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BASIS FOR THE CE-QUAL-W2 VERSION 3 RIVER BASIN HYDRODYNAMIC AND 
WATER QUALITY MODEL 

 
Scott A. Wells, Professor of Civil and Environmental Engineering, Portland State 

University, Portland, Oregon 
 

Department of Civil and Environmental Engineering, P. O. Box 751, Portland State University, 
Portland, Oregon 97207-0751, Voice (503) 725-4276 FAX (503) 725-5950, 

http://www.ce.pdx.edu/~scott, scott@cecs.pdx.edu 
 

Abstract: CE-QUAL-W2 Version 3, a 2-D (longitudinal-vertical) hydrodynamic and water 
quality model for river basins combining both river and stratified river-estuary and lake-reservoir 
flow, is a development product of the Waterways Experiment Station in Vicksburg, MS, USA. 
With the development and release of any revised or reformulated model codes, significant model 
validation is required. This includes comparison of model results to simple analytical solutions 
for hydrodynamics and water quality transport, as well as comparison to laboratory and field 
data. In this paper, the model is compared to numerous analytical solutions for mass transport (1-
D advective mass transport) and hydrodynamics (impulsive wind stress on water surface, 
seiching). Suggestions are presented for proper validation protocols for hydrodynamic and water 
quality models. 

INTRODUCTION 
CE-QUAL-W2 Version 3 (Cole and Wells, 2001) is a two-dimensional water quality and 
hydrodynamic model capable of modelling watersheds with interconnected rivers, reservoirs and 
estuaries.  A typical model domain is shown in Figure 1. The model is based on solving the two-
dimensional unsteady hydrodynamic and advective-diffusion equations as shown in Table 1. 
 
CE-QUAL-W2 Version 3 allows the model user to include riverine branches in conjunction with 
reservoir/lake and estuary branches. This code also allows the user to insert hydraulic elements 
between branches (pipes, weirs, weirs with flashboards, spillways, gates with dynamic gate 
openings), use up-to-date reaeration (including spillway effects) and evaporation theoretical 
models, view model results graphically as they are being computed, use a variety of turbulence 
closure schemes, insert internal weirs in the computational domain, use the updated numerical 
scheme ULTIMATE-QUICKEST for advective transport of mass/heat, add float-activated 
pumps, use a dynamic vegetative and topographic controlled shading algorithm, and include a 
user-defined number of algal, epiphyton/periphyton, CBOD, suspended solids, and generic model 
water quality constituents. 
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Figure 1 CE-QUAL-W2 
Model Grid. 

 

 

 

 

 

 

 

Table 1 CE-QUAL-W2 Governing equations. 
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where B is the width, U is the longitudinal velocity, W is the vertical velocity, q is the 
inflow per unit width, α is the channel angle, Φ is the concentration or temperature, η 
is the water surface elevation, P is the pressure, h is the depth, Tw is the water 
temperature, ΦTDS is the concentration of TDS, Φss is the concentration of suspended 
solids, ρ is the density 
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All numerical modelling studies usually assume that the underlying model has been tested 
extensively to analytical solutions and other test cases to ensure that the model does not have any 
serious programming, theoretical, and/or numerical errors. This process is often termed 
“validation” or sometimes “verification” of a numerical model (Smith and Larock, 1999). In 
general, this process consists of comparison of simple theoretical analytical models to results 
predicted by the numerical model. This paper was meant to provide a basis for testing of the new 
model code CE-QUAL-W2 and to suggest approaches for proper validation of water quality and 
hydrodynamic models. 

MASS/HEAT TRANSPORT 
 

The simplest test of any code (but not necessarily the easiest) is to advect sharp concentration 
gradients. In CE-QUAL-W2 the model user can choose between 3 numerical formulations for 
testing the advective (both vertical and longitudinal) transport properties of the solution: 
UPWIND, QUICKEST (Leonard, 1979), and ULTIMATE-QUICKEST (Leonard, 1991) 
schemes. The UPWIND and QUICKEST schemes are used primarily for illustrative purposes 
since the ULTIMATE-QUICKEST scheme is an excellent technique for capturing sharp-front 
gradients and eliminating spurious oscillations at the leading and trailing edge of a gradient. 
Using a numerical upwind scheme introduces a tremendous amount of numerical diffusion (of 
order 0.5 xu ∆  where u is the velocity and ∆x is the segment spacing), analogous to physical 
diffusion (Vreugdenhil, 1989). While the QUICKEST scheme eliminates the numerical diffusive 
errors, it can cause spurious wiggles at the leading edge and following edge of a sharp front 
gradient.  
 
Figure 2 shows a comparison of CE-QUAL-W2 predictions using these 3 different numerical 
schemes to the analytical solution for sharp front advection. This figure is for a worse case 
situation where the Courant number (U∆t/∆x) is much less than 1. As the Courant # ⇒ 1, 
numerical diffusion decreases, and the model should more closely represent the numerical 
solution. In most multi-dimensional dynamic models though, one has a large spectrum of 
Courant numbers throughout the model domain, and validation tests with very small Courant 
numbers show potential code numerical inaccuracies.  

  

WIND DRIVEN WATER CURRENTS 
 
 

Hansen (1975) developed a simple analytical model of the growth of the velocity in a water body 
subjected to a sudden wind shear. Assuming that there is a balance between acceleration and 
vertical shear stresses in the x-momentum equation and that the turbulent eddy viscosity is 
constant with respect to z, the governing x-momentum equation becomes  
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Figure 2. Comparison of sharp front advection of concentration predictions using CE-QUAL-W2 to the 
analytical solution. 



 
5  

2

2

z
U

t
U

t ∂
∂=

∂
∂ ν

  
 

where tν  is the turbulent eddy viscosity and U is the longitudinal velocity as a function of z and 
t. 

By using an empirical relationship for the turbulent eddy viscosity, ∫=
h

t Udz
028

1ν  where h is the 

depth, the solution for the velocity over time is then  
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where U* is the shear velocity = ρ
τ surface

. 
 
For a vertical grid spacing of 0.1 m, the comparison of the analytical model and W2 are shown in 
Figure 3. In comparing CE-QUAL-W2 to this analytical solution, several adjustments were 
necessary for the model to agree with the assumptions of the analytical solution: 
 

• Set the horizontal transport of momentum from horizontal advection to zero 
• Set the vertical transport of momentum to zero 
• Set the horizontal transport of momentum by longitudinal eddy diffusion to zero 

• Set the eddy viscosity  to 
tUt

2
*28

1=ν
 over the entire water depth 

• Use an impulsive wind of 10 m/s measured at a 10 m height 
 

Also, in order to agree with the momentum equation used in the analytical solution, the 
horizontal pressure gradient would need to be set to zero. Since the simulation was run for only 
200 s, it was deemed that sufficient water surface pressure effects would still be negligible so 
there were no efforts to turn these off in the model. In W2 a decay function is used to transfer 
momentum from the wind to lower computational layers (see Cole and Wells, 2001). This also 
accounted for the wind-wave effect and was based on an empirical formula for the rate of decay 
of the wind energy with depth. This was originally proposed as a way to allow the results to be 
more grid-independent. If this were not implemented, a model with a fine grid near the surface 
would experience a greater shear and impulsive velocity than a model with a coarser grid spacing 
at the surface. To match the analytical solution, this was turned off in CE-QUAL-W2. 
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Figure 3. Comparison of CE-QUAL-W2 and analytical model solution for impulsive wind shear. 

SEICHES 
The shallow-water equations can be simplified to produce useful analytical solutions for 
comparison to numerical models. Using the following assumptions: frictionless bottom and 
sidewalls, hydrostatic and Boussinesq approximations, negligible non-linear terms in the 
momentum equation, and no turbulent or viscous fluid stresses, the simplified shallow water 
equations are 

 

    0  =+
x

Uh
t ∂

∂
∂
∂η continuity equation 

   
hx

g
t
U sx

ορ
τ

∂
∂η

∂
∂ +−= x-momentum equation 

 



 
7  

where η is the water surface elevation, U is the cross-sectionally averaged longitudinal velocity, 
h is the fluid depth, g is the acceleration due to gravity, x and t are independent variables of 
longitudinal distance and time, respectively, ρ is the fluid density and τsx is the surface shear 
stress in the x-direction. 

 
By cross-differentiating and equating the above 2 equations, we obtain the 1-D wave equation, 
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Assuming that there is no surface shear stress (τsx=0), the solution of the wave equation assuming 
an initially sinusoidal distribution in x and a sinusoidal distribution in time at the 2 ends of the 
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analytical solutions to the shallow water equations for water surface and velocity respectively as 
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where L is the closed basin length, η is the water surface elevation, ηo is the amplitude of the 
surface elevation, co is the gravity wave speed or gH , U is the cross-sectionally averaged 
velocity, and H is the basin depth. This represents a seiche that continues ad infinitum since there 
is no frictional resistance. This condition would be similar to a wind that stops blowing after 
reaching a steady-state set-up, and the water surface begins to oscillate back and forth without 
any surface shear stress. In reality, the seiche is damped by friction. A comparison of CE-QUAL-
W2 to this solution is shown in Figure 4 for water surface and Figure 5 for flow rate (based on 
velocity) for the following conditions: L=30 km, ∆x=500m, ηo= 0.145 m, and H=5.0m. In order 
to agree with the governing equations of the analytical model, CE-QUAL-W2 was run with one-
vertical layer (hence, no vertical flows), no friction (Chezy friction coefficient=0.0), no 
longitudinal dispersion of momentum, segment widths of 100 m, maximum time step of 2 s, and 
no non-linear advective terms in the momentum equation. 

 
The model predictions agree well with the analytical solution even though one sees that the 
amplitude and phase of the numerical model begin to deviate from the analytical solution over 
time. For any numerical scheme, there will be some deterioration of the signal over time in 
amplitude and phase. The important aspect or test here of a numerical code is that we are true to 
the original signal for several wave periods. Even though the CE-QUAL-W2 model could have 
been run at a larger time step and still have been stable, the accuracy of the solution would have 
been degraded as shown in the next example.  
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Figure 4 Comparison of CE-QUAL-W2 with analytical solution for a dynamic seiche in a narrow rectangular 
basin.    

Another comparison to an analytical model is that provided by solving the 1-D wave equation 
above, subject to the following conditions: 

Boundary conditions: bb
gh
u

x
−===  xand  at  x     

2
*

∂
∂η  

Initial conditions: ( ) 0for            and    0for   t      0 *** ≥=<= ttuuu  
and    xallfor         0at           0 == tη  where u* is the surface shear velocity, b is the half basin 
length, and x=0 is defined at the center of the basin. 
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Figure 5. Flow rate predicted by numerical solution compared to CE-QUAL-W2 model predictions for a 
dynamic seiche in a narrow rectangular basin. 

 
The analytical solution for the water surface was then 
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The analytical model was compared to a CE-QUAL-W2 simulation for a basin of length of 30 
km, segment widths of 100 m, segment lengths of 1000 m, 1 vertical layer, an initially flat water 
surface, and an impulsive wind velocity at 10 m height of 20 m/s. The comparison of the 
numerical and analytical solutions is shown in Figure 5 for a model time step of 100 s and 5 s.   
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An issue with numerical codes that solve the water surface equation by implicit techniques 
(which was done to eliminate the gravity wave speed stability criterion) is that the time step for 
numerical stability does not guarantee numerical accuracy. The model at higher time steps leads 
to very “diffusive” water level predictions and does not maintain the infinite seiche in the 
frictionless environment like the model with the lower time step. In Figure 5, a comparison is 
made using CE-QUAL-W2 at a numerically stable time step of 100 s compared to a reduced time 
step of 5 s (see also the model comparison to the analytical model in Figure 4 where the time step 
limit was 2 s). In this case though, the implicit numerical scheme of CE-QUAL-W2 leads to a 
numerically diffusive approximation to the water surface. This implies that modellers should 
always check the model results by doing sensitivity analyses with the model time step. If the 
model results are not sensitive to the time step, then the modeller can be confident that his 
hydrodynamic calibration (usually performed by adjustment of bottom friction) is not a function 
of the model numerical accuracy. In all practical applications of CE-QUAL-W2, sensitivity 
analyses evaluating the time step have never been shown to affect the solution even under estuary 
conditions like that shown for the Columbia-Willamette River system (Berger, Annear, and 
Wells, 2001). 

 
 

SUMMARY 
The model CE-QUAL-W2 was compared to analytical solutions for mass transport, wind driven 
currents, and dynamic seiching in order to validate that the model is reproducing known 
analytical solutions. All numerical solutions are approximations to the exact governing 
equations, and this step of validation is essential in testing new computer codes. Other 
comparisons not shown in this paper are also important – laboratory scale and field scale 
comparisons. These also provide a framework for evaluating mathematical models of water 
quality and transport. Some laboratory-scale studies that are useful comparisons to numerical 
models include: 

 
• Baines and Knapp (1965) carried out experiments of wind driven currents in an 

experimental flume (length of 10 m, depth of 0.6 m, width 1 m)  
• Kirkgoz, M. S. (1989) determined detailed velocity measurements in a rectangular sub-

critical flow channel for both smooth and rough channels 
• Johnson (1981) conducted dye tracer tests in a sloping channel reservoir flume (24.38 m 

X 0.91 m X 0.91 m) and used these data to compare to numerical model predictions of 
density driven inflows   

 
An important assessment tool in the reliability of a model is its ability to reproduce field data 
with as little “calibration” or parameter estimation as is possible. These have been demonstrated 
for the CE-QUAL-W2 model as shown in Wells (2000) and Cole (2000) where field data from 
numerous reservoirs, estuaries and rivers were compared to model predictions of hydraulics and 
temperature under diverse conditions.  
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Figure 6. Effect of time step on CE-QUAL-W2's ability to maintain a seiche. Water level is at the uppermost 
end of basin. 
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