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losa, more burrows were in the trunk (53.1%) and
branches (30.1%) of A. marina than in the exposed
areas of roots anchoring the tree in the sediment
(16.8 %). The trees with the most visible damage by
burrows had truncated, broken, or necrotic pneuma-
tophores, discolored leaves, and perforated sections
or hollowed-out trunks (Fig. 1d—f). Very little force
was necessary to break off sections from those dam-
aged trees.

In the collected pneumatophores of A. marina,
mean burrow and isopod densities were 1.8 + 0.5 and
0.5 £ 0.2 per root (0.4 £ 0.2 and 0.1 + 0.1 per cm of
root), respectively. Burrows were present in pneuma-
tophores of all sampled trees and in 65.8 % of all sam-
pled pneumatophores. Isopods were present in pneu-
matophores of 12 out of 13 sampled trees and in
32.5% of sampled pneumatophores. Approximately
78.3 % of collected pneumatophores exhibited discol-
ored, necrotic tissue. The tissue had been completely
removed in the most heavily burrowed, rotten, and
discolored pneumatophores and fell apart when
handled.

Associations between isopod burrowing and
mangrove morphology, performance, and
fecundity

Both measures of isopod burrowing damage
(percent of the roots that were burrowed or
number of burrows per root) in R. stylosa were
related to increased root breakage and fewer
grounded aerial roots. The percentage of aerial
roots burrowed by isopods (as measured in the
field) was positively correlated with the percentage
of roots that were broken (Fig. 2a) and negatively
related with the number of grounded roots present
and anchoring the tree in the ground (Fig. 2b).
Similarly, the mean number of burrows per cm in
aerial roots was negatively associated with the
number of ground roots (r> = 0.44, b = -38.0, t =
-2.49, df = 8, p(adj) = 0.084) and positively associ-
ated with the percentage of broken roots (r? = 0.44,
b =0.517, t=2.51, df = 8, p(adj) = 0.084), although
these weak relationships were not significant
after FDR corrections were applied (Table S2 in
the Supplement at www.int-res.com/
articles/suppl/m516p177_supp.pdf).

More heavily burrowed trees of R.
stylosa also had fewer twigs bearing
leaves and propagules and harbored
smaller leaves. The total percentage
of roots burrowed by isopods was pos-
itively associated with the percentage
of non-foliated twigs in R. stylosa
(Fig. 2c) and negatively associated with
the number of propagules (Fig. 2d).

Trees of R. stylosa with a higher per-
centage of burrowed roots had signifi-
cantly smaller leaves (r> = 0.48, b =
-15.1, t=-2.53, df = 7, p(adj) = 0.047).
The mean number of burrows per
cm in aerial roots had a slight
positive association with the percent-
age of non-foliated twigs (r> = 0.41,
b = 0.162, t = 2.39, df = 8, p(adj) =
0.084) and a slight negative associa-
tion with leaf size (1> = 0.41, b= -11.4,
t =-2.23, df =7, p(adj) = 0.092), but

Burrowing damage (% roots burrowed)

Fig. 2. Relationships between percentage of roots burrowed by Sphaeroma
terebrans in Rhizophora stylosa and (a) root breakage, (b) abundance of
grounded roots, (c) percentage of non-foliated twigs, and (d) abundance of
propagules (all data given ‘per tree’). Sample size (n = 10) differed due to miss-
ing data on propagules for 2 trees. The y-axes of (a) and (c) are back-trans-
formed (from square-root transformations). Note the log-scaling in (b) and (d)
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these relationships were not signifi-
cant. We did not detect a significant
association between the percentage
of roots burrowed by isopods and tree
height or between the mean number
of burrows per cm in aerial roots and
tree height or the number of propag-
ules on trees (p(adj) > 0.10).
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Fig. 3. Association between number of burrows created by

Sphaeroma terebrans per Avicennia marina and (a) mean

pneumatophore density, (b) mean mass of pneumatophores,

and (c) mean lenticel density. Sample size varied due to a

missing sample of pneumatophores for 1 tree needed for

estimations of mean mass and lenticel density. Note the
log-scaling

In A. marina, more heavily burrowed trees had
fewer pneumatophores, a lower mass of pneumato-
phores, and fewer lenticels. The total number of bur-
rows in A. marina was negatively associated with the
mean density of pneumatophores (Fig. 3a). The rela-

tionship remained significant even after an influen-
tial outlier (from the most heavily burrowed tree in
the data collected) was excluded from the analysis
(r?=0.47, df = 10, p(adj) = 0.014). The number of bur-
rows per tree was also negatively associated with the
mass of pneumatophores per m? (Fig. 3b) and mean
lenticel density (Fig. 3c), but not pneumatophore
length or weight or percent of broken pneumato-
phores (p(adj) > 0.10). The mean number of burrows
per cm in pneumatophores was positively related to
the percentage of pneumatophore surface that was
damaged, discolored, and necrotic (1r2 =0.75, b=49.1,
t=5.7,df =11, p(adj) < 0.001), and negatively related
to the numbers of lenticels per pneumatophore
(although the association was weak and not signifi-
cant after FDR correction; 1% = 0.37, b = -48.9, t =
-2.54, df = 11, p(adj) = 0.054). There were no signifi-
cant associations detected between the numbers of
burrows in pneumatophores and the pneumatophore
length or weight (p(adj) > 0.10), likely because evi-
dence of burrowing became obscured or removed as
the heavily damaged roots further decomposed or
broke off. More heavily burrowed trees also had
smaller leaves in A. marina (r*> = 0.39, b= -0.0053, t=
-2.41, df =9, p(adj) = 0.079), although the association
was weak and not significant. We did not detect a
significant association between the number of bur-
rows per tree and tree height (p(adj) > 0.10).

Influences of environmental factors and other
organisms

None of the environmental factors (salinity, air
temperature, sediment temperature, distance from
the seaward edge of the stand, relative tidal height)
explained the variability in the percentage of bur-
rowed aerial roots, numbers of burrows per tree,
mean density of burrows per root, or the metrics of
tree performance (p(adj) > 0.10). However, a mar-
ginally significant negative association was found
between the percentage of burrowed roots and the
distance from the edge of the stand in R. stylosa (r? =
0.52, b=-0.017, t=-2.97, df = 8, p(adj) = 0.072), indi-
cating that isopods were present many meters in
from the edge. Herbivory (percent cover of leaf dam-
age, percentage of leaves damaged) was not signifi-
cantly associated with any measurement of burrow-
ing damage, morphology, or performance in either
mangrove species (p(adj) > 0.10). No other boring
animals (insects, shipworms, etc.) were found in the
roots of R. stylosa or in A. marina. We did not detect
any conspicuous pathogens on trees.
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DISCUSSION

High levels of isopod boring were related to de-
pressed performance and fecundity and alterations
in the morphology of mangrove trees. Previous
experiments have quantified the effects of isopod
boring on production at the root level (Perry 1988,
Ellison & Farnsworth 1990); however, the present
study provides the first quantified evidence that the
cumulative effect of localized isopod boring damage
can scale up to affect the whole tree. Consistent with
our hypotheses, heavily burrowed Rhizophora sty-
losa had altered root architectures (fewer intact aer-
ial roots to anchor the tree), smaller and fewer leaves,
and fewer propagules. Similarly, more burrowed
trees of Avicennia marina had smaller leaves and
fewer pneumatophores; remaining pneumatophores
tended to be more necrotic and damaged than in less
burrowed trees.

Trees more affected by isopods could suffer lower
performance and survivorship, as photosynthetic
capacity, gaseous exchange, and nutrient uptake
would cease or be reduced compared to unburrowed
trees. The accumulation of minor damage can nega-
tively affect trees by diverting resources to repairing
damage (Kulman 1971, Brooks & Bell 2002) or by
causing mortality (Kulman 1971, Ozaki et al. 1999).
Many of these trees also exhibited changes in root
and canopy architecture related to isopod damage,
including fewer supportive aerial roots and smaller
and fewer pneumatophores. However, manipulative
studies are necessary to definitively assign causality
between isopod boring and mangrove damage.

Numerous studies have documented boring spha-
eromatid isopod damage in brackish mangroves
around the world (Rehm & Humm 1973, Perry &
Brusca 1989, Santhakumari 1991, Svavarsson et al.
2002), but the extent and intensity of the damage
varies among sites. In mangroves experiencing a lim-
ited tidal range (<0.5 m; e.g. Caribbean and Florida),
isopod attack is mostly limited to the first few meters
of aerial roots of fringing red mangroves that are sub-
merged during high tide (Estevez & Simon 1975,
Simberloff et al. 1978, T. M. Davidson pers. obs.).
However, in mangrove sites exhibiting a larger tidal
range (e.g. East Africa, Svavarsson et al. 2002; the
present study; some sites in Pacific Panama, T. M.
Davidson pers. obs.), and in sloping sites with many
openings and gaps along the shoreline, isopods can
attack trees many meters inside the mangrove stand
(Fig. S1 in the Supplement at www.int-res.com/
articles/suppl/m516p177_supp.pdf) because abun-
dant root habitat is available for colonization at high

tide. Environmental stressors also affect tree mor-
phology and performance (Tomlinson 1986, Kathire-
san & Bingham 2001) and may exacerbate the effects
of borer damage. For example, in our study site, R.
stylosa and A. marina appear stunted and may be
experiencing physiological stresses associated with
living near their range edge (Hsueh & Lee 2000), or
they could be stressed by subsidence that has appar-
ently affected the region (Wang 2012). In addition,
some of the sampled trees (R. stylosa and perhaps A.
marina) might be the result of a mangrove restoration
decades ago, and it is possible that some unknown
stressor is affecting these small trees in concert with
isopod damage. With respect to such environmental
stressors, we do not rule out the possibility that indi-
vidual trees could vary in their susceptibility to a
potential unknown stressor that is correlated with
borer damage.

The changes documented in this study in tree
architecture (through root alterations), leaf cover,
and habitat complexity (through the extirpation of
trees) may more broadly affect mangrove and other
forest ecosystems as well. For example, alterations in
the root structure of mangroves and terrestrial trees
alter erosion and sedimentation regimes (Spenceley
1977, Kathiresan 2003, Krauss et al. 2003, Reubens et
al. 2007). Herbivory mediates primary productivity
(Mattson & Addy 1975, Feller & Mathis 1997), alters
the distribution of canopy gaps (Feller & McKee
1999), and changes nutrient flux by facilitating the
breakdown and export of plant materials (Lightfoot &
Whitford 1990, Feller 2002, Chapman et al. 2003).
Furthermore, the complex structure of mangroves
provides important nursery habitats (Primavera 1998,
Kathiresan & Bingham 2001, Nagelkerken et al.
2008); isopod-associated changes could alter the
quality and quantity of habitat available to numerous
other organisms.

This study suggests that boring marine isopods are
important structuring agents of mangroves, although
additional manipulative studies are necessary. While
the structuring role of herbivory is well documented
(Mopper et al. 1991), our study posits that the non-
consumptive boring damage of isopods may also
have important effects on foundation species. The
present work also contributes to the literature of sub-
lethal effects that identifies systemic effects from
cumulative small-scale stressors (Mopper et al. 1991,
Feller 2002). Through cumulative boring damage,
isopods may affect the performance, fitness, sur-
vivorship, and morphology of mangroves—all of
which can alter the structure and function of this
important ecosystem and the biota living therein.
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