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Depth-based signal separation with vertical line
arrays in the deep ocean

Reid McCargar and Lisa M. Zurk
Northwest Electromagnetics and Acoustics Research Laboratory (NEAR-Lab),

Department of Electrical and Computer Engineering, Portland State University, Portland,
Oregon 97201

rmccar@cecs.pdx.edu, zurkl@pdx.edu

Abstract: Deep vertical line arrays can exploit the reliable acoustic path
(RAP), which provides low transmission loss (TL) for targets at moderate
ranges, and increased TL for distant interferers. However, nearby surface
interference also has favorable RAP propagation and cannot be separated
from a submerged target without horizontal aperture. In this work, a
physics-based Fourier transform variant is introduced, which achieves
depth-based signal separation by exploiting the spatial structure resulting
from the coherent addition of the direct and surface-reflected propagation
paths present for submerged sources. Simulation results demonstrate
depth-based signal separation without requiring knowledge of the ocean
environment.
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1. Introduction

Using data from the Northeast Pacific, Gaul et al.1 demonstrated that a sensor
deployed below the critical depth (the depth below the sound speed minimum at which
the sound speed equals the speed at the surface) can exploit deep-ocean propagation
attributes to achieve 10–25 dB lower received levels from distant sound sources than
receivers above the critical depth. These observations were supported in a simulation
study by Li et al.,2 and attributed to the deep sound channel confining low-loss propa-
gation paths to above the critical depth, below which bottom losses become significant.

Sound can reach a deep receiver from sources at moderate ranges (20–35 km)
via the reliable acoustic path (RAP),3 a direct and possibly a surface-reflected pathway
with no bottom interaction or refractive turning points. Accordingly, predicted received
levels are 10–20 dB higher than for a shallow receiver at the same range, which relies
on environmentally sensitive bottom reflections, surface ducts, or upward-refracted
convergence zone arrivals.

A deep vertical line array (VLA) can leverage the steep vertical angles and low
loss of RAP arrivals from nearby targets to discriminate them from distant shipping noise,
which experiences increased transmission loss (TL) and arrives near horizontal. However,
nearby interferers also experience favorable RAP propagation and arrive at steep angles,
presenting a challenge for a VLA which lacks azimuthal rejection. Historically, this chal-
lenge has been addressed with adaptive array processing techniques and matched-field
approaches,4,5 but many of these techniques are susceptible to environmental uncertainty.
It is shown here that additional separation of surface vs submerged sources can be
achieved by exploiting Lloyd’s mirror pattern, which exists due to the coherent summation
of the direct and surface-reflected sound. This pattern can be described with relatively sim-
ple expressions, and exploited to provide depth-based signal separation (DBSS).

Signal separation is accomplished by applying a physics-based Fourier trans-
form variant to the power output of a plane-wave beamformer as it evolves over time.
The technique is derived here using image-theory, then tested on synthetic deep-VLA
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data, generated using a rigorous acoustical model to simulate a moving target, nearby
moving interferers, wind noise, and distant shipping noise.

2. DBSS theory and technique

Figure 1(a) illustrates the image-theory geometry, indicating the paths of the direct and
surface-reflected components of the acoustic field from a submerged point source at
constant depth zs, and range rðtlÞ, with spectral amplitude SðxÞ. The source moves in
a water column with sound speed c, with an r-z-plane velocity component vsrðtlÞ.

Although image theory does not accurately model propagation in a refracting
environment, it is used here to gain insight, and to develop expressions describing the
robust interaction of the direct and surface-reflected propagation paths. The image-
theory expressions are applied later to synthetic deep VLA data, generated using
KRAKEN and OASES-OASN.6

The field sampled during the lth snapshot is received by an N-element VLA
with uniform receiver separation, d, and midpoint depth, �z. In the far field, the addi-
tion of the two image-theory field components,

pðrðtlÞ; zn;xÞ ¼ SðxÞ eikRþn ðtlÞ

Rþn ðtlÞ
� eikR�n ðtlÞ

R�n ðtlÞ

� �

� � 2iSðxÞ sin hðtlÞ
�z

ei½kð�z=sin hðtlÞÞ�sinðkzs sin hðtlÞÞeik ðn�N=2Þ d sin hðtlÞ; (1)

describes a plane wave incident at vertical angle h, where k ¼ x=c, and n is the receiver
index. The sinðkzs sin hðtlÞÞ factor causes Lloyd’s-mirror interference fringes which
increase in spatial frequency as a function of source depth.

Figures 1(b) and 1(c) show TL at 150 Hz as a function of range and depth for
sources at zs ¼ 7 m [1(b)] and zs ¼ 50 m [1(c)], predicted with KRAKEN for a 5000-m
water column with a Munk sound speed profile and a 100-m silt sediment layer over a
semi-infinite basalt basement.6 Although refractive bending and multiple boundary
reflections are apparent, the depth-dependent interference structure predicted by image-
theory is a dominant and distinguishing feature of the two TL plots, with the shallow
source showing lower frequency spatial interference than the deeper source.

Synthetic snapshot data were generated for a deep VLA with N ¼ 16,
d ¼ 5 m, and �z ¼ 4950 m in this geoacoustic environment. Target and distant interfer-
ence signals were computed at 150 Hz with KRAKEN for the parameters in Table 1, and
wind noise realizations were drawn from the wind noise covariance, which was com-
puted with OASES-OASN for 55 dB wind noise.

A data covariance was computed using 5-s snapshots and a recursive averaging
technique which incurred the same average SNR loss as averaging 2N � 3 snapshot
covariances.4,7 Minimum variance distortionless response steering vectors were computed

Fig. 1. Panel (a) shows an illustration of the image-theory geometry, with time-dependence implied for a source in
motion. Plots in (b) and (c) show TL predicted for a Munk sound speed profile, using KRAKEN, for a source at
(b) zs ¼ 7 m, showing low-spatial-frequency interference structure, and (c) zs ¼ 50 m, showing high-spatial-fre-
quency Lloyd’s-mirror-type structure. Plots in (b) and (c) share a common depth axis.
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with a 3-dB white noise gain constraint, and used to beamform the synthetic data.8

Vertical time records (VTRs) which show the beamformed signal power,
Pðx; sin h; tlÞ, as a function of steering angle and snapshot time are shown for targets
at zs ¼ 7 m [Fig. 2(a)] and zs ¼ 50 m [Fig. 2(b)].

Image theory predicts a depth-dependent factor in the n,mth element of the in-
stantaneous covariance matrix,

Knmðx; tlÞ ¼ 2
SðxÞ sin hðtlÞ

�z

� �2

½1� cos ð2kzs sin hðtlÞÞ� eik ðn�mÞ d sin hðtlÞ: (2)

The low-frequency fluctuations apparent beneath the dashed blue trace in the VTR for
the shallow target [Fig. 2(a)], and higher-frequency fluctuations apparent beneath the
dashed red trace for the deeper target [Fig. 2(b)], are in qualitative agreement with this
expression, which forms the basis for the DBSS technique.

The sinusoidal form of the depth-dependent modulation in Eq. (2) suggests that
DBSS could be achieved by Fourier analysis of the signal power along the vertical-angle
trajectory of the target; however, snapshots are collected uniformly in time, while the si-
nusoidal fluctuations predicted by image theory vary harmonically with the sine of the
elevation angle, which is generally a simple but nonlinear function of time. To match
the structure of the depth-dependent signal, the conventional Fourier integral is reformu-
lated as a path integral of the beamformed signal power along the integration path,
Pðx; sin htrðtlÞÞ, with the kernel modified so that the complex phase matches the argu-
ment of the sinusoidal depth-dependent modulation factor in Eq. (2),

Table 1. Source parameters used to generate synthetic data. Constant speed, depth, and heading source trajecto-
ries were parameterized by range and time at closest point of approach (CPA). Distant interferers were consid-
ered stationary, with ranges and depths sampled uniformly from the intervals given.

Nearby interferers
(Fig. 3) only Distant interferers Target

Nsources 3 50 1
CPA range (km) 8,15,18 100–1500 2
CPA time (min) �10, �45, 150 — 45
Speed (m/s) 13 — 5
Depth (m) 7 3–10 7 [Fig. 2(a)] 50 [Fig. 2(b)

and Fig. 3]
150 Hz source
level (dB re 1 lPa2/Hz) 160 160 110

Fig. 2. Beam output shown as a VTR at 150 Hz, plotted with 80 dB (re peak) dynamic range and a common
y-axis in (a) and (b), with overlaid integration paths, a, shown as dashed lines. Synthetic data were generated
using KRAKEN for a source at (a) zs ¼ 7 m and (b) zs ¼ 50 m, and 50 distant interferers. 55-dB wind noise was
simulated with OASES. The plot in (c) shows the physics-based DBSS transform output, MðzÞ, applied to the
overlaid traces in (a) and (b) after re-normalization and de-meaning.
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Mðz;xÞ ¼
ð

a
Pðx; sin htrðtlÞÞ e�i2kz sin htrðtlÞ jd sin htrðtlÞj: (3)

The angular trajectory, sin htrðtlÞ, describes a hypothesis for the time-dependence of a
candidate target’s elevation angle, and dictates the integration path, a. The angular tra-
jectories which were used to compute the DBSS result in Fig. 2(c), are shown as
dashed traces overlaying the VTRs in Figs. 2(a) and 2(b).

Assuming the data covariance takes the form of Eq. (2), and the track hypoth-
esis matches the actual angular trajectory of the target, the DBSS result predicted by
image theory can be expressed as a convolution, denoted by �:

Mðz; xÞ ¼ 2
S2ðxÞ

�z2

ðsin htrðtLÞ

sin htrðt1Þ
sin2 htrðtlÞ e�i2kz sin htrðtlÞ

���� d sin htrðtlÞ
dtl

����dtl

� p
k

dðzÞ � 1
2
d ðz 6 zsÞ

� �
; (4)

where a change of variables has converted the path integral to a time integration.
The integral of the depth-independent factors is well-localized and easily solva-

ble. This important result predicts that the transform will have depth-dependent peaks at
z ¼ 6zs, which means each integration path can be associated with a source depth,
thereby achieving depth-based signal separation. Assuming the array depth is approxi-
mately known, the signal power along the analysis path can be re-normalized and
de-meaned prior to transforming in order to estimate the source spectrum level, SðxÞ,
and to remove the peak at z ¼ 0.

On discrete snapshot data, Eq. (3) is implemented as a summation,

Mðz; xÞ ¼
XL

l¼1

Pðx; sin htrðtlÞÞ e�i2kz sin htrðtlÞjD sin htrðtlÞ j; (5)

where D sin htrðtlÞ ¼ sin htrðtlÞ � sin htrðtl�1Þ is the discrete approximation to the
continuous-time derivative of the elevation angle along the analysis path.

After de-meaning and re-normalization, the discrete DBSS transform was
applied along the traces in Fig. 2(a) and 2(b) to produce the transform result shown in
Fig. 2(c). No environmental knowledge was necessary, and the transform was com-
puted assuming an isovelocity channel with c ¼ 1500 m/s. Unambiguous peaks are
apparent at the true depth of both contacts, in excellent agreement with the image-
theory prediction.

3. Simulation results

The result in Fig. 2(c) demonstrates the robustness of the DBSS technique to unknown
geoacoustic parameters, wind noise, and near-horizontally incident distant interference.
Nearby interference, which arrives at steep elevation angles and experiences favorable
RAP propagation, poses the most significant challenge for deep VLAs. In this section,
a more challenging environment with dynamic nearby interference is considered by
adding nearby moving interferers, described in Table 1, to the synthetic data from Fig.
2(c). Figure 3(a) shows the simulated VTR, in which the target signal is briefly discern-
ible from the strong interference.

A sonar operator must attempt to determine which of the signals in the VTR
correspond to contacts of interest, which is typically accomplished by performing spec-
tral classification along an analysis trace (scissor-gram analysis). Trace selection can be
accomplished by a detection and tracking algorithm, track-before-detect filter bank, or
by an operator’s visual inspection of the broadband or sub-band VTR. Here, candidate
traces were identified in Figs. 2 and 3 by visual inspection, one corresponding to the
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target at zs ¼ 50 m (red), and the other to a multipath arrival from the nearest inter-
ferer at zs ¼ 7 m (blue), and classification was achieved with the new DBSS technique.

The power output along the contact traces was re-normalized and de-meaned
before applying the DBSS transform. Figure 3(b) shows the transform output for the
nearby interferer multipath, and Fig. 3(c) shows the result for the submerged target.

Depth-dependent peaks in Figs. 3(b) and 3(c) remain well-resolved, in close
agreement with the true depths, and unambiguous against the background. Depth-
dependent peak width and angular extent of the analysis trace are coupled through an
uncertainty principle, which causes the peak broadening apparent in Fig. 3(c), com-
pared to Fig. 2(c), as well as decreased processing gain. The apparent improvement in
peak resolution for the shallow interferer in Fig. 3(b) can be attributed to the received
level from the interferer multipath being � 30 dB higher than from the target, and con-
siderably higher than wind noise and distant shipping levels. The minimal deviation of
peak locations from the true depth illustrates the robustness of the DBSS technique to
an unknown environment, particularly for the nearby interferer multipath, which expe-
riences three passes through the refracting water column, and multiple boundary
interactions.

4. Conclusion

This paper has described a technique to achieve depth-based signal separation using a
modified Fourier transform, derived using simple image-theory expressions to describe
the interaction of the direct and surface-reflected sound from a submerged contact.
This approach was plausible due to the practically ubiquitous strong reflection from
the sea surface, and the insensitivity of the reliable acoustic path to propagation condi-
tions. In simulations incorporating representative geoacoustic parameters and dynamic
interference, the DBSS technique achieved accurate depth estimation, and 6–10 dB
unambiguous depth-based separation using no environmental compensation in the
processing.

Doppler effects, spatially extended sources (rather than point sources), internal
waves, and surface swell were not included in this analysis, but are expected to have
little influence on processing performance at the low frequencies commonly used for
passive detection.
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