soil but not the C horizon, 256 

indicating the possible importance of biologically driven uptake from the mineral soil into 257 

actively cycling pools (Dijkstra and Smits, 2002; Hamburg et al., 2003) or the importance of 258 

the atmospheric deposition of P (Prospero et al., 1996).  Our results with P are consistent with 259 

others who suggest that P concentrations in the upper 0-10cm of the mineral soil are a good 260 

indicator of potential nutrient limitation for trees (Schoenhotz et al., 2000; Davis et al., 2007).   261 

The relationship of foliar nutrients to soil nutrients differed by nutrient.  The strongest 262 

relationship was for P, in which five out of seven species groups had high slopes, averaging 263 

2.6.  This might be expected, if P is more limiting to growth at the low-P sites, while Ca and 264 

Mg are not.  Recent analysis indicates that P limitation is more widespread in terrestrial 265 

ecosystems than previously thought (Elseri et al., 2007).  For Al, which is not a nutrient for 266 

trees, foliar concentrations were remarkably constant over a wide range of soil concentrations 267 

(Figure 5).  Trees generally exclude Al from their foliage (Jackson 1967) and other studies 268 

have found no relationship between foliar and soil Al (e.g. Rosenberg 2010). 269 

Soil sources indicated by Ca/Sr 270 

One goal of this analysis was to determine whether the soil source of Ca within a 271 

species was constant across a wide range of soil types.  In New Hampshire, the majority of the 272 

sites had foliar Ca/Sr consistent with uptake from the Oie horizon (Figure 6).  However, we 273 

found greater Ca/Sr ratios in foliage than expected at sites with high Oie Ca/Sr.  This 274 

difference could reflect a difference in soil sources, or it could be that discrimination of Ca 275 

over Sr is greater at the high Ca/Sr sites.  These sites have higher foliar Ca/Sr ratios (>500) 276 

than the average foliar Ca/Sr at Hubbard Brook (foliar Ca/Sr = 413; Dasch et al., 2006), 277 
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where the discrimination factor was determined.  Beauregard and Côté (2008) also reported  278 

nonlinear Ca/Sr discrimination at high soil Ca/Sr by sugar maple seedlings relative to 279 

rhizosphere soil, but they found lower, not higher, Ca/Sr ratios in foliage than expected.  280 

Beech and oak were reported to show constant discrimination factors with exchangeable soil 281 

Ca over a range of 6 – 840 mmol/kg (Drouet and Herbauts 2008), compared to our range of 282 

0.02 – 1890 mmol/kg.   283 

In Spodosols, the forest floor is the soil pool that supplies the majority of Ca, as well 284 

as other nutrients (Yanai 1992), to plant uptake, so it’s not surprising that the Oie could 285 

supply most of the Ca to foliage in our New Hampshire sites.  Where detrital organic matter is 286 

incorporated more rapidly into the mineral soil, as in the NY sites, there was no such pool that 287 

we could recognize as consistent with foliar Ca/Sr ratios (Figure 6).  As others have noted 288 

(Likens et al., 1998), the soil exchangeable pool of Ca is not a good indicator of the amount of 289 

Ca available to trees.  Our results confirm that Ca uptake is not just from the exchangeable Ca 290 

pool.  In fact, none of the measured soil pools is high enough to explain the foliar Ca/Sr we 291 

observed (Figure 7).  292 

The high Ca/Sr of sugar maple foliage compared to all the mineral soil pools (Figure 293 

7) suggests that a significant fraction of calcium uptake is occurring directly from 294 

decomposing organic matter, perhaps through the action of mycorrhizal fungi (Dighton, 1991; 295 

Chalot and Brun, 1998). The redistribution of detritus by soil organisms means that more of 296 

the mineralization of nutrients occurs over a greater depth in the soil profile than in the 297 

Spodosols of NH (Bohlen et al., 2004).  The high Ca/Sr of foliage relative to all the soil pools 298 

suggests that direct uptake of nutrients occurs even without the formation of an organic 299 

horizon.  When we sample soils by horizon or by depth increment using traditional methods, 300 
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we apparently fail to isolate this actively cycling pool, except in the case of Spodosols, where 301 

this recycling occurs above the mineral soil.  302 

We also compared the Ca/Sr of foliage between species at the same sites.  We found 303 

that beech and red maple have higher Ca/Sr ratios than sugar maple and yellow birch and that 304 

oak has higher Ca/Sr ratios than beech and red maple.  These results indicate that the 305 

discrimination factor differs between species (oak>beech + red maple>sugar maple + birch), 306 

as reported (except for oak) by other studies (Blum et al., 2008; Blum et al., in review) or that 307 

their soil sources differ in a very consistent way.   At sites where the soil source is known, this 308 

technique holds promise for deducing discrimination factors for species for which the factor is 309 

not known, though a large sample size may be needed to statistically separate the different 310 

discrimination factors. 311 

There are many complex and poorly understood issues involved in interpreting Ca/Sr 312 

ratios in forested ecosystems.  Tissues within the trees have different discrimination factors, 313 

with leaves discriminating for Ca over Sr (DF>1, Blum et. al 2007; Blum et al. in review), 314 

while roots discriminate for Sr over Ca (Dasch et al. 2006).  Therefore, to assess the effect of 315 

repeated annual uptake on the Ca/Sr of soil pools would require a mass-balance budget and 316 

knowledge of the DFs for all the species and tissue types in the ecosystem.  Other factors 317 

affect the Ca/Sr of soil pools, such as transport of Ca and Sr in soil solution and recycling of 318 

nutrients through decomposition.  More research on these processes will improve the 319 

interpretation of Sr as a tracer for Ca in a variety of soil types. 320 
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Table 1. Coordinates and characteristics of each site used in this study.   1 

Location State 

 

Region Latitude Longitude 

# of 

stands 

Parent material 

NH         

Jackson (M5) NH White Mtns 44° 12' 71° 14' 1 Crystalline silicate 

Iron Mountain (T30) NH White Mtns 44° 9' 71° 14' 1 Crystalline silicate 

Bartlett Experimental 

Forest (C1, C2, C4, C6, 

C8, C9, H1, H4, H6) NH 

 

 

White Mtns 44° 3' 71° 17' 9 

 

 

Crystalline silicate 

Sabbaday Falls (M6) NH White Mtns 44° 0’ 71° 25' 1 Crystalline silicate 

         

NY         

Brasher Falls NW NY St. Lawrence Valley 44° 52' 74° 50' 1 Sedimentary (clastic) 

Brasher Falls SE NY St. Lawrence Valley 44° 51' 74° 39' 1 Sedimentary (carbonate) 

Grantville NY St. Lawrence Valley 44° 51' 74° 55' 1 Sedimentary (carbonate) 

Fort Jackson NY St. Lawrence Valley 44° 43' 74° 45' 1 Sedimentary (clastic) 

Southville NY St. Lawrence Valley 44° 41' 74° 51' 1 Sedimentary (clastic) 

Black Pond NY Alleghany Plateau 43° 47' 76° 12' 1 Sedimentary (carbonate) 

Black River NY Adirondack Mts 43° 34' 74° 51' 1 Crystalline silicate 

Ferris Lake NY Adirondack Mts 43° 24' 74° 42' 1 Crystalline silicate 

Happy Valley NY Alleghany Plateau 43° 27' 76° 2' 1 Sedimentary (clastic) 

Klondike NY Alleghany Plateau 43° 22' 75° 59' 1 Sedimentary (clastic) 

Rush NY Alleghany Plateau 42° 58' 77° 40' 3 Sedimentary (carbonate) 

Swift Hill NY Alleghany Plateau 42° 27' 78° 14' 1 Sedimentary (clastic) 

Lafayetteville NY Taconic Mts 41° 58' 73° 43' 1 Crystalline silicate 

Stissing Mt. NY Taconic Mts 41° 56' 73° 41' 1 Crystalline silicate 

Wassaic NY Taconic Mts 41° 47' 73° 34' 1 Crystalline silicate 

 2 

3 
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Table 2. Species groups used in this study.  Since some species were represented at very few sites, we grouped the species into ten 1 

groups. 2 

Species group Species present 

Beech American beech (Fagus grandifolia Ehrh.) 

Birch Yellow birch (Betula alleghaniensis Britt.), paper birch (B.papyrifera Marsh.) and grey birch (B. 

populifolia Marsh.) 

Red maple Acer rubrum L. 

Sugar maple A. saccharum Marsh. 

Other hardwoods Striped maple (A. pennsylvaticum L.), black cherry (Prunus serotina Ehrh.), pin cherry (Prunus 

pensylvanica L.f.), white ash (Fraxinus americana L.), black walnut (Juglans nigra L.) and basswood 

(Tilia americana L.) 

Aspen Quaking aspen (Populus tremuloides Michx.) and big-tooth aspen (Populus grandidentata Michaux) 

Other conifers Eastern hemlock (Tsuga canadensis (L.) Carriere and northern white cedar (Thuja occidentalis L.) 

Pine Pitch pine (Pinus rigida Mill.), white pine (Pinus strobus L.), Scots pine (Pinus sylvestris L.) and red 

pine (Pinus resinosa Sol. Ex Aiton) 

Oak White oak (Quercus alba L.) and red oak (Quercus rubra L.) 

Spruce-fir White spruce (Picea glauca (Moench) Voss and balsam fir (Abies balsamea (L.) Mill.  

 

 3 

4 

http://en.wikipedia.org/wiki/Andre_Michaux
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Table 3. Species sampled within each study site.  “Other hardwoods” include striped maple, black cherry, pin cherry, white ash, 1 

black walnut and basswood.  “Other conifers” includes eastern hemlock and northern white cedar. 2 

Location 

 

Beech 

 

Birch 

Red  

Maple  

Sugar  

Maple 

Other 

hardwoods 

 

Aspen 

Other  

Conifers 

 

Pine 

 

Oak 

 

Spruce-fir 

New Hampshire           

Jackson (M5) X X X X X      

Iron Mountain (T30) X X X X X      

Bartlett (C1) X  X X       

Bartlett (C2) X X         

Bartlett (C4) X X  X       

Bartlett (C6) X   X       

Bartlett (C8) X X  X       

Bartlett (C9) X X  X       

Bartlett (H1) X X X X       

Bartlett (H4) X X X X  X     

Bartlett (H6) X X X X X      

Sabbaday Falls (M6) X X X X X      

           

New York           

Brasher Falls NW   X    X    

Brasher Falls SE X  X  X      

Grantville X X   X X     

Fort Jackson X  X     X X  

Southville X      X X X  

Black Pond  X X  X  X    

Black River   X  X X    X 

Ferris Lake X X  X       

Happy Valley   X  X   X   

Klondike X  X    X  X  

Rush   X X X X    X 

Swift Hill X   X       

Lafayetteville X  X      X  
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Stissing Mt.  X  X  X   X  

Wassaic X X X X     X  
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Figure Captions 1 

Figure 1. Location of study sites in the northeastern United States.   2 

3 
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Figure 2. Foliar Ca compared to soil Ca for various tree species groups and two soil Ca 1 

fractions.  (a, b) Exchangeable Ca concentrations at 0-10cm,  (c, d) 1-N HNO3 extractable Ca 2 

in the C horizon.  (a, c) all sites; (b, d) sites with low exchangeable Ca.  Slopes with different 3 

letters differ significantly at α ≤ 0.05.   4 
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Figure 3. Foliar Mg compared to soil Mg for various tree species groups and two soil Mg 1 

fractions.  (a, b) Exchangeable Mg concentrations at 0-10cm,  (c, d) 1-N HNO3 extractable 2 

Mg in the C horizon.  (a, c) all sites; (b, d) sites with low exchangeable Ca.  Slopes with 3 

different letters differ significantly at α ≤ 0.05. 4 

 5 

 6 

  7 
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Figure 4. Foliar P compared to soil P for various tree species groups and 1-N NHO3-1 

extractable P at two depths: (a) 0-10cm,  (b) C horizon.  Regression lines are shown only for 2 

0-10cm, since there was no significant relationship between foliar and soil P in the C horizon. 3 

 4 

 5 

6 
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Figure 5. Foliar Al compared to soil Al for various tree species groups and two soil Al 1 

fractions.  (a) Exchangeable Al concentrations at 0-10cm, (b) 1-N HNO3 extractable Al in the 2 

C horizon.  Regression lines are not shown since there was no significant relationship between 3 

foliar and soil Al. 4 
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 6 
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Figure 6. Foliar vs. soil molar Ca/Sr ratio at 0-10 cm, 10-30 cm, 30- C, and C horizon for 1 

exchangeable and acid-extractable fractions of beech, birch, sugar maple and red maple in NH 2 

and  NY. The discrimination factor is displayed as a line with its associated standard deviation 3 

(Blum et al. in review).  4 

  5 
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Figure 7. The Ca/Sr ratio of sugar maple leaves and the soil exchangeable pool divided by the 1 

Ca/Sr ratio of the exchangeable 0-10cm horizon plotted against the molar Ca/Sr ratio of the 2 

acid-extractable fraction of the C horizon.  The discrimination factor of sugar maple is 3 

displayed as a horizontal line at 1.16 (Blum et al; in review). 4 
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Figure 8. The Ca/Sr ratio of leaves of various species compared, at the sites where they co-1 

occur, to that of species with known discrimination factors from Blum et al. (in review).    2 

Slopes with different letters differ significantly at α ≤ 0.05. 3 
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