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Research

Genome-wide detection of novel regulatory RNAs
in E. coli
Rahul Raghavan,1,2 Eduardo A. Groisman,2,3 and Howard Ochman1,2,4

1Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut 06516, USA; 2Microbial Diversity Institute,

Yale University, New Haven, Connecticut 06516, USA; 3Howard Hughes Medical Institute, Section of Microbial Pathogenesis, Yale

School of Medicine, New Haven, Connecticut 06516, USA

The intergenic regions in bacterial genomes can contain regulatory leader sequences and small RNAs (sRNAs), which
both serve to modulate gene expression. Computational analyses have predicted the presence of hundreds of these
noncoding regulatory RNAs in Escherichia coli; however, only about 80 have been experimentally validated. By applying
a deep-sequencing approach, we detected and quantified the vast majority of the previously validated regulatory elements
and identified 10 new sRNAs and nine new regulatory leader sequences in the intergenic regions of E. coli. Half of the newly
discovered sRNAs displayed enhanced stability in the presence of the RNA-binding protein Hfq, which is vital to the
function of many of the known E. coli sRNAs. Whereas previous methods have often relied on phylogenetic conservation to
identify regulatory leader sequences, only five of the newly discovered E. coli leader sequences were present in the genomes
of other enteric species. For those newly identified regulatory elements having orthologs in Salmonella, evolutionary
analyses showed that these regions encoded new noncoding elements rather than small, unannotated protein-coding
transcripts. In addition to discovering new noncoding regulatory elements, we validated 53 sRNAs that were previously
predicted but never detected and showed that the presence, within intergenic regions, of s70 promoters and sequences
with compensatory mutations that maintain stable RNA secondary structures across related species is a good predictor of
novel sRNAs.

[Supplemental material is available for this article.]

Small regulatory RNAs function in the transcriptional and post-

transcriptional control of gene expression in organisms from all

domains of life. Unlike protein-coding regions, which are specified

by a genetic code, regulatory RNAs, as a group, have no clear-cut

signatures that denote their boundaries or even their occurrence

in a genome. In enteric bacteria, which includes species for which

the most comprehensive information is available, these regulatory

elements are typically on the order of 50 to 200 nt in length, can

act in cis or trans, and have been shown to control a variety of

processes, including stress responses, metabolic reactions, and

pathogenesis (Romby et al. 2006; Lee and Groisman 2010; Mandin

and Gottesman 2010; Park et al. 2010). Moreover, regulatory RNAs

have been detected in a wide variety of non-enteric species, in-

cluding Pseudomonas aeruginosa (Livny et al. 2006), Helicobacter

pylori (Sharma et al. 2010), and Vibrio cholerae (Liu et al. 2009).

Since their initial characterization (Hindley 1967), the re-

pertoire of bacterial small RNAs (sRNAs) has been expanding

(Wassarman et al. 1999). About 80 sRNA transcripts have been

experimentally verified in Escherichia coli; however, computational

methods suggest the presence of hundreds of other sRNAs within

its genome. These computational predictions have been based

largely on (1) formation of stable RNA secondary structures, (2)

proximity to s70 promoters and Rho-independent terminators,

and (3) conservation across species (Vogel and Sharma 2005). Each

of these methods has defined somewhat different sets of putative

sRNAs. However, because there is no consistent model of sequence

evolution for these elements, it is difficult to assess the accuracy of

these predictions without experimental validation. Thus, many of

the computationally predicted noncoding elements may not be

authentic.

In addition to sRNAs, bacteria contain regulatory elements

within the 59-leader regions of several mRNAs (Tucker and Breaker

2005; Smith et al. 2010). These regulatory elements (such as ri-

boswitches) control transcription elongation, mRNA stability, and

initiation of translation in response to specific stimuli (Coppins

et al. 2007). In E. coli, eight experimentally validated riboswitches

and three putative riboswitch-like elements are known (Griffith-

Jones et al. 2003). But, similar to sRNAs, regulatory leaders are

difficult to identify based on primary sequence conservation alone.

Covariance models that detect RNA secondary-structure conser-

vation can circumvent this constraint, but they generally detect

only those elements conserved in a large number of bacterial spe-

cies (Yao et al. 2007).

In this study, we interrogate the transcriptome of E. coli by

applying a deep sequencing technology that overcomes many of

the technical limitations of previous experimental approaches

(i.e., low expression levels and the small size and/or complex sec-

ondary structures of sRNAs that make them poor substrates for

microarrays, Northern blots, copurification, and cloning tech-

niques). This method requires no prior knowledge of sequence or

structural conservation and offers a powerful means to identify

novel regulatory RNAs in bacteria (Sittka et al. 2008). Moreover, it

allowed us to detect and quantify transcripts of all known E. coli

sRNAs, detect riboswitch-mediated transcription termination, and

identify several new sRNAs and 59 leaders that were not previously

recognized by any experimental or computational approach. In

addition, we experimentally validate numerous computationally

predicted sRNAs, thereby vastly increasing the number of known

regulatory RNAs in E. coli.

4Corresponding author.
E-mail howard.ochman@yale.edu.
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Results

Interrogation of intergenic transcripts at great depths

To characterize the transcriptome of wild-type E. coli, we obtained

a total of 62.4 million 36-nt reads from cultures harvested during

exponential phase in N-minimal media supplemented with 10

mM or 10 mM MgCl2, which are repressing and inducing condi-

tions, respectively, for the PhoQ/PhoP two-component system

(Groisman 2001). Of these reads, a total of 61.7 million were of

sufficient quality to be mapped onto the E. coli K-12 MG1655 ge-

nome. Structural RNAs typically account for the vast majority of

RNAs in a cell, but on account of the mechanical removal of 16S

and 23S rRNAs, these sequences represented <3% of the total reads

in our sample. In contrast, 5S rRNAs and tRNAs, which were not

excluded because they overlap in length with known sRNAs,

constituted 68% and 6% of the reads, respectively. Importantly,

;4.3 million reads mapped back to intergenic sequences, indicating

that the approach could identify even low-abundant transcripts

from these regions.

The remaining 10.3 million reads corresponded to transcripts

originating from annotated open reading frames (ORFs) and known

noncoding sRNAs. The size-selected libraries were dominated by

transcripts shorter than 330 nt in length—there was 703 higher

coverage for ORFs in this size class—but even with this enrichment,

we detected transcripts from ;97% of annotated ORFs regardless of

their lengths, similar to that shown previously by Selinger et al.

(2000).

Validation of transcripts mapped to intergenic regions
and identification of Pho- and Mg2+-dependent sRNAs

To test the accuracy and specificity of our assays, we analyzed (1)

expression of the sRNA mgrR and (2) transcription elongation

controlled by the leader region of the magnesium transporter mgtA

gene in wild-type and phoP-deleted strains of E. coli grown both at

high and low Mg2+ concentrations (for complete read stats, see

Supplemental Table S1). As predicted by the PhoP dependence of

these transcripts, and in agreement with previous reports (Cromie

et al. 2006; Moon and Gottesman 2009), we observed high ex-

pression of mgrR at low Mg2+ concentrations in a PhoP-dependent

manner and increased transcription of the mgtA coding sequence

in a PhoP- and Mg2+-concentration-dependent manner (Supple-

mental Table S2).

In addition to mgrR (Moon and Gottesman 2009), we identi-

fied four additional sRNAs that appear to be under the control of

the PhoP/PhoQ two-component system (Supplemental Table S3).

Two of these, isrC and sokX, are repressed in the presence of PhoP,

whereas the other two, glmYand gcvB, are expressed at higher levels

in the wild-type strain than in the phoP mutant. Interestingly, the

expression patterns of isrC, sokX, and gcvB were independent of

Mg2+ levels, suggesting that the PhoP-mediated regulation of

these sRNAs responds to an additional cue, as shown earlier for acid-

resistance genes (Zwir et al. 2005). Transcript levels of three sRNAs

(sraA, eyeA, and ryjB ) increased at higher Mg2+ concentrations, but

the opposite pattern was observed for rprA. These results show that

this approach will effectively detect and quantify sRNAs from E. coli

grown in different conditions; however, for the rest of this article,

we present data only from the wild-type E. coli MG1655.

Detection of transcription termination by known riboswitches

Riboswitches present in the 59 ends of some mRNAs are known to

regulate the expression of the downstream gene by transcriptional

and/or translational control (Barrick and Breaker 2007). We ex-

amined the mRNA levels between the leader and the correspond-

ing coding region of eight known riboswitches in E. coli to try

to detect transcription elongation control. We expected to detect

an accumulation of prematurely terminated transcripts in ribos-

witches that exert transcriptional control and not in riboswitches

that act exclusively by regulating translation. The level of tran-

scription at each riboswitch and its 39 ORF was quantified by de-

termining the number of reads overlapping the region followed by

normalization to both the total number of reads in each library and

the length of the region. The average of the values calculated from

the two conditions (10 mM or 10 mM MgCl2) is denoted as the

Mean Expression Value (MEV). Except for the riboswitch upstream

of the lysC gene, all riboswitches displayed substantially higher

levels of transcripts in the leader region when compared to the

downstream coding region (Fig. 1). We determined that in E. coli,

all three TPP riboswitches control transcription elongation with

the riboswitch 59 of thiC mRNA producing more prematurely ter-

minated transcripts than the TPP riboswitches upstream of thiM

and thiB (Fig. 1), when grown in defined media. This observation is

in agreement with earlier studies that showed that the thiC ribos-

witch is a much stronger attenuator of transcription and trans-

lation than the thiM riboswitch (Winkler et al. 2002a). Similar to

the transcription termination observed in this study, the Mg2+-

sensing riboswitch has been shown to terminate transcription of

mgtA in Salmonella at high Mg2+ concentrations (Supplemental

Table S2; Cromie et al. 2006).

The FMN riboswitch is thought to function as a transcrip-

tional attenuator in Bacillus subtilis (Winkler et al. 2002b), and

a short transcript (Vogel et al. 2003), presumably ascribed to Rho-

dependent transcriptional termination within the 59-leader se-

quence of ribB (Peters et al. 2009) has been observed previously in

E. coli. The lysine riboswitch (59 of lysC) is known to be a trans-

lational attenuator in Gram-negative bacteria (Serganov and Patel

2009) as opposed to functioning as a transcriptional attenuator in

Gram-positive bacteria, which might account for the lack of tran-

scription termination control in E. coli. The riboswitches upstream

of btuB and moaA genes regulate translation by blocking ribosome-

binding sites (Nahvi et al. 2002; Regulski et al. 2008). However,

similar to our results, transcription termination within riboswitches

has been observed even in the absence of sequences resembling

classical intrinsic transcriptional terminators (Irnov et al. 2010;

Livny and Waldor 2010). This suggests the presence of non-

canonical intrinsic terminators or the involvement of the tran-

scription factor Rho in the control of these riboswitches (Peters

et al. 2009). From our results, it is clear that RNA-seq is a useful

and sensitive method to identify leader sequences that regulate

transcription elongation.

Identification of novel regulatory leader regions

We selected 28 transcripts that appeared to originate at least 100 nt

upstream of the 39 ORF in order to identify new cis-acting regula-

tory sequences that affect mRNA levels. By examining the MEVs of

the 59-leader regions and the 39 ORFs, we found nine leader regions

that have MEVs at least seven times greater than the MEVs for their

39 ORFs (Fig. 2; Table 1), a pattern similar to that of known ribo-

switches. We next used RNAz (Gruber et al. 2007), which identifies

RNA structures based on both structural conservation and thermo-

dynamic stability, to detect potential regulatory elements within

these nine transcripts. RNAz predicted the presence of functional

RNAs in five of the transcripts (Table 1), whereas there was no
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evidence of conserved regulatory elements in the leader sequences

of yahM, ybjM, ynaE, and ydfK. Each of these leader sequences

displayed a dramatic reduction in the number of reads mapped to

its 39 ORF when compared to its 59 leader region (Fig. 2), suggesting

that the expression of their corresponding coding regions is regu-

lated at the level of transcription elongation/termination.

Many genes involved in sulfur metabolism are known to carry

S-adenosylmethionine (SAM)–responding riboswitches (Weinberg

et al. 2008). Because thiI is a sulfur transferase and its leader se-

quence regulates gene expression in Vibrio cholerae (Livny and

Waldor 2010), we tested the ability of the thiI leader sequence to

control transcription elongation in an in vitro system. As shown

for other SAM-responding riboswitches (Winkler et al. 2003), we

found that the presence of SAM retards transcript elongation into

the coding region of thiI by 76% (Fig. 2J). S-Adenosylhomocysteine

(SAH), an analog of SAM, reduced transcription only by 18%,

demonstrating that the putative riboswitch can discriminate be-

tween the two ligands. In contrast, the leader sequence of mdtJ,

which transports spermidine, a polyamine synthesized from SAM,

did not show transcription control in response to either SAM or

SAH.

Because regulatory elements often function only in specific

environments, it is possible that the lack of evidence for tran-

scriptional elongation control reflects the particular growth con-

dition and not the absence of a regulatory element. Therefore, we

analyzed all remaining intergenic transcripts using RibEx (Abreu-

Goodger and Merino 2005), which identifies conserved sequences

upstream of orthologous genes in multiple genera. Based on this

analysis, we detected riboswitch-like elements upstream of 10 ad-

ditional genes. We further analyzed these candidate elements us-

ing RNAz to determine whether they have the potential to fold

into secondary structures that are conserved across genera. We

detected conserved structural RNAs upstream of three of the genes

(Supplemental Table S4). These 10 elements, together with the

nine others recognized by the RNA-seq analysis, yields a total of 19

new leader sequences with potential regulatory functions in the

E. coli genome.

Expression levels of known sRNAs

A total of about 3 million reads from wild-type E. coli mapped to

the 80 experimentally validated sRNAs (Supplemental Table S5).

The level of transcription of each sRNA was quantified by de-

termining its MEV, as described above. We also determined the

percentage of nucleotides within each gene containing at least one

mapped sequencing-read (PRM, percentage of region mapped).

Applying a cutoff of MEV $ 1 and PRM $ 50% for considering a

gene as transcriptionally active, we detected substantial transcript

production (MEV $ 1 and PRM $ 50%) from 78 of the known

sRNAs, with 68 of them having an MEV $ 2 times higher than

either of its 50 flanking nucleotides. The two experimentally val-

idated sRNAs for which transcripts were not detected were (1) sroC,

an sRNA element in the gltIJKL operon that was deleted from our

laboratory strain during serial culture, and (2) rseX, which reduces

levels of the outer membrane proteins OmpA and OmpC when

overexpressed from a plasmid; however, it is noteworthy that

transcripts from this genomic location have never been detected

previously (Chen et al. 2002; Douchin et al. 2006).

Most sRNAs (59/80) have MEVs between 1 and 10,000, with

a mean of 821. Ten sRNAs, including the housekeeping 6S RNA and

tmRNA, were expressed at MEVs >10,000, whereas 11 sRNAs had

MEVs <10. However, similar to what is observed for protein-coding

regions, these known sRNAs are expressed at very different levels

(Supplemental Fig. S1; Supplemental Table S5).

Detection of novel sRNAs

To uncover novel regulatory elements operating at the RNA level,

we analyzed transcripts from every intergenic region (IGR) of

E. coli. We determined that the vast majority (3087/3683; 86%)

of them are transcriptionally active (at a cutoff of MEV $ 1 and

Figure 1. Transcription termination at known riboswitches. (A) Ratios of
mean expression values (MEV) of upstream leader regions to those of their
corresponding ORFs. Positive values show that the MEVs of riboswitches
are markedly higher than the MEVs of their downstream coding regions.
(B) Expression profiles of leader sequences and downstream coding
regions. The y-axes denote coverage at each nucleotide position, limited
to a maximum coverage of 1000 (dashed lines). Numerical positions of
transcription start sites (black arrows) follow the coordinates for the E. coli
K12 genome (NC_000913.2). Wide gray arrows on x-axes, depicting
ORFs, are not drawn to scale.
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PRM $ 50%) at the tested growth conditions. Of those, we focused

our attention on the 1145 IGRs that were longer than 150 nt, the

typical lengths of known sRNAs and riboswitches. We examined

the levels of transcription from these IGRs and found 171 to con-

tain substantial transcripts compared to their flanking sequences.

After removing IGRs that contained repeat palindromic elements,

including RIPs/REPs and ERICs (Wilson and Sharp 2006), 119 IGRs

with potential regulatory elements remained (Supplemental Table

S6). We discovered that 51 of these had transcripts that originated

from sites that are different from the transcription start sites (TSSs)

described for the flanking genes in EcoCyc (Keseler et al. 2009).

To identify new sRNAs, we selected 17 transcripts that (1) had

good read coverage, (2) originated from previously undefined TSSs,

and (3) appeared to terminate within the same IGR when exam-

ined on Artemis (Rutherford et al. 2000). The coding strand and

boundaries of each of these transcripts were determined by a

modified 39-RACE procedure and by visualization of the transcripts

on Artemis. The 39 ends of seven transcripts extended into the

downstream ORF, and hence were considered to be leader regions,

whereas the other 10 transcripts, ranging

in size from 72 to 255 nt, appear to be

bona fide sRNAs (Fig. 3; Table 2). Some of

the sRNAs produced multiple bands in

the 39-RACE analysis (Supplemental Fig.

S3), presumably due to processing of the

transcript, as observed for other sRNAs

(Argaman et al. 2001; Vogel et al. 2003). A

majority of sRNAs in E. coli are known to

require Hfq, an RNA-binding protein, for

optimal regulation of target-gene expres-

sion (Gottesman 2004). To test whether

Hfq stabilizes the putative sRNAs identi-

fied in this study, we measured their abun-

dance during exponential growth in both

wild-type and hfq-deleted strains of E. coli.

As shown in Figure 4, five of these sRNAs

were significantly more abundant in wild-

type E. coli than in the mutant strain that

lacked Hfq. In sum, we were able to identify

10 novel intergenic sRNAs, five of which

exhibited higher stability in the presence of

Hfq, denoting similarity in their regulation

to many of the previously characterized

sRNAs in E. coli.

Validating previously predicted
sRNAs

Computational methods that predict the

presence of sRNAs within bacterial genomes

are usually based on sequence conserva-

tion, structural homology, and/or the pres-

ence of common features such as promoters

and terminators. We compared the inter-

genic transcripts detected by RNA-seq to

those predicted computationally in five

genome-wide studies (Table 3) and detected

substantial transcripts ($1 MEV, $50%

PRM, and $23 MEV than either of its 50

flanking nucleotides) from 133 candidate

sRNAs, of which 58 have not been experi-

mentally validated before (Supplemental

Table S7). Thirty-eight of the newly validated sRNAs were recognized

in two studies that used locations with s70 promoter and Rho-

independent terminator combinations in IGRs (Chen et al. 2002;

Yachie et al. 2006), whereas 19 sRNAs were predicted by identi-

fying IGRs that contained RNAs that maintained their secondary

structures across related bacteria by compensatory mutations

(Rivas et al. 2001). From these results, we conclude that while the

presence of promoter–terminator combinations in intergenic re-

gions is the most reliable predictor of sRNAs, a comparative ap-

proach that detects structure-preserving compensatory muta-

tions is also a useful strategy.

Distinguishing sRNAs from unrecognized ORFs

Because nucleotide substitutions in protein-coding regions that

change the amino acid (nonsynonymous) are usually more detri-

mental than those that do not (synonymous or silent substitutions),

the number of synonymous substitutions per synonymous sites

(Ks) far exceeds the number of nonsynonymous substitutions at

Figure 2. Transcription termination at putative regulatory leader sequences. (A–I) Expression profiles
of leader sequences and downstream coding regions. The y-axes denote coverage at each nucleotide
position, limited to a maximum coverage of 1000 (dashed lines). Putative transcription start sites (black
arrows) and their locations in the E. coli genome (NC_000913.2) are shown on x-axes. Lengths of the
corresponding ORFs (wide gray arrows) are not drawn to scale. (J) In vitro transcription of thiI coding
region by T7 RNA polymerase in the presence of 100 mM S-adenosylmethionine (SAM) or S-adeno-
sylhomocysteine (SAH) relative to its expression in the absence of SAM and SAH. Data represent means
of three experiments 6 standard deviations.
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nonsynonymous sites (Ka) in regions that encode functional pro-

teins. Hence, for most proteins, the Ka/Ks ratios are significantly <1,

whereas for non-coding regions, this ratio approaches 1 (Ochman

2002). When comparing orthologous sequences from E. coli and

Salmonella enterica serovar Typhimurium, the Ka/Ks ratio for mgrB,

a small protein-coding gene, is 0.07 in the reading frame, but the

ratio is close to 1 in all other frames. Similarly the Ka/Ks ratio for

arcZ, a known sRNA that does not encode a protein, is ;1 in all six

reading frames. The Ka/Ks ratios for sgrS and sibA, two sRNAs that

encode small proteins, were 0.3 and 0.6, respectively, in the ORFs

and approached or exceeded 1 in all the other frames.

To test the possibility that some of newly identified regulatory

elements might actually correspond to protein-coding regions, we

calculated Ka/Ks ratios for five sRNAs and seven regulatory leaders

newly identified in this study, and for 10 previously predicted

sRNAs that are present in both E. coli and Typhimurium. For all

of the regulatory leader regions and previously predicted sRNAs,

Ka/Ks ratios were not significantly different from one in any of the

six possible reading frames. In addition, for two of the sRNAs

(those present in the yejG-bcr and yhcC-gltB IGRs), Ka/Ks ;1, in-

dicating that these regions are unlikely to encode proteins. The

sRNAs identified in the yigE-corA, glnA-typA, and ytfL-msrA IGRs

have Ka/Ks values between 0.1 and 0.2 in one of the potential

reading frames, suggesting the presence of small ORFs; but on

closer examination, there was no clear presence of start and stop

codons, or the putative proteins were interrupted by stop codons

in one or the other species. For example, a 15-amino-acid ORF in

the yigE-corA IGR of E. coli was disrupted in Typhimurium due to

a 2-nt indel, and an 18-amino-acid, serine-rich ORF in Typhimu-

rium in this same IGR was shortened to 10 amino acids in E. coli

due to a 1-nt deletion. Similarly, a 43-amino-acid ORF in the glnA-

typA IGR of Typhimurium was reduced to a 21-amino-acid ORF in

E. coli due to a stop mutation, and a 31-amino-acid putative ORF in

the ytfL-msrA IGR in E. coli was shortened to only eight amino acids

in Typhimurium due to the deletion of 1 nt. Thus, these IGRs most

probably contain new noncoding regulatory elements rather than

unannotated ORFs.

Discussion
We identified new regulatory RNAs (10 sRNAs and 19 regulatory

leader sequences) and experimentally validated 53 previously

predicted sRNAs by RNA-seq. Five of these novel sRNAs were

destabilized in cells lacking the RNA-binding protein Hfq, as

expected of regulatory sRNAs (Moon and Gottesman 2009), and

we further validated one of the newly detected regulatory leader

sequences by an in vitro transcription assay. Ka/Ks ratios for those

newly identified elements present in both E. coli and Typhimurium

indicated that these elements do not encode small protein-coding

regions; and by quantifying all previously known sRNAs, we

demonstrated that the regulation of many are PhoP- or Mg2+-

dependent. These results validate the use of deep sequencing to

uncover new regulatory RNAs, especially those that are either not

conserved among related bacteria or are expressed at very low

levels.

In E. coli, detection of new sRNAs has progressed in concert

with experimental techniques that allow the detection of sRNAs

expressed at successively lower levels (Table 4). The first sRNAs (6S,

4.5S, spf, ssrA, and rnpB ) were discovered after the development of

polyacrylamide gel electrophoresis (PAGE) (Ikemura and Dahlberg

1973), and the introduction of Northern blots (Alwine et al. 1977)

and, more recently, microarrays (Schena et al. 1995), has increased

dramatically the number of known sRNAs to about 80 (Hershberg

et al. 2003). Concurrent with these methods, comparative genomics

and computational approaches have fostered the identification of

large numbers of putative sRNAs (Argaman et al. 2001; Rivas et al.

2001; Chen et al. 2002; Yachie et al. 2006; Tran et al. 2009). How-

ever, only a small fraction of the sRNAs that were recognized com-

putationally has been experimentally validated, a disparity usually

attributed to the limiting resolution of Northern blots, which had

previously been the traditional method for detecting bacterial tran-

scripts. Our application of a high-throughput RNA-seq approach has

expanded the known repertoire of sRNAs in E. coli. In addition

to detecting transcripts from all but one of the previously known

sRNAs, we confirmed the presence of 10 novel sRNAs and 53 sRNAs

that were predicted but never experimentally validated.

RNA-seq allows the simultaneous quantification of all known

sRNAs in E. coli. A large majority of the sRNA pool (84%) consisted

of transcripts corresponding to just 10 sRNAs (Supplemental Fig.

S1), with RyhB, a regulator of genes involved in iron metabolism,

being the most highly expressed. This sRNA is transcribed in low-

iron conditions and promotes the production of siderophores

(Massé and Gottesman 2002; Salvail et al. 2010). RyhB has been

detected in abundant quantities in minimal media with glucose as

the carbon source (Argaman et al. 2001; Wassarman et al. 2001),

but not when grown in rich media, which parallels what we ob-

served (Supplemental Table S5). ssrS (6S RNA), the other sRNA

expressed at a high level, binds to the RNA-polymerase holoenzyme,

down-regulating s70-dependent transcriptions during stationary

phase (Wassarman 2007), and recent studies suggest additional

possible regulatory roles during exponential phase (Neusser et al.

2010).

We were able to detect transcripts from nearly all of the 80

known sRNAs; however, 10 of the sRNAs did not reach our cutoff of

having MEVs that were appreciably higher than their flanking

sequences. This observation is in agreement with previous studies

showing that at least seven of these sRNAs are not expressed by

E. coli during exponential growth in glucose-supplemented mini-

mal media. These seven sRNAs are the CRP-dependent cyaR, which

is repressed during growth in glucose ( Johansen et al. 2008; De Lay

and Gottesman 2009); rybB and ohsC, which are induced in sta-

tionary phase (Vogel et al. 2003; Kawano et al. 2005); istR-2 which

is produced during the SOS response (Vogel et al. 2004); rydC,

which is minimally expressed during log-phase growth (Antal et al.

2005); DicF, which is not expressed during exponential growth

Table 1. New regulatory leader sequences in E. coli identified
by RNA-seq

Transcription
start sitea

ORF start
sitea Gene Strand

Length
(nt)

Relative
MEVb

RNAz
scorec

344,476 344,628 yahM + 153 13 �
440,692 440,773 thiI + 82 16 0.55
889,102 889,312 ybjM + 211 8 �
1,432,597 1,432,281 ynaE � 317 20 �
1,630,747 1,631,063 ydfK + 317 14 �
1,671,802 1,671,525 mdtJ � 278 54 0.99
3,376,840 3,376,673 rplMd � 168 7 0.99
3,628,944 3,628,625 yhiI � 320 78 0.80
4,083,996 4,083,845 fdoG � 152 33 0.91

aNumbering according to E. coli MG1655 (NC_000913.2).
bMEV (Mean Expression Value) of leader sequence/MEV of coding region.
cValues of P, as calculated by RNAz (Gruber et al. 2007).
dPreviously predicted by Rivas et al. (2001).
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(Bouché and Bouché 1989); and sokA, an antisense sRNA (Fozo

et al. 2008), which is a partially deleted pseudogene in E. coli

MG1655. By examining wild-type and phoP-deleted strains grown

at high and low Mg2+ concentrations, we identified sRNAs whose

expression patterns were associated with the presence of PhoP

and/or with the amount of Mg2+ in the growth medium, and ex-

periments are under way to understand the physiological signifi-

cance of these findings.

Five of the newly identified sRNAs are present in significantly

higher amounts in wild-type E. coli than in an isogenic strain that

lacks hfq (Fig. 4). This conservation suggests that, like other sRNAs

(Sledjeski et al. 2001; Massé et al. 2003), these five sRNAs also re-

quire Hfq for stability and for optimal function. The sRNA detected

in the ychE-oppA IGR overlaps a transcript previously reported to be

part of the 59-leader sequence of the oppA gene (Kawano et al.

2005), but its dependence on Hfq for stability suggests that it acts

as a trans-acting sRNA. Of the 10 novel sRNAs, three—the sRNAs

detected between ynfM and asr genes, the sRNA detected between

the sdiA and yecC coding regions, and the

sRNA between yigE and corA—overlap

three putative sRNAs predicted compu-

tationally based on the occurrence of a

s70 promoter and a Rho-independent

terminator (Chen et al. 2002). Addition-

ally, an intrinsic terminator is present at

the 39 end of the sRNA identified between

the ygfI and yggE genes (Kingsford et al.

2007). Because Rho-independent termi-

nators were not detected at the 39 end of

the six other novel sRNAs, termination of

transcription of these elements may rely

on noncanonical intrinsic terminators,

be associated with paused RNA polymerase,

or use Rho-dependent terminators. Unlike

intrinsic terminators, the locations where

the Rho protein act cannot be readily

identified by sequence analysis, suggest-

ing that experimental approaches (Peters

et al. 2009) will be required to reveal the

mechanisms by which transcription ter-

mination is controlled at these sites.

Putative s70 promoters are present

upstream of all 10 newly recognized

sRNAs, and the TSSs determined for eight

of the sRNAs match TSSs identified in

a recent study that mapped genome-wide

RNA polymerase binding sites (Cho et al.

2009). The TSSs we identified for the

sRNAs between sdiA and yecC genes, and

the sRNA between yejG and bcr genes,

were not detected in that study probably

because of the differences in growth con-

ditions between the two studies. The sRNA

found between glnA and typA genes vali-

dates the prediction by Rivas et al. (2001)

that this IGR contains an sRNA. In ad-

dition, our analyses confirmed 52 other

sRNAs that were previously predicted by

various computational approaches, thereby

vastly increasing the number of exper-

imentally verified sRNAs in E. coli. A

majority of these sRNAs (Tables 2; Sup-

plemental Table S7) have associated s70 promoters, indicating that

the presence of a s70 promoter that does not correspond to a known

ORF is the best indicator of novel sRNAs. However, computational

methods tend to produce numerous false positives due to low

signal strength of bacterial promoters (Mendoza-Vargas et al.

2009). Our analyses also showed that the identification of regions

that have undergone compensatory mutations to preserve RNA

secondary structures in related organisms is also a good strategy to

predict the presence of new sRNAs (Table 3; Supplemental Table S7;

Rivas et al. 2001), but this strategy also produces numerous false

positives due to the presence of cis-regulatory elements in the un-

translated regions of mRNAs (Supplemental Table S8). Hence, by

using a high-throughput analysis in conjunction with computa-

tional predictions, sRNAs can be identified rapidly at a genome-wide

scale.

As with the computational detection of sRNAs, many of

the current methods used to identify regulatory elements in the

59-leader regions of genes also rely on nucleotide sequence or

Figure 3. Detection of novel sRNAs in intergenic regions. (A–J ) Expression profiles of intergenic re-
gions. The y-axes denote coverage at each nucleotide, limited to a maximum of 1000 (dashed lines).
Positions of transcription start sites (TSS) and terminators (stem–loop structures) found within each
intergenic region are depicted. Nucleotide positions follow the numbering of the E. coli genome
(NC_000913.2). Wide arrows on x-axes contain named ORFs (gray), sRNAs (pink), and an unnamed
small ORF (green). Lengths of flanking genes are not drawn to scale.
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secondary structure conservation (Weinberg et al. 2010). This ap-

proach, while effective, will only detect those elements that are

maintained across a spectrum of bacterial species. In contrast, by

directly detecting transcription termination on a genome-wide

scale, we have identified regulatory elements in the leader sequences

of numerous genes without the need to consider sequence or sec-

ondary structure. This allows the identification of regulatory leader

RNAs that control species-specific genes. In addition, this experi-

mental approach has the advantage of both detecting and experi-

mentally validating regulatory leader sequences in a single step.

Most of the new regulatory leader regions detected in this

study are restricted to members of the family Enterobacteriaceae. In

one case, a suspected regulatory element was reported to occur in

the 59-leader region of the rplM gene in a Gram-positive Firmicute

(Yao et al. 2007), and the element we discovered at the 59 end of the

E. coli rplM gene has a very different sequence but similar secondary

structure to the one in Firmicutes. Although computational tools

did not detect conserved structural RNAs in the 59-leader regions

of the yahM, ybjM, ynaE, and ydfK genes, we observed strong con-

trol of transcriptional elongation at each of these sites (Fig. 2).

Interestingly, prematurely terminated transcripts were detected

from the 59-leader sequences of the ybjM, ynaE, ydfK, mdtJ, typA,

yhiI, and dinQ genes, similar to earlier studies that detected small

transcripts from within riboswitches (Vogel et al. 2003; Kawano

et al. 2005; Mendoza-Vargas et al. 2009). We were able to identify

a putative SAM-responding regulator in the 59-leader sequence of

the thiI gene. Homologs of this thiamine biosynthesis and tRNA

modification gene in several Gram-negative bacteria have been

reported to contain a conserved motif in their 59-leader sequences

(Livny and Waldor 2010), suggesting that a similar regulatory

mechanism might be present in related bacteria as observed in the

E. coli thiI leader region. Additionally, we observed an anti-sense

RNA, which has been previously reported (Dornenburg et al. 2010)

at this genomic region. The other regulatory RNAs identified in

this study require further experiments to better understand their

modes of action, and newer studies using alternative approaches

will be needed to identify those regulatory RNAs that escaped de-

tection due to the size selection (30–330 bp) we performed to

generate the sequencing libraries. By quantifying the transcripts

from exponentially growing E. coli on a genome-wide scale, we

were able to detect several new sRNAs and riboswitch-like regu-

lators yielding new insights into the highly dynamic regulatory

RNA pool of E. coli.

Methods

RNA preparation, library construction, and sequencing
E. coli K-12 MG1655 (NC_000913.2) and phoP-deleted strain
EG12976 were grown in N-minimal media (pH 7.7) supplemented
with 10 mM or 10 mM MgCl2, 0.1% casamino acids, and 0.4%
glucose to mid-log phase (OD600 = 0.4), as previously described
(Zwir et al. 2005). Cells were chilled on ice and harvested by cen-
trifugation at 4°C. Total RNA was isolated by a modified phenol/
guanidine thiocyanate extraction procedure using TRI reagent
(ABI) but without filtration steps in order to retain all small RNAs.
Samples were rid of genomic DNA by treatment with DNase, and
16S and 23S rRNAs were removed with the MICROBExpress kit
(ABI). Sequencing libraries were prepared using the Illumina
mRNA-seq sample preparation kit as per the supplier’s instructions
except that (1) total RNA was not fragmented and (2) double-
stranded cDNA was size-selected (100 to 400 bp) to maximize the
recovery of small RNAs. After accounting for the added adapters

Table 2. New sRNAs in E. coli identified by RNA-seq

Left enda
Right
enda

Length
(nt) Strand

Flanking
genes MEVb PRMc

Phylogenetic
distributiond

1,298,697 1,298,951 255 + ychE-oppA 801 100 1, 2
1,668,973 1,669,160 188 � ynfM-asr 501 100 1, 2
1,994,930 1,995,121 192 + sdiA-yecC 216 100 1, 2
2,276,280 2,276,520 241 � yejG-bcr 280 100 1, 2, 3, 4
3,065,209 3,065,366 158 + ygfI-yggE 70 100 1, 2
3,352,086 3,352,191 106 + yhcC-gltB 430 100 1, 2, 3, 4, 5, 6
3,365,635 3,365,792 158 � yhcF-yhcG 77 100 1 (K-12 only)
3,999,214 3,999,357 144 + yigE-corA 295 100 1, 2, 3, 4, 5, 6, 7
4,056,194 4,056,265 72 + glnA-typA 197 100 1, 2, 3, 4, 5, 6
4,439,248 4,439,353 106 � ytfL-msrA 298 100 1, 2, 3, 4, 5

aNumbering according to E. coli MG1655 (NC_000913.2) of left and right boundaries of sRNAs.
bMean Expression Value.
cPercentage region mapped.
dSpecies designations are as follows: (1) E. coli, (2) Shigella spp., (3) Citrobacter spp., (4) Salmonella spp., (5) Enterobacter spp., (6) Klebsiella spp., (7) Yersinia
spp.

Figure 4. Hfq stabilization of sRNAs. Abundances of sRNAs in wild-type
E. coli relative to the amounts in an isogenic hfq-deleted strain (normalized
to 1, black line). The intergenic location of each sRNA is indicated on the
x-axis. For each sRNA tested, data represent the means of three experi-
ments 6 standard deviations. Statistically significant differences from
expression in hfq-deleted strain are indicated by (***) p # 0.001 and (**)
p # 0.01 (unpaired t-test).
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(;70 bp), this size-selected library is enriched in reads originating
from transcripts that are <330 nt in length. Libraries were ampli-
fied by 10 cycles of PCR with Phusion polymerase (Finnzymes) and
assayed for quality on a Bioanalyser (Agilent Technologies). Each
library was diluted to 8 pM and loaded onto a single lane of an
Illumina GA flow-cell. Sequencing was performed at the Center for
Genome Sciences (Washington University, St. Louis, MO) and the
Keck Center (Yale University, New Haven, CT) with a cycle number
(read length) of 36. The raw reads from all four sequencing runs
have been deposited in the NCBI Sequence Read Archive (acces-
sion number SRP006793), and the read stats are available in Sup-
plemental Table S1.

Measuring Hfq dependence

An hfq-deleted strain of E. coli K-12 (JW4130-1) and its isogenic
parent strain (BW25113) (Baba et al. 2006) were grown to mid-log
phase (OD600 = 0.4) in N-minimal medium, as described above.
Total RNA was DNase-treated, and 1 mg was used as a template for
preparing cDNA. Quantitative PCR was performed, and the abun-
dances of each sRNA in the wild-type and the hfq-deleted strains
were calculated from Ct (threshold cycle) values.

Mapping and visualization of sequence reads

Sequencing reads were plotted onto the E. coli genome using MAQ
(Li et al. 2008) allowing up to two mismatches between a 36-nt
read and the published E. coli K-12 MG1655 sequence. The number
of piled sequences at each base was determined from the out.
mapview file using an in-house Perl script that outputs a file with
a column showing the coverage at each genomic base. This file was
supplied to Artemis (Rutherford et al. 2000) as a graph in order to
visualize the sequence coverage at each genomic position.

Transcript quantification

Coordinates of all intergenic regions (IGRs) and protein-coding
genes in E. coli MG1655 were downloaded from EcoGene (Rudd
2000). The level of transcription of each region reported in Sup-
plemental Tables S2 and S3 was quantified by determining the
number of reads overlapping the region followed by normalization
to both the total number of reads in each library and the length of
the region. For the rest of the manuscript, expression values de-
termined for the wild-type E. coli from both high and low mag-
nesium conditions were averaged and are denoted as the Mean
Expression Value (MEV). MEV cutoffs for designating a region as
being expressed above background levels were based on sets of
reference genes whose expression levels are known to be (1) absent,
(2) very low, or (3) induced when E. coli is propagated in the pres-
ence of glucose. For example, the MEVs of both the mhpABCDFE
and paaABCDEFGHIJK operons (which enable E. coli to use aromatic

acids as carbon and energy sources in the
absence of glucose) (Ferrández et al. 2000;
Torres et al. 2003) were 0.80. The MEV of
the lacAYZ operon, which is suppressed
in the presence of glucose (but known to
be leaky), was 1.7, whereas that of the lacI
inhibitor, which is expressed in the pres-
ence of glucose, was 9.9. Furthermore, only
32% of nucleotides within the mhp and paa
operons had at least one sequencing-read
mapped (PRM, percentage of region map-
ped) onto it, as opposed to 62% of bases
within the lacAYZ operon and 86% within
the lacI gene. Based on these results, we

applied a cutoff of MEV $ 1 and PRM $ 50% for considering a region
as transcriptionally active.

Discovery of intergenic regions with potential
regulatory RNAs

To identify novel intergenic sRNAs and regulatory leader regions,
we inspected all IGRs >150 nt in length in the E. coli MG1655 ge-
nome (n = 1145). To eliminate reads that overlap the junction
between the IGR and a flanking gene, MEVs and PRMs were cal-
culated after excluding the first and last 50 nt of each IGR.

Due to the possibility of read-through from upstream genes,
the MEV of each IGR was evaluated in the context of its flanking
genes. If flanking genes are divergent (i.e., transcribed in opposite
directions away from the IGR), we required the MEV of the IGR to
be at least two times higher than the MEV of either of the flanking
genes to consider the IGR as being more highly expressed. For IGRs
whose flanking genes are transcribed in the same direction, we
required the MEV to be at least two times that of each flanking gene
to consider the IGR as being more highly expressed. For IGRs
whose flanking genes are convergent (transcribed toward one
other), we require its MEV to be at least two times higher than the
sum of the MEVs of the flanking genes to be considered as being
more highly expressed. In each of these cases, the MEVof the IGR is
compared to the 50 flanking nucleotides from each neighboring
gene.

Detection and quantification of sRNAs

The locations of experimentally verified sRNA genes and other
regulatory RNA elements in the E. coli genome were obtained from
Rfam and EcoCyc (Keseler et al. 2009). The coordinates for candi-
date sRNAs that were predicted but not experimentally confirmed
in earlier studies were assembled from the original sources (Argaman
et al. 2001; Rivas et al. 2001; Chen et al. 2002; Yachie et al. 2006;

Table 4. Detection of low abundance sRNAs by RNA-seq

Method of
detection

Number
detected

Average
MEV

Relative
sensitivitya

PAGE 5 19,442 1
Northern blot

and/or microarray
75 3345 6

RNA-seqb 59 181 107

aRelative to average MEV (Mean Expression Value) of sRNAs initially
detected by PAGE.
bFifty-three unique sRNAs from Table 3 and six newly detected sRNAs from
Table 1.

Table 3. RNA-seq-based detection of previously predicted sRNAs

Method of computational analysis
Number

predicted
Total

detected
New sRNAs

detected Source

Sequence conservation 24 14 0 Argaman et al. 2001
Secondary structure conservation 276 45 19 Rivas et al. 2001
Presence of s70 promoter + terminator 102 48 28 Chen et al. 2002
Hidden Markov Model 60 25 10 Yachie et al. 2006
Sequence and structural features 6 1 1 Tran et al. 2009
Totalsa 468 133 58

aSome sRNAs were predicted by more than one study; 53 of the 58 newly detected sRNA are unique.
(See also Supplemental Table S7.)
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Tran et al. 2009) and from selab.janelia.org. For predictions that
were made using the NC_000913.1 assembly, the coordinates of
the candidate sRNAs were mapped to the NC_000913.2 version of
the genome prior to RNA-seq analyses. Expression levels of these
sRNA genes were determined by calculating the MEVs and PRMs
for each predicted sRNA. sRNAs with an MEV that is two or more
times greater than that of its 50 flanking nucleotides were con-
sidered to be more highly expressed.

Confirmation of coding strand and 39 ends of candidate sRNAs

We applied a modified RACE procedure (Kawano et al. 2005) to
determine the 39 ends of candidate sRNAs. In brief, total RNA,
depleted of 16S and 23S rRNA, was dephosphorylated with alka-
nine phosphatase (New England Biolabs), and a short oligonucle-
otide adapter was ligated to 39 ends using T4 RNA ligase (NEB). The
39-adapter-ligated RNA was reverse-transcribed using a primer
complementary to the adapter, and the resulting cDNA was used as
the template in PCR reactions using primers specific to a candidate-
sRNA along with an adapter-complementary primer. Amplicons
were resolved on 3% low-range ultra agarose (Bio-Rad) gels to de-
termine their lengths. To confirm that candidate sRNAs are not
part of transcripts from flanking coding sequences, PCR with
primers that anneal to the sRNAs in combination with primers that
anneal to flanking ORFs was performed.

Secondary structure conservation analysis

Candidate regulatory RNAs were searched against the Rfam data-
base to confirm that they were not homologs of previously iden-
tified elements. Nucleotide sequence alignments were built for
RNAs having homologs that were identified by BLAST (E-value #1
and $50% identity). Sequences were screened with the RNAz
program (Gruber et al. 2007) to detect conserved secondary
structures.

Prediction of terminators and promoters

Rho-independent terminators were predicted using RNAMotif
(Macke et al. 2001) and TransTermHP (Kingsford et al. 2007). PPP
(http://bioinformatics.biol.rug.nl/websoftware) and BDGP (Reese
2001) were used to predict promoters.

In vitro transcription assay

The leader and coding regions of the thiI and mdtJ genes were PCR-
amplified using primers that introduced a T7 promoter sequence 59

of the leader sequences. The PCR products were purified using
MinElute columns (QIAGEN), and 100 ng was used as template for
in vitro transcription using a MEGAscript kit (ABI). In vitro tran-
scription was performed for 30 min in the presence or absence
of 100 mM SAM or SAH as indicated in Figure 2J and then treated
with Turbo DNase (ABI) for 15 min to remove the DNA templates.
cDNA was synthesized from in vitro transcripts and used as tem-
plates for qPCR using primers that map to the coding regions of thiI
and mdtJ.

Ka/Ks ratios

Homologs in Typhimurium for regulatory RNAs in E. coli were
identified by BLAST (E-value #1 and $50% identity), confirmed by
synteny, and aligned by ClustalW. Ka/Ks ratios were obtained with
the program KaKs_Calculator (Zhang et al. 2006), which applies
a codon-based, maximum-likelihood method (Goldman and Yang

1994). A Fisher’s exact test was used to assess the statistical sig-
nificance of Ka and Ks values.

Data access
The raw reads from all four sequencing runs have been de-
posited in the NCBI Sequence Read Archive (accession number
SRP006793).

Acknowledgments
We thank John McCutcheon, Chih-Horng Kuo, and Patrick
Degnan for helpful discussions. We are grateful to the Coli Genetic
Stock Center at Yale University for providing the E. coli strains, Kim
Hammond and Michelle Dawn for assistance with figures, and the
reviewers for helpful comments. This research was supported in
part by NIH grants GM74738 and GM56120 to H.O. and by
AI49561 to E.A.G., who is an investigator at the Howard Hughes
Medical Institute.

References

Abreu-Goodger C, Merino E. 2005. RibEx: a web server for locating
riboswitches and other conserved bacterial regulatory elements. Nucleic
Acids Res 33: W690–W692.

Alwine JC, Kemp DJ, Stark GR. 1977. Method for detection of specific
RNAs in agarose gels by transfer to diazobenzyloxymethyl-paper
and hybridization with DNA probes. Proc Natl Acad Sci 74: 5350–
5354.

Antal M, Bordeau V, Douchin V, Felden B. 2005. A small bacterial
RNA regulates a putative ABC transporter. J Biol Chem 280: 7901–
7908.

Argaman L, Hershberg R, Vogel J, Bejerano G, Wagner EG, Margalit H,
Altuvia S. 2001. Novel small RNA-encoding genes in the intergenic
regions of Escherichia coli. Curr Biol 11: 941–950.

Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA,
Tomita M, Wanner BL, Mori H. 2006. Construction of Escherichia coli
K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol
Syst Biol 2: 2006.0008. doi: 10.1038/msb4100050.

Barrick JE, Breaker RR. 2007. The distributions, mechanisms, and structures
of metabolite-binding riboswitches. Genome Biol 8: R239. doi: 10.1186/
gb-2007-8-11-r239.
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Massé E, Escorcia FE, Gottesman S. 2003. Coupled degradation of a small
regulatory RNA and its mRNA targets in Escherichia coli. Genes Dev 17:
2374–2383.

Mendoza-Vargas A, Olvera L, Olvera M, Grande R, Vega-Alvarado L, Taboada
B, Jimenez-Jacinto V, Salgado H, Juárez K, Contreras-Moreira B, et al.
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