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Abstract 

This paper describes the use ofreconstructability analysis to perfonn a secondary 

study of traumatic brain injury data from automobile accidents. Neutral searches 

were done and their results displayed with a hypergraph. Directed searches, using 

both variable-based and state-based models, were applied to predict perfonnance 

on two cognitive tests and one neurological test. Very simple state-based models 

gave large uncertainty reductions for all three DVs and sizeable improvements in 

percent correct for the two cognitive test DVs which were equally sampled. 

Conditional probability distributions for these models are easily visualized with 

simple decision trees. Confounding variables and counter-intuitive findings are 

also reported. 

Keywords: reconstructability analysis; machine learning; OCCAM; infonnation 

theory; traumatic brain injury; health care analytics 

1 Introduction 

This paper reports the application of reconstructability analysis (RA) to the 

secondary analysis ofTBI data. Secondary analysis of health care data can be useful 

when the clinical population exhibits unexplained variability in outcomes that are not 

resolved by the primary analysis. Also, the long time and considerable expense needed 

to complete a study make additional examination of the data desirable. Both of these 

conditions are highly relevant to traumatic brain injury: TBI is a serious and prevalent 

clinical condition for which unexplained variation in outcome unfortunately persists 

despite decades of research; moreover the volume of existing TBI data provides a 

unique opportunity for secondary analyses (National Center for Injury Prevention and 

Control, 2015; Samadani & Daly, 2016). The substantive aim of this study is to 

discover unexpected relationships in the data and to contribute to ongoing efforts of the 

Brain Trauma Evidence Based Consortium (BTEC) to develop a dynamic model of 

brain trauma and a new clinically useful TBI classification system. The methodological 

aim of this study is to further develop RA methodology and demonstrate its capabilities. 
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RA (Ashby, 1964; Klir, 1985, 1986; Krippendorff, 1986; Zwick, 2004) is a 

probabilistic graphical modeling technique, a fusion of information theory and graph 

theory. Graphs define the models that are considered, and information measures 

quantify the models' predictive efficacy. In these graphs, a node is a variable and a link 

is a relation (an association) between two or more variables. If relations link only two 

nodes, this is an ordinary graph; if relations can link more than two nodes, it is a 

hypergraph. One is interested in models that are hypergraphs because one is interested 

in associations between more than two variables. 

RA is explicitly designed for exploratory modeling, having the capacity to detect 

non-linear and multivariate interactions that are not hypothesized in advance. Two types 

of exploration are available: (a) directed searches which aim to discover models that are 

predictive of some dependent variable (DV) given a set of independent variables (IVs), 

and (b) neutral searches in which no IV/DV distinction is made and the aim is to 

discover associations that exist between any of the variables. The principal focus of this 

paper is on directed studies, but some results from neutral explorations are also 

reported. 

RA models are also conceptually transparent: a directed RA model is simply a 

conditional probability distribution of a dependent variable (DV), given the composite 

state of a set of independent variables (IVs); a neutral RA model is simply a joint 

probability distribution. As a probabilistic graphical modeling method, RA overlaps 

with log-linear modeling, logistic regression, and Bayesian networks. Where it overlaps 

with these similar methods, it is equivalent to them (Zwick, 2012), although RA has 

unique features not present in these other methods, and these other methods have unique 

features not available in RA. All of these probabilistic graphical modeling methods 

differ from other machine learning methods, such as support vector machines and neural 
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networks, which are designed for continuous variables. The reason RA is attractive for 

secondary data analysis is that other data analysis methods are often not well designed 

for exploration, have more limited model types, have difficulty with nominal variables 

or with stochasticity, or are not conceptually transparent. 

2 Data 

The data analyzed here, obtained from Megan Preece (2012), is on patients with 

traumatic brain injury resulting from automobile accidents (Preece et al, 201.0, 2011, 

2013). There are 52 variables, divided into five types, labeled as P, Y, G, C, and N 

variables, where P =patient characteristics (17 variables), Y =symptoms, i.e., 

subjective reports (25 variables), G =signs, i.e., objective indicators (4 variables), C = 

cognitive deficits (5 variables), N = neurologic deficits (1 variable). The sample size is 

337, reduced to 175 or fewer when missing data are excluded. 

The aim of the study is primarily to predict specific deficit (C or N) variables 

from P, Y, and G variables and from the other deficit variables, and secondarily to look 

for associations among any of the variables. In this paper, we report the prediction of 

two C variables - the neuropsychological Digit Symbol Substitution Test (DSST), 

abbreviated as Cdg (N = 255), and the Spatial Reaction-Time Test (RT) normalized for 

age and sex, abbreviated as Cnr (N = 210) - and one N variable - the Visual Acuity 

Test, abbreviated as Nlr (N = 154). The DSST is a paper and pencil or online task 

requiring the patient to match symbols with their corresponding digits under timed 

conditions. It is considered to be sensitive to brain injury and to concussion in 

particular. The RT test, less complex than DSST, assesses how quickly the patient 

responds to visual stimuli. The variables involved in the predictive models discussed in 

this paper, as IVs or DVs or both, are listed in Table I 

(Table I) 
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The first letters of the variables indicate their variable types. The table lists, after 

the variable abbreviations, their original cardinalities, although many variables were 

rebinned to lower cardinalities in the analysis. For some records, values of some 

variables were missing. Being missing is included as an additional possible state; so, 

for example, binary variables with some values missing are listed as having cardinality 

three. 

3 Methodology 

This section provides a brief summary of the main features ofreconstructability 

analysis. RA calculations in this study were performed using the Occam software 

package developed at Portland State University (PSU) (Willett & Zwick, 2004). This 

package takes standard text input and provides easily interpretable output. It is web­

accessible and can be run either in real time, where it provides html output, or in batch 

(off-line) mode, in which it emails results to the user as a csv file. This software 

package runs on PSU servers and is openly available for non-commercial research and 

educational uses. 

Being based in information theory, RA is inherently a nominal data method, but 

can be applied also to continuous variables if their values are discretized (binned). 

Binning procedures are available in many commercial and public domain software 

packages; a utility program is also available at the RA web site (Zwick, 2017), which 

outputs a data file in Occam input format. Occam also allows easy rebinning 

(aggregating existing bins) in the input file. The RA web site includes an Occam user 

manual and access to many publications that make use of RA methodology. 

An RA model is simpler - has fewer degrees of freedom ( df) - than the data, but 

captures much of the information in the data. RA searches for good models are of two 

types: directed and neutral. Directed searches consider models that predict a dependent 
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variable (DY) from a set of independent variables; neutral searches consider models that 

do not make any IV-DY distin,ction. This paper reports results from both types of 

searches, but the principal results are those from the directed searches. 

In directed searches, a candidate model is compared to a reference model, which 

is either the independence model, for which no IV predicts the DY, or the data, for 

which all the IVs predict the DY in a single interaction effect. For example, consider 

three IVs, A, B, and C, and one DY, Z. The independence model, at the bottom of the 

lattice of structures, is ABC:Z, where the colon means 'and.' This model says that there 

is a relation between A, B, and C, but no relation between any of these IVs and Z. The 

data, at the top of the lattice of structures, is ABCZ, in which there is a four-way 

interaction effect where A, B, and C collectively predict Z. In the present study, the 

independence model is the chosen reference. 

In neutral searches, replace Z by variable D and assume that no IV-DY 

distinction is being made for the four variables A, B, C, and D. The independence 

model for the neutral search, i.e., the bottom of the lattice of structures, is A:B:C:D. 

Note that when ABC:Z is chosen as the independence model for the directed search in 

which Z is a DY, there is no concern for relations that may exist between the IVs A, B, 

and C, so the 3-way ABC relation is built in to every directed model to allow for such 

relations. 

A relation includes all its projections (embedded relations). ABC thus includes 

AB, AC, and BC, and the univariate margins, A, B, and C. The order of the relations in 

a structure is arbitrary, and the order of the variables in a relation is also arbitrary. For 

example, Z:BAC is identical to ABC:Z. 

An example of a directed search model intermediate between the independence 

model and the data is ABC:BZ, which says that there may be a relation between A, B, 
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and C, which is non-predictive since it doesn't involve the DV, and there may also be a 

predictive relation between Band Z. The ABC in ABC:BZ is called the •JV component' 

since it includes all the IVs, and in Occam output, the model is referred to as IV:BZ. In 

directed search models, an IV component is always included to allow for relations 

among the IVs. When a predictive relation - here BZ- is included in a model, this does 

not mean that the relation is strong; it just means that this relation is being modeled. In 

the tables below showing model search results, the "IV" component is often omitted 

from the model names for simplicity. 

Models with one predicting relation, e.g., ABC:BZ, do not have loops, while 

models with multiple predicting relations, e.g., ABC:AZ:BZ, have loops. (The loop here 

consists of AZ, ZB, and BA; the last of these is embedded in ABC). In this latter model, 

AZ and BZ are separate, but they are not simply additive contributions to the prediction 

of Z. A conventional three-way interaction effect between A, B, and Z would be 

represented by an ABZ relation, as in model ABC:ABZ, but the AZ and BZ relations in 

ABC:AZ:BZ also constitute a (lesser) type of interaction effect (Zwick, 2011). Models 

without loops are computationally simple, since they can be fit algebraically. Models 

with loops can present challenging computational space and time demands, since they 

must be fit iteratively. For many variables, nearly all models have loops. One drawback 

of Bayesian networks (BN) is that they cannot have loops; RA, by contrast, 

encompasses such models, though RA in tum doesn't consider all BN models (Zwick 

2011). 

Models are subsets of variables, each subset indicating a projection of the data 

that is preserved in the model. The above models are all 'variable-based.' Another type 

of model includes components that specify specific states of variables (Jones, 1985; 

Johnson & Zwick, 2000; Zwick & Johnson 2004; Johnson 2005). An example is ABC: 
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Z: A1B2Z. The first two components of this model, namely ABC and Z together define 

the variable-based independence model. Addition of the A1B2Z component, however, 

makes this a state-based model. This third component means that the probability that A 

= 1, B = 2, and any value of Z is either unusually high or unusually low. State-based 

models pick out informationally salient states. In results reported below, the 

independence part of the state-based model is often (in the above, ABC:Z) omitted for 

simplicity. 

The predictive success of (equivalently, the information captured in) a model is 

quantified by %~H. the reduction of uncertainty (Shannon entropy) of the DV if one 

knows the values of the predicting IVs. Like variance, His a measure of spread, here 

the spread of a probability distribution, but unlike variance, because Shannon entropy 

contains a logarithm term, low values of uncertainty-reduction, even as low as 8%, can 

indicate big effect sizes. This is illustrated in Table 2 for the DV, Z, and the IV, A. The 

marginal distribution of Z is {.5, .5}, but knowing A the conditional distribution of Z is 

either { .33, .67} or { .67, .33}. This change of Odds from I: I to 1 :2 or 2: 1 is a big effect, 

but it is only an uncertainty reduction of 8%. 

{Table 2) 

Uncertainty reduction is the central information theoretic measure of predictive 

efficacy, but since it is useful to compare RA results to other methods that don't 

generate. this measure. Occam reports also the more general accuracy measure of 

%correct (%c) and the related measures of true and false positives and negatives, 

sensitivity, and specificity. Uncertainty reduction roughly tracks with %correct - the 

more the uncertainty of the DV is reduced, the higher the accuracy of prediction tends 

to be- but these measures do not track perfectly. Moreover, they track best when the 

marginal probability distribution of the DV is approximately uniform. For skewed 



Exploratory Reconstructability Analysis of Accident TBI Data 9 

distributions, models can reduce uncertainty but still not improve accuracy. In such 

·cases, the real predictive strength of the model is its uncertainty reduction, not its 

%correct. Uncertainty reduction, for example, registers the difference, for a binary 

variable, between predicting a state because it has a probability of .55 or because it has 

a probability of .95, despite the fact that both probability values give the same 

prediction and thus contribution to %correct. This point is illustrated in the analysis 

below of the DV, Nlr. 

A good model has high uncertainty reduction or %correct; it also has low 

complexity, defined as degrees of freedom, or low Lldf, the difference between 

df(model) and df(reference), where the reference here is independence .. These two 

aspects of goodness oppose one another, so a good model is really one that optimally 

trades off accuracy (uncertainty reduction, information captured) and simplicity. This 

tradeoff is either explicit, as in the Bayesian Information Criterion (BIC) and the Akaike 

Information Criterion (AIC), which compute weighted sums of error and complexity 

(the opposites of accuracy and simplicity), or the tradeoff is implicit, as in a Chi-square 

p-value calculation, also a standard way of selecting a model. 

BIC penalizes more for complexity than AIC, and is thus more conservative than 

AIC. A third model selection criterion in Occam is 'Incremental p-value,' which uses 

Chi-square p-values to pick models. The IncrP model is the model with the highest 

uncertainty reduction whose difference from (the bottom reference of) independence is 

statistically significant, and for which a path exists from independence to the model in 

which every incremental increase in complexity is statistically significant. BIC and AIC 

are given in Occam output as differences between these measures for the reference 

minus their values for the model,as follows 

LlAIC = i'lLR + 2 tldf (1) 
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ABIC = ALR + ln(N) Adf (2) 

where ALR is the change in likelihood ratio Chi-square between the bottom reference 

and the model, i.e., 

ALR = 2 NL p In [ q(reference) I q(model)] (3), 

where pis the observed probability distribution of the data, q(model) is the calculated 

distribution of the model, and q(reference) is the calculated distribution of the reference 

model of independence, Adf is the increase in degrees of freedom from the bottom 

reference, and N is the sample size. Large positive differences of AAIC and ABIC 

indicate good models. In this study the highest ABIC model was always selected as the 

best model. 

Occam offers three types of searches that differ in refinement and thus 

predictive power: (1) a coarse search, using variable-based models without loops, which 

have only one predicting relation, e.g., IV:BZ; (2) a fine search, using variable-based 

models with loops, which have multiple predicting relations, e.g., IV:AZ:BZ; and (3) an 

ultra-fine search, which uses state-based models, e.g., IV:Z:A I B2Z. Coarse searches are 

fast and can handle many variables; fine searches are slow and can handle at most 1 OOs 

of variables; ultra-fine searches are very slow, and can handle only fewer than 10 

variables. Differences between these three searches are illustrated in Figure 1. 

(Figure 1) 

In this figure, a dashed level represents the model selected by the search. Fine 

searches consider more models, at smaller increments of Adf, than coarse searches, and 

ultra-fine searches more models than fine searches. More refined searches are 

advantageous because they can yield more complex and thus more predictive models 

that are still statistically justified, or they might yield models that are equally predictive 

but simpler (smaller Adf) than those obtained from less refined searches. Also, a more 
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refined search can discover interaction effects between variables that are not seen in Jess 

refined searches. The above figure illustrates the first of these possible benefits: the fine 

search selects a more complex, and thus more predictive, model that is not considered 

by the coarse search; and the ultra-fine search selects a still more complex model that is 

not considered by the fine search. 

The search procedure for both neutral and directed searches begins at some 

initial model, either the independence model at the bottom of the Lattice of Structures or 

the data itself which is at the top of the Lattice of Structures. In the research reported in 

this paper, the reference model was always the bottom model. Starting from this model, 

Occam identifies all the 'parents' of this model at the next level up- all models with the 

smallest increase in complexity from the starting model. Of these parents, some number 

- set by the parameter 'width' - are selected by some search criterion and retained. The 

parents of these width models are then generated, and the best width models are retained 

at this next level. The process proceeds from 'level O' of the starting model up to a 

number of levels specified by the parameter 'levels'. This 'beam search' is 

schematically represented in Figure 2. 

(Figure 2) 

4 Results 

4.1 Neutral searches 

A neutral coarse search was done, and its BIC model was: 

PijGpc: PijGgc: PijGxc: Pag: PsxYcv: PyePed: PyePri: YpnYem: YemYds: YddYds: 

YdaYds: YdsPph: GhlPri: PulPri: PriPph: PriCdg: PriNlr: PmdPpkGpc: PpkPph: 

PphGpl: PphPqe: PphPqv: PphPlg: PphCsr: PphYcv: PphPiq: PphGpt: GpcPnp: 

GpcChp: GpcCsc: GpcYhs: GpcYdz: GpcYna: GpcYns: GpcYsd: GpcYfa: GpcYir: 
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GpcYdp: GpcYax: GpcYfr: GpcYfg: GpcYcn: GpcYtk: GpcYbr: GpcYls: GpcYdv: 

GpcYrs: GpcYaz: GpcYrm: PlgPac: CnrCsr 

This model consists of 50 associations (plus I independent variable, Pag), where all but 

one association (Pmd Ppk Gpc) is pairwise. Fifteen associations in red have p-values ~ 

0.05; eight more in purple have p-values ~ 0.10. Six associations that involve C and N 

variables are in bold, but only two of these, namely Pph Csr and Cnr Csr are statistically 

significant at the 0.05 level. The graph of this model is shown in Figure 3. 

(Figure 3) 

Table 3 shows, for each of the 15 associations, how predictive each member of the pair 

of variables is of the other member. The first two columns list the abbreviations of the 

variables, whose identities are given in the last two columns. The third and fourth 

columns indicate the reduction of uncertainty of variable 2 given variable 1 and the 

reduction of uncertainty of variable I given variable 2. This is followed by the p-value 

of the association and its sample size. The following two columns give the increase in 

%correct in predicting variable 2 given variable 1, and in predicting variable 1 given 

variable 2, where this increase is measured from the reference of the %correct obtained 

from the independence models. 

(Table 3) 

The strengths of the associations are strong but most associations are fairly obvious. 

Only the two associations, shown in the table in blue, namely {previous concussion, 

dizzy} and {previous concussion, frustrated} are somewhat novel and thus potentially 

interesting. One association, namely {reaction time, previous head injury} appears 

obvious, but will tum out upon further examination to be counter-intuitive in the 

directionality of the association. 
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4.2 Directed searches 

Directed coarse, fine, and ultra-fine searches were done for three DVs: the Digit Symbol 

Substitution Test (Cdg), the Normalized Reaction Time Test (Cnr),and the Visual 

Acuity Test (Nlr). For these DVs, a final best model was selected from the ultra-fine 

search, and for this model, the conditional probability distribution of the DV, given the 

predicting IVs, is shown. For Cdg and Cnr, this best model is also summarized in a 

decision tree. 

Predicting performance on Digit Symbol Substitution test 

Table 4 presents the results of coarse, fine, and ultra-fine searches that attempt to 

predict Cdg after this DV has been rebinned to two states, roughly equal in probability. 

In listing the models, the table omits the non-predicting IV component. 

For the coarse search, the six top single predicting IVs are listed with their 

complexities (~df), the p-values that assess the significance of their difference from 

independence, their %reduction of DV uncertainty (%~H), their %correct (%c), and 

their ~BJC from independence. The single predictors are ordered by their uncertainty 

reductions, which is different from the order of their ~BIC values, since ~BJC considers 

not only uncertainty reduction but also complexity. 

(Table 4) 

The table shows that Pij (patient injury type) is the best single predictor in terms 

both of uncertainty reduction and ~BIC, but these two measures differ in their ranking 

of Pye (years of education). Pye is the fifth best predictor in terms of uncertainty 

reduction, but the second best in ~BJC, because it adds only I degree of freedom to the 

independence model. 
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In the fine search, BIC picks a model with Pij and Pye as predictors, not 

surprisingly since these are, by ABIC, the first and second best single predicting IVs in 

the coarse search. The fine search results illustrate the fact that BIC selects simpler 

models (Adf= 4) than AIC (Adf= 9) and IncrP (Adf= 10). The additional degree of 

freedom in the IncrP model beyond the AIC model is due to adding Psx (sex) as an 

additional predictor. 

The ultra-fine (state-based) search gives BIC model 

IV: Cdg: Piji Cnr1 Cdg: Pyeo Cdg. 

This very simple (Adf= 2) model includes all three predictors from the more complex 

(.:idf = 9) AIC fine search model, but it selects only one state of each of these predictors 

as salient. It also shows Pij and Cnr interacting in their prediction of Cdg, which is not 

seen in the AIC fine search model. (This illustrates the point made earlier that a more 

refined search may discover interaction effects not observed in less refined searches.) 

This ultra-fine BIC model is only about half as predictive (%.:iH = 13.5) as the 

fine BIC model (%.:iH = 25.5), but it is also half as complex. (.:idf= 2 as opposed to 4). 

Using the most conservative criterion to select models, either of these two BIC models 

could be chosen as the 'best model,' but because the state-based model has an additional 

predictor (Cnr), and is thus potentially more interesting, it has been selected as the Cdg 

best model. 

Table 5 shows the conditional probability distribution, p(Cdg I Pij Pye Cnr), for 

the data and for this best model. The DV states, Cdgo and Cdg1, mean low and high 

Digit Symbol scores, respectively, so a high probability of Cdgo indicates a cognitive 

deficit. Alongside the conditional probability values, the table lists for each composite 

IV state the probability of a high score divided by the probability of a low score, namely 

Odds= p(Cdg1 I Pij Pye Cnr) I p(Cdgo I Pij Pye Cnr) (4) 
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High Odds values are good outcomes, low Odds are poor outcomes, while Odds near I 

have IV conditional probabilities that are close to the marginal probabilities for the 

whole sample. To the right of the Odds column is the p-value that assesses the 

significance of the difference between conditional and marginal probabilities. 

(Table 5) 

Comparing the (shaded) 3rd and 4th rows of Table 5 shows that for orthopedic 

(control) injuries and high education, difference in performance (in bold) on the 

Reaction-time Test (Cnr) does not predict any difference in the Odds. Comparing the 

(shaded) 3rd and 7th rows shows that for high education and fast reaction time, 

difference in injury type (Pij) - either head injury or merely orthopedic (in italics) -also 

does not predict an Odds difference. All three of these rows (IV states) have the same 

Odds, namely 2. 7. 

The conditional probability distribution for this state-based model can be 

understood to result from integrating the distributions of the separate components of this 

model, namely IV: Cdg: Pij2 Cnr1 Cdg and IV: Cdg: Pye0 Cdg. The component 

distributions are shown in Table 6. The distribution for the first component shows that 

Odds are low (0.33) for patients with head injuries and slow reaction times. The 

distribution for the second component shows that Odds are low (0.5) for patients with 

low education. Above Table 5, for the full model, integrates these two effects. 

(Table 6) 

The table for the full model can be summarized in the decision tree shown in 

Figure 4. The leaves of the tree are the Odds values followed by the p-value. Odds with 

significant p-values (at or near a 0.05 cutoff level) are shown in larger font. The 

decision tree can be summarized verbally as follows. For all patients, education predicts 

performance on the Digit Symbol Substitution Test: more education predicts better 
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performance. Education is thus a confounding variable for the Digit Test in 

discriminating concussion, and must be controlled for. This is not surprising, given the 

complexity of the DSST. For orthopedic injury patients, reaction time does not predict 

digit symbol score. For patients with mild head injury, fast reaction time predicts better 

digit symbol performance beyond the influence of education. 

(Figure 4) 

Predicting performance on the Normalized Reaction Test 

Table 7 shows results of coarse, fine, ultra-fine searches for the Normalized Reaction­

time Test (Cnr) after this DY has been rebinned to two equally sampled bins. 

(Table 7) 

For the coarse search, the table lists models selected by the three criteria, rather 

than tabulating the best single predictors. Three IVs show up in these models: Cdg, 

performance on the Digit Symbol Substitution Test (since Cnr predicts Cdg, it's not 

surprising that Cdg also predicts Cnr); Gpt, amnesia; and, for the IncrP model, also Pph, 

previous head injury. These IVs show up as 3- and 4-way joint interaction effects. 

The fine search BIC model, Cdg Cnr : Gpt Cnr, includes Cdg and Gpt as 

separate rather than as joint predictors, but, the more aggressive AIC and lncrP criteria 

highlight a Cdg Gpt Cnr interaction effect, and also add Pph plus two additional IVs not 

found in the best coarse models: Pri, recent illness, in the AIC model, and Pye, years of 

education, in the IncrP model. 

The ultra-fine search retains several of the IVs found in the coarse search, but 

indicates specific states of these variables: Pph I is previous head injury, Cdg I is high 

Digit Test score; Gpt 1 is the absence of amnesia. Note that this i'.\df = 2 ultra-fine BIC 

model has a higher uncertainty reduction (%~H = 12.4) than the more complex (i'.\df= 
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3) coarse BIC model (%~H = I 0.6) and the equally complex (~df = 2) fine BIC model 

(%~H = 8.8). Adding back IV: Cnr, the independence part of the ultra-fine model, the 

full state-based best Cnr model is 

IV : Cnr : Pph1 Cdg1 Cnr : Cdgo Gpt1 Cnr. 

Table 8 shows the conditional probability distribution for this model. The Odds 

value is the probability of fast (normal) reaction time divided by the probability of slow 

reaction time, given a particular IV state, i.e., 

Odds = p(Cnro I Pph Cdg Gpt) I p(Cnr1 I Pph Cdg Gpt) (5) 

Again, high values of Odds are good, low values point to a deficit, and values near I 

indicate similarity to the marginal probability distribution of the overall sample. 

(Table 8) 

Comparing the (shaded) 2nd and 4th rows of Oshows that for those patients who 

score low on the Digit Symbol Substitution Test and have amnesia, the presence or 

absence of a previous head injury does not matter: both have Odds = 0.2. Comparing 

the shaded 7th and 8th rows shows that if the patient has had a previous head injury and 

scores high (normal) on the Digit Symbol Test, the absence or presence of amnesia also 

does not matter: both have Odds= 2.7. 

The table can be summarized in the decision tree shown in Figure 5 which 

shows Odds (on the left) and p-values (on the right). To summarize this decision tree: 

for low performance on Digit Symbol Test, amnesia predicts slow reaction time. For 

normal performance on Digit Symbol Test, previous head injury increases the 

probability of fast (normal) reaction time; this latter result is anomalous. 

(Figure 5) 
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Predicting performance on the Visual Acuity Test 

Table 9 shows results of coarse, fine, ultra-fine searches for the Visual Acuity Test (Nlr, 

the Logarithm of minimum angle of Resolution) after this DV has been rebinned to two 

equally sampled bins. 

(Table 9) 

For the coarse search, the table lists models selected by the three criteria. Two 

IVs show up in these models: Ycv, corrected vision, and Pye, years of education. The 

fine search adds Gpt, amnesia, as a predicting IV. The BIC models of the coarse and 

fine searches are the same: only Ycv predicts Nlr. In the ultra-fine BIC model, selected 

as the best model, 

IV: Nlr: Pyeo Ycv1 Nlr: Pye1 Gpt1 Nlr 

Y cv interacts separately with both Pye and Gpt, illustrating the fact that state-based 

models can often detect interaction effects not detected by variable-based models. Also, 

the uncertainty reduction, 32.4%, for this ultra-fine model, which has Lidf = 2, is almost 

as large as the uncertainty reduction, 36.1 %, for the fine AIC model, which has Lidf = 5, 

and much larger than the uncertainty reduction, 11. 7%, of the coarse and fine BIC 

models. This illustrates the enhanced power of state-based modelling. 

Note that no model does better than the independence reference model %correct 

of95.5%. This illustrates the point made above that when probability distributions are 

highly skewed predictive models often make the same predictions as the reference 

model, so their %correct measures show no improvement. However, predictive models 

can differ substantially from the reference model in their conditional probability 

distributions, and thus provide valuable predictive information about risk. This 

predictive information is registered by the %uncertainty measure of model goodness. 
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Table l 0 shows the conditional probability distribution for this best model. The 

Odds value here is defined slightly differently than before; it is 

Odds= p(Nlr1 I Pye Ycv Gpt) I p(Nlro I Pye Ycv Gpt) (6) 

Now, low values of Odds are good, high values point to a deficit, and values near l 

indicate similarity to the marginal probability distribution of the overall sample. 

(Table 10) 

Comparing the (shaded) 3rd and 4th rows of Table l 0 shows that low education 

and correct vision predicts low visual acuity. For these patients, the presence or 

absence of amnesia does not matter in that both have Odds= 0.39. Small but not 

statistically significant effects of the presence or absence of amnesia are shown 

elsewhere in the table. 

SSUMMARY 

This analysis illustrates the type of results that can be obtained from exploratory 

modeling with RA and demonstrates the possibility of using RA to better understand­

and potentially ultimately to improve - clinical outcomes. Analyses can be done at three 

different levels of refinement. Models are conceptually transparent, being simply 

conditional probability distributions of a DV given the states of IV predictors. The 

distributions can be readily summarized with easily interpretable decision trees. 

This analysis of Preece data is a test bed for future analyses of other TBI data, 

which hopefully will include other types of IVs, such as imaging, genomic, and 

proteomic measures. Specific findings reported here are tentative and should be 

subjected to confirmatory tests with new data. This is particularly true of the anomalous 

finding in the Cnr model in which previous head injury predicted better reaction-time 

scores than the absence of previous injury. One possible explanation of this anomaly is 

that prior exposure to the Reaction Time test introduces a practice effect. But if reaction 
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time is so vulnerable to a practice effect that it no longer discriminates concussed from 

non-concussed, then it's probably not an appropriate measure for this purpose. Another 

finding of potential interest is the indication by the Cdg model that level of education 

may be a confounding factor in assessing TBI patients with the Digit Symbol Test. 
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Table 1 Variables in directed models discussed in this paper 

Ped 8 highest level of educatK>n 
Pij 5 lnjW')' group (patient or controO 
Pph 3 Previous head injW')' 
Pri 3 Recent illness 
Psx 2 Sex 
P,re 6 Years of educatK>n 
Yer 3 Corrected vision 
Ggc 4 Glasgow coma scale 

GEt 3 Post traumatic amnesia 
Cdg 7 Digit Symbol Substitution neuropsychobgical test 
Csr 6 Spatial Reacfon Tine test (reaction tine to visual stimuh) 
Cnr 6 SEatial Reacfon Tine test normalized fur age and sex 
Nlr 4 Visual Accuity Test (Logmar: bgarithm ofminirmun angle ofresohrtion) 
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Table 2 Illustration of small uncertainty reduction but big effect size 

lo Z1 

A0 .67*.5 .33* .5 0.5 

A1 .33*.5 .67*.5 0.5 

0.5 0.5 
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Table 3 Predictive success for associations found in neutral search 

vl v2 %AH(2 I1} %.iH(l I 2) p-value N µ%c( 2 I l} ..l%c(l I 2) vl v2 
Ggc Pij 14.5 86.5 0.000 196 9.7 7.7 glasgow coma scale Injury patient/control 

Gxc Pij 32.9 12.6 0.000 280 20.4 14.3 external cause Injury patient/control 
Ped Pye 41.3 14.8 0.000 248 32.3 27.4 highest educ level years of education 
Yem Ypn 6.4 6.1 0.000 218 5.0 2.3 emotional problems painscale 

Yds Yem 6.0 27.8 0.000 210 3.8 0.0 stress emotional problems 

Ydd Yds 43.6 26.0 0.000 210 1.4 1.9 depression stress 

Yda Yds 54.7 12.6 0.000 210 0.0 2.9 anxiety stress 

Pmd Ppk 50.7 57.6 0.000 230 28.3 15.7 current medications painkillers 
Gpc Pnp 57.0 100.0 0.000 52 11.5 30.8 previous concussion #previous concussior 
Pac Pig 26.5 12.3 0.000 201 0.0 12.4 caused accident case litigated 
Cnr Csr 48.6 48.3 0.000 210 34.3 31.0 reaction time norm reaction time 

Psx Ycv 6.5 8.8 0.000 197 2.0 0.0 sex corrected vision 

Gpc Ydz 13.7 21.9 0.003 52 0 9.6 previous concussion dizzy 

Csr Pph 5.3 2.3 0.010 187 5.3 4.8 reaction time previous head injury I 
Gpc Yfr 9.1 17.3 0.011 52 1.9 9.6 previous concussion frustrated 
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Table 4 Digit Symbol Test (Cdg) model searches 

Model Adf p %AH 0/oc ABIC 

REFERENCE (independence) 

c.dg 0 1.00 0.0 50.9 0.0 

COARSE& (single predictors) 

Pij c.dg 3 0.00 11.9 68.3 47.6 

Ped c.dg 7 0.00 11.7 65.0 5.9 

Ggc c.dg 3 0.00 5.6 65.0 18.3 

Cnrc.dg 5 0.00 3.5 60.8 6.1 

Pye c.dg I 0.00 3.0 68.3 27.9 

Csrc.dg 5 0.00 2.5 63.3 0.4 

FINE• 

Pij c.dg : Pye c.dg 4 0.00 25.5 72.9 BIC 

Pijc.dg:Pyec.dg : Cnrc.dg 9 0.00 32.8 76.7 AIC 

Pij c.dg : Pye c.dg : Cnr c.dg : Psx c.dg 10 0.00 32.9 76.3 IncrP 

ULTRA-FINE # 

Pij2 Cnr1 Cdg: Pyeo Cdg 2 0.00 13.5 68.6 BIC 

Pij = patient injury type Pye = years of education 

Ped =education level Csr= Spatial Reaction Test 

Ggc = Glasgow comi scale Psx = sex 

Cnr=Nonn Spatial Reaction Test 

&N=240 

•N = 240, ICntj = 6, including missing 

#N = 275, ICntj = 2, no missing 
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Table 5 Best Cdg model 

Full SB model= IV: Cdg: Pijz Cnr1 Cdg : Pye0 Cdg 

Conditional prommlities of DV 

IV states Data Model 

Pi} Pye Cnr N Cdgo Cdg1 Cdgo Cdg 1 

orthop low fast 18 0.5 0.5 0.59 0.41 

orthop low slow 22 0.68 0.32 0.59 0.41 

orthop high fast 38 0.21 0.79 0.27 0.73 

orthop high slow 20 0.35 0.65 027 ().73 

head low fast 15 0.53 0.47 0.59 0.41 

head low slow 24 0.88 0.13 0.86 0.14 

head high fast 18 0.33 0.67 0.27 0.73 

head high slow 20 0.6 0.4 0.62 0.38 

175 0.49 0.51 0.49 0.51 

IVs Pij (patient injury type): 1 orthopedic (control) vs 2 head injury 

Pye (years of education): 0 low vs I high 

Odds 

0.7 

0.7 

],7 

2.7 
0.7 

0.2 

2.7 
0.6 

1.00 

Cnr (Normalized Reaction-time Test): 0 fast (nonnal) vs 1 slow (deficit) 

DV Cdg (Digit Symbol Test): 0 low (deficit) vs 1 (high, nonnal) 

p 

0.41 

0.36 

O.Ql 

0.05 

0.45 

0.00 

0.06 

0.26 



Exploratory Reconstructability Analysis of Accident TBI Data 28 

Table 6 Components of best Cdg model 

Full SB model= IV: Cdg: Pij2 Cnr1 Cdg : Pye0 Cdg 

lst component= IV: Cdg: Pih Cnr1 Cdg 

Conditional probabilities of DV 

IV states Data Model 

Pij Cnr N Cdgo Cdg 1 Cdgo Cdg 1 Odds p 

orthop fast 56 0.3 0.7 0.4 0.6 1.5 0.19 

orthop slow 42 0.52 0.48 0.4 0.6 1.5 0.26 

head fast 33 0.42 0.58 0.4 0.6 1.5 0.32 

head slow 44 0.75 025 0.75 0.25 0.33 0 

175 0.49 0.51 0.49 0.51 1.00 

Aggregated 1st component 

Pij Cnr N Cdgo Cdg 1 Cdgo Cdg 1 Odds p 

not head-slow 131 0.4 0.6 0.4 0.6 1.5 0.01 

head slow 44 0.75 , 0.25 0.75 0,25 0.33 0 

175 0.49 0.51 0.49 0.51 1.00 

2nd model component = IV: Cdg: Pye0 Cdg 

IV states Data Model 

Pye N Cdgo Cdg 1 Cdgo Cdg 1 

low 79 0.5 0.5 0.67 0.33 

high 96 0.21 0.79 0.34 0.66 

175 0.49 0.51 0.49 0.51 

!Vs Pij (patient injury type): I orthopedic (control) vs 2 head injury 

Pye (years of education): 0 low vs I high 

Odds 

0.5 

1.9 

1.00 

Cnr (Nonnalized Reaction-time Test): 0 fast (nonnal) vs I slow (deficit) 

DV Cdg (Digit Symbol Test): 0 low (deficit) vs I (high, normal) 

p 

0 

0 
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Table 7 Normalized Reaction Test (Cnr) model searches 

Model Adf p %AH 0/oc N=175 

REFERENCE 

Cnr 0 1.00 0.0 50.9 

COARSE 

Cdg Opt Cnr 3 0.00 10.6 64.6 BIC, AIC 

Pph Cdg Opt Cnr 7 0.00 13.1 66.9 IncrP 

FINE 

Cdg Cnr : Opt Cnr 2 0.00 8.8 64.6 BIC 

Pri Cnr : Pph Cnr : Cdg Opt Cnr 6 0.00 14.7 70.3 AIC 

Pye Cnr: Pph Cnr: Cdg Opt Cnr 5 0.00 12.9 67.4 lncrP 

ULTRA-FINE 

Pph 1 Cdg1 Cnr: Cdgo Gpt1 Cnr 2 0.00 12.4 64.8 BIC 

Cdg =Digit Symbol Substitution Test Pri =recent illness 

Opt= amnesia; Pye =years education 

Pph =previous head injury 



Exploratory Reconstructability Analysis of Accident TBI Data 30 

Table 8 Best Cnr model 

Conditional probabilities ofDV 

IV states Data Model 

Pph Cdg Gpt N Cnro Cnr1 Cnro Cnr1 Odds 

no low no 20 0.4 0.6 0.52 0.48 1.1 

no low yes 19 0;16 0.84 0.16 0.84 0;2 

yes low no 30 0.57 0.43 0.52 0.48 1.1 

yes low yes 18 0.17 0.83 0.16 0.84 0.2 

no high no 24 0.50 0.50 0.52 0.48 I. I 

no high yes 13 0.61 0.39 0.52 0.48 1.1 

yes high no 38 0.76 0;23 0.73 0.27 2.7 

yes high yes 14 0.64 0.36 0.73 0.21 2.7 
176 0.51 0.49 0.51 0.49 1.0 

/Vs Pph (previous head injury): no vs yes 

Cdg (Digit Symbol Substitution Test): low( deficit) vs high (normal) 

Gpt (anmesia): no vs yes 

DV Cnr (Reaction-time Test): Cnr0 fast (normal) vs Cnr1 slow (deficit) 

p 

0.92 

0.00 

0.90 

0.00 

0.91 

0.93 

0.01 

0.00 
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Table 9 Nlr model searches 

Model Adf I! %AH %c N=l54 
REFERENCE 
Nlr 0 1.00 0.0 95.5 

COARSE 
YcvNlr 1 0.00 11.7 95.5 BIC 
Pye YcvNlr 3 0.00 25.0 95.5 AIC, lncrP 

FINE 
Ycv Nlr 0.00 11.7 95.5 BIC 
Pye Ycv Nlr: Pye Gpt Nlr 5 0.00 36.l 95.5 AIC 
YcvNlr 0.00 11.7 95.5 IncrP 

ULTRA-FINE 
Pye0 Ycv1 Nlr: Pye1 Gpt1 Nlr: Nlr 2 0.00 32.4 95.5 BIC 

Nlr =visual acuity (Logarithm of minirmnn angle of resohrtion) 
Y cv = corrected vision 

Pye= years of education 
Gpt = anmesia 
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Table 10 Best Nlr model 

Conditional probabilities ofDV 
IV states Da~ Model 

Pye Ycv Gpt N Nlr 0 Nlr 1 Nlr 0 

low no no 33 l 0 l 
low no yes 22 l 0 l 
low yes no 9 0.67 0.33 0.72 
low yes yes 5 0,8 0.2 0.72 
high no no 38 l 0 l 
high no yes 21 0.9 0.1 0.91 
high yes no 15 l 0 l 
hillh yes yes 11 0.91 0.09 0.91 

154 0.95 0.05 0.95 
/Vs Pye (years of education): 0 low vs l high 

Y cv (corrected \'Eion): 0 no vs l yes 
Gpt (anmesia): no vs yes 

Nlr 1 

0 
0 

0.28 
0.28 

0 
0.09 

0 
, 0.09 

0.05 

Odds 

0 
0 

0.39 
0.39 

0 
0.10 

0 
0.10 
0.05 

p 

0.23 
0.32 

0 
0.01 
0.2 

0.31 
0.42 
0.47 

DV Nlr (Visual acuity: logarithm of minirnwn angle of resohrtion): 0 normal vs l deficit 

Odds Unlike previous tabk.ls, here low values of Odd are ravorable 
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Figure 1 
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Figure 4 
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