
Portland State University Portland State University

PDXScholar PDXScholar

Dissertations and Theses Dissertations and Theses

Fall 1-1-2012

A Data-Descriptive Feedback Framework for Data A Data-Descriptive Feedback Framework for Data

Stream Management Systems Stream Management Systems

Rafael J. Fernández Moctezuma
Portland State University

Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds

 Part of the Databases and Information Systems Commons, and the Systems Architecture Commons

Let us know how access to this document benefits you.

Recommended Citation Recommended Citation
Fernández Moctezuma, Rafael J., "A Data-Descriptive Feedback Framework for Data Stream Management
Systems" (2012). Dissertations and Theses. Paper 116.
https://doi.org/10.15760/etd.116

This Dissertation is brought to you for free and open access. It has been accepted for inclusion in Dissertations
and Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more
accessible: pdxscholar@pdx.edu.

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/open_access_etds
https://pdxscholar.library.pdx.edu/etds
https://pdxscholar.library.pdx.edu/open_access_etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F116&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F116&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/144?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F116&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/open_access_etds/116
https://doi.org/10.15760/etd.116
mailto:pdxscholar@pdx.edu

A Data-Descriptive Feedback Framework for

Data Stream Management Systems

by

Rafael de Jesús Fernández Moctezuma

A dissertation submitted in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy
in

Computer Science

Dissertation Committee:
David Maier, Chair
Jonathan Goldstein
Leonard Shapiro
Kristin Tufte

Christopher Monsere

Portland State University
2012

c© 2012 Rafael de Jesús Fernández Moctezuma

i

ABSTRACT

Data Stream Management Systems (DSMSs) provide support for continuous query

evaluation over data streams. Data streams provide processing challenges due to

their unbounded nature and varying characteristics, such as rate and density fluc-

tuations. DSMSs need to adapt stream processing to these changes within certain

constraints, such as available computational resources and minimum latency re-

quirements in producing results. The proposed research develops an inter-operator

feedback framework, where opportunities for run-time adaptation of stream pro-

cessing are expressed in terms of descriptions of substreams and actions applicable

to the substreams, called feedback punctuations. Both the discovery of adapta-

tion opportunities and the exploitation of these opportunities are performed in the

query operators. DSMSs are also concerned with state management, in particular,

state derived from tuple processing. The proposed research also introduces the

Contracts Framework, which provides execution guarantees about state purging in

continuous query evaluation for systems with and without inter-operator feedback.

This research provides both theoretical and design contributions. The research also

ii

includes an implementation and evaluation of the feedback techniques in the Nia-

garaST DSMS, and a reference implementation of the Contracts Framework.

iii

DEDICATION

This dissertation is dedicated to my family: To my wife, Anya. To my parents,

Rafael de Jesús and Rosa Imelda. And to my grandmother Rosita.

iv

ACKNOWLEDGMENTS

I like to think of the Ph.D. process as a team effort. All these years spent working

toward this thesis are marked by love and support from my family. I thank my

wife, Anya, for going through the process with me, and for constantly reminding

me of the importance to make progress a day at a time. I would also like to thank

my parents, Rafael de Jesús and Rosa Imelda, for putting up with weird schedules,

and for having invested so much toward my education, both inside and outside

academia. Thanks!

I could not have finished this dissertation without David Maier’s advice. He

was very generous with his time, always willing to listen to whatever I had to say,

and always teaching me new things about most subjects. In addition to guiding

my work and also providing life advice when needed, he instilled in me a set of

skills that will no doubt remain with me for the years to come. Thank you, Dave!

I am fortunate to have collaborated with Robert Bertini while doing research

in transportation, and I wish to thank him for his support and guidance in the

early stages of my Ph.D. work. Len Shapiro and Lois Delcambre offered me advice

on both my work, my academic life, and generously made themselves available to

v

listen to any concerns I had; I remain grateful for having worked with them. While

working in transportation I also had the opportunity to work with Christopher

Monsere, who in addition to offering insight into my early transportation work, also

agreed to serve in my dissertation committee. I want to thank Jonathan Goldstein

from Microsoft not only for agreeing to be part of my committee, but also for for

constantly giving me new opportunities to think about in stream processing.

My research leverages years of work from the original NiagaraST team. I bene-

fitted not only from their design but also from their insight into stream processing.

Their advice and criticism at the early stages of my work was remarkably instruc-

tional. Thank you Jin Li, Kristin Tufte, and Vassilis Papadimos.

Through my Ph.D. I was fortunate enough to be surrounded by talented peo-

ple in many disciplines. In more than one occasion, I abused their generosity by

asking them to proof-read manuscripts, criticize my work, help me practice for a

talk, look at code, or listen to whatever I had in my head. For all this, I wish to

thank Dave Archer, Amit Bhat, Sharook Daruwalla, Tom Harke, Rashawn Knapp,

Chuan-kai Lin, Emerson Murphy-Hill, Susan Price, Jeremy Steinhauer, and Jerzy

Wieczorek. In his dissertation, James Terwilliger thanks me for motivating him to

power through the final stages of his Ph.D. work; I want to thank him for helping

me through the early ones. I also want to thank all the faculty in the Computer

vi

Science department, as well as all faculty at the Intelligent Transportation Sys-

tems Lab in the Department of Civil and Environmental Engineering for their

instruction, guidance, and support. I also want to thank all staff members in the

Computer Science department.

Jesús Leyva Ramos encouraged me to pursue a Ph.D. in Computer Science

years ago. I am grateful to have received his teachings and advice. Around the

same time, David Antonio Lizárraga Navarro and Alejandro Ricardo Femat Flores

provided me with sound advice for surviving and succeeding in grad school, and

I remain grateful for their time and encouragement. Todd Leen, who advised me

during my M.Sc. work, taught me skills without which pursuing my Ph.D. would

have been even harder, and I thank him for his teaching and friendship.

Working with the StreamInsight team allowed me to expand my perspective on

DSMS design and architecture. I thank all my colleagues and mentors for all their

advice and insight (no pun intended).

My friends Thad Davidson, Chad Ginther, Gonzalo Damián Hernández Araujo,

Umut Özertem, and Brian Kurle played a very important role during this period,

and I thank them for their support.

I am grateful for the funding that allowed me to pursue my Ph.D. I wish to

thank the Consejo Nacional de Ciencia y Tecnología (CONACyT) for their sup-

port (fellowship 178258). Additional funding for this research was provided by

vii

the National Science Foundation (grants IIS 00-86002, IIS 06-12311, IIS-0917349,

NSF-CAREER award 0236567), and the Oregon Transportation Research and Ed-

ucation Consortium (OTREC grant 2007-64).

I learned valuable skills from a lot of talented people. My work could not have

occurred without the support of my sponsors. I look forward to passing on what

I learned and contributing to the advancement of my field.

viii

TABLE OF CONTENTS

Abstract . i

Dedication . iii

Acknowledgments . iv

List of Tables . xi

List of Figures . xii

1 Introduction . 1
1.1 Definitions . 6
1.2 Improving Stream Processing with More Context 9
1.3 Accounting for Feedback-Related State 14
1.4 Contributions . 16
1.5 Organization . 17

2 Background and Literature Review 19
2.1 Exploiting Contextual Information 22
2.2 Runtime Adaptation . 26

2.2.1 Adaptation of operators and plans 27
2.2.2 Feedback mechanisms . 31

2.3 Query Property Declaration and Derivation Prior to Execution . . . 33
2.4 Multi-Facet Operator Design . 36

3 Feedback Model . 39
3.1 Types and Sources of Feedback . 40

3.1.1 Types of Feedback Punctuations 40
3.1.2 Sources and Applications of Feedback 43

3.2 Range of Operator Responses to Feedback 45
3.3 Correct Exploitation . 48
3.4 Safe Issuance . 49

ix

4 Operator Characterization . 52
4.1 Characterization Strategy . 52
4.2 Operator Characterization . 54

4.2.1 Guards . 55
4.2.2 SELECT . 55
4.2.3 PROJECT . 57
4.2.4 UNION . 61
4.2.5 JOIN . 63
4.2.6 BUCKET . 73
4.2.7 AGGREGATES . 80

4.3 Remarks . 86

5 Execution Guarantees . 88
5.1 Motivating Example . 89
5.2 Reasoning About Unbounded Streams 95
5.3 Execution Guarantees . 98

5.3.1 Punctuation Templates and Schemes 100
5.3.2 Punctuation Contracts . 105

5.4 Contracts for Stream Operators . 108
5.4.1 SELECT . 108
5.4.2 PROJECT . 110
5.4.3 JOIN . 111
5.4.4 WINDOW . 113
5.4.5 COUNT . 115

5.5 Full-Query Analysis . 116
5.6 Extending the Contract Framework to Support Feedback 120

5.6.1 Revised Guarantees . 121
5.6.2 Extended Syntax of Punctuation Schemes 122
5.6.3 Extended Contract Representation 122
5.6.4 Consistent Accordances with Feedback 123

5.7 Finding Consistent Accordances . 126

6 System Design and Architecture . 132
6.1 NiagaraST System Primer . 133
6.2 Inter-Operator Communication . 139
6.3 Instrumentation . 146

x

7 Experimental Evaluation . 150
7.1 Datasets . 152

7.1.1 Schemata and Examples . 153
7.1.2 Properties . 153

7.2 Experimental Setup . 158
7.3 Assessment of Feedback Overhead (Question 1) 159

7.3.1 Experimental Suite #1 . 160
7.3.2 Experimental Suite #2 . 163

7.4 Effect of Assumed Feedback in Output Utility (Question 2) 165
7.4.1 Experimental Suite #3 . 168
7.4.2 Results discussion . 170

7.5 Effect of Propagation Aggressiveness in Query Output Utility (Ques-
tion 3) . 171
7.5.1 Experimental Suite #4 . 172
7.5.2 Results discussion . 173

7.6 Effect of Assumed Feedback in Resource Utilization 175
7.6.1 Experimental Suite #5 . 175
7.6.2 Results discussion . 179

8 Conclusions and Opportunities for Future Work 182

References . 191

xi

LIST OF TABLES

5.1 Definition of the match (�) operator, applied as antecedent � sub-
sequent . 125

7.1 Schema for the sensor stream . 154
7.2 Schema for the probe stream . 154
7.3 Schema for the locations relation 155
7.4 Experimental Suite #1 results . 162
7.5 Experimental Suite #2 results. 165
7.6 Experimental Suite #4 results . 173
7.7 Experimental Suite #5, Query 1 results 179
7.8 Experimental Suite #5, Query 2 results 180
7.9 Experimental Suite #5, Query 3 results 180

xii

LIST OF FIGURES

1.1 Conceptual difference between DBMSs and DSMSs. 2
1.2 A speed map application and a continuous query to support it . . . 4
1.3 Imputation query plan and divergence among branches. 11
1.4 PACE communicates context information upstream to IMPUTE. 13
1.5 Centralized Optimization vs. Localized Optimization 15

4.1 Sliding Windows illustration . 79

5.1 Sample streaming query plan to compare the ratio of sent to received
messages among pairs of processes located in different CPUs over
1-minute tumbling windows . 90

5.2 From operator processing guarantees (a) to query-level execution
guarantees (b) . 100

5.3 Punctuation template syntax . 101
5.4 Database representation of operator offerings COA, COB, and COC

for operators A, B, and C, respectively 119
5.5 Full Reduction of operator offerings COA, COB, and COC for op-

erators A, B, and C, respectively 120
5.6 Consistent Accordance for the “C,A,B” query 121
5.7 Revised punctuation template syntax 122
5.8 PACE communicates downstream context information to IMPUTE . . 126
5.9 Contract offerings for the query in Figure 5.8 127

6.1 Simple SELECT query plan in XML-QL 135
6.2 Detailed Representation of the XML query plan 136
6.3 Simple SELECT query plan in LINQ to XML 136
6.4 Inter-operator communication in the NiagaraST system 138
6.5 Feedback-augmented architecture. Operators are now able to send

and receive Feedback Punctuations 141
6.6 Feedback Punctuation UML . 141

xiii

6.7 Feedback-compatible operators are capable of mounting guards (on
input or output) to implement feedback processing strategies 142

6.8 Architectural implications of adding guard support 144
6.9 Simple SELECT operator in XML-QL illustrating configurability of

feedback processing . 145
6.10 The Log class . 146
6.11 Sample log output . 148
6.12 Simple SELECT query plan in XML-QL showing logging 149

7.1 A tuple from the sensors stream. 155
7.2 A punctuation from the probes stream. 156
7.3 A tuple from the location relation. 157
7.4 Experimental Suite #1: Three query plans used to test the overhead

of feedback-awareness changes to the operator base class’ execution
loop in NiagaraST. 161

7.5 An instance of the instrument operator 163
7.6 Experimental Suite #2: Testing overhead of feedback communica-

tion in NiagaraST . 164
7.7 Sample query plan instance from Experimental Suite #2 166
7.8 Experimental Suite #3 . 169
7.9 Self-join and average with varying levels of feedback propagation . . 174
7.10 Two filters and a union . 176
7.11 Windowed max . 177
7.12 Join of windowed-averages . 178

1

Chapter 1

INTRODUCTION

The last decade has seen the emergence of a new paradigm in data processing.

Database-backed applications, in which data is stored and managed by a Database

Management System (DBMS), proved challenging to adapt to high-rate incoming

data. Latency requirements on these monitoring applications started to challenge

the DBMS model, in which one first stores the data and then issues queries against

this static collection. Monitoring applications, as explained by Carney et al. [14],

exposed a different paradigm to data processing for which no data management

system support existed.

The database community took interest in this problem. Projects such as Aurora

[9], FireStream [52], Gigascope [20], Hancock [19], NiagaraST [47, 64], PIPES

[34], and STREAM [3] studied this new problem space. Over time, models based

on the relational model emerged to address the requirements of this new class

of systems. Under these models, one can express continuous queries against a

stream of incoming data, producing a stream of results. The resulting systems

2

Figure 1.1: Conceptual difference between DBMSs and DSMSs.

are commonly known as Data Stream Management Systems (DSMSs) or Stream

Processing Engines (SPEs). A high-level representation of the difference between

DBMSs and DSMSs is presented in Figure 1.1. In DBMSs, the data is relatively

static, queries are issued against it, and query results are obtained. In DSMSs,

data is pushed through standing queries, which produce a stream of results.

Borrowing from years of experience in DBMS design, DSMSs tend to represent

queries internally as directed acyclic graphs of interconnected operators [9]. Oper-

ators in DSMSs perform functions that are equivalent to their DBMS counterparts

such as filtering, joining, and windowing. Operator semantics in DSMSs have

been defined to cope with three main concerns in data stream processing: (1) to

maintain low latency in result production, (2) to manage available computational

resources efficiently, and (3) to handle the unbounded and out-of-order nature of

data streams. The following example illustrates these three main challenges:

Example 1. A speed map is a visual macroscopic representations of speed

conditions in a road network. For example, TripCheck (www.tripcheck.com) pro-

vides a speed map of the Portland metropolitan area, where each segment of the

3

freeway is tagged by a color indicating average speed – green for above 50 mph,

red for under 20 mph, and yellow otherwise. Road conditions are estimated from

two sources: probe vehicles and fixed sensors. A probe vehicle is equipped with

a GPS unit and reports its average speed for the last 20 seconds plus its current

location. Fixed sensors are deployed along the various corridors, placed about 1

mile apart from each other, and report the average speed of observed vehicles ev-

ery 20 seconds. Speed maps are refreshed every 2 minutes. One way to support a

speed-map application is to execute a continuous query over the sensor and probe

data streams, outer-join by location and time, combine probe and sensor data by

applying a function, and average the 20-second reports per sensor location into

2-minute estimates. Once the 2-minute estimates are computed, one can project

these aggregated estimates to determine the appropriate color tag. An illustration

of a speed map and a query plan to support it is presented in Figure 1.2.

Processing the continuous query in Example 1 can be challenging. The var-

ious operators involved require contextual information about the status of other

operators (or buffers), not only to perform their stream-relational operation, but

also to correctly manage their states and result production. The AVERAGE operator

cannot issue its result correctly without knowing that all events for a 2-minute

period have been seen, hence, it is a blocking operator. The JOIN operator needs

to hold on to state related to the events it is processing, and cannot safely purge

4

Figure 1.2: A speed map application and a continuous query to support it. Image

from http://www.tripcheck.com/.

state content unless it has definite knowledge that an element in state will not par-

ticipate in future result production. Although the JOIN operator does not block

result production, it is stateful, as it needs to remember information about past

inputs to produce later results. In general, blocking operators contribute to latency

concerns, and stateful operators contribute to resource-management concerns.

Various approaches have been proposed to cope with these two challenges,

of which we mention two. A first approach assumes ordered input or bounded

disorder [3, 9]. Under this approach, a blocking operator need only keep track of

the current high watermark on a time attribute to decide when it is safe to produce

a result. Similarly, a stateful operator can release partial state once a particular

5

point in time is reached. When disorder is bounded, blocking and stateful operators

are enhanced with techniques that account for the bounded disorder. One such

technique is slack, where operators buffer and sort a fixed number or duration of

events in the input prior to processing [2].

A second approach embeds markers in the stream to signal the passage of

time. These markers are called CTIs in CEDR [27], heartbeats in Gigascope [33],

and punctuations in FireStream [52] and NiagaraST [62]. In this approach, oper-

ators are asked to be aware of these markers, and exploit them to trigger result

production and state-management techniques.

Disorder can occur not only at the input, but also in the streams produced

by each operator, as noted by Hammad et al. [28]. Not only is obtaining prior

knowledge of this disorder to accomodate slack challenging, but it is also hard to

translate a value on the inputs into meaningful values for internal parts of the

query to use. Handling the unbounded nature and disorder of streams is the third

main concern in stream processing. By leveraging the embedded markers approach,

disorder-tolerant, unbounded-handling architectures have been proposed, such as

the OOP architecture by Li et al. [42].

The current paradigms in DSMS design have modified the functionality of op-

erators, when compared to their relational counterparts. First, these operators

are prepared to have data pushed through them, instead of pulling data from an-

tecedent sources. Second, they are being asked to handle elements in their inputs

6

beyond just events: they now consume, exploit, and produce embedded markers

to manage stream progress, and, when appropriate, purge state and unblock.

1.1 DEFINITIONS

Various terms and syntax are used in the literature to refer to key concepts in

Stream Processing. I present terminology and syntax for this domain that I use

in this document, which is close to the syntax and definitions provided by Tucker

[62], and terminology employed by Goldstein et al. [27].

Schema A schema s is a named, ordered list of attribute-domain mappings. To

represent three attributes, time, id and temperature, whose domains are

timestamp, integer and float, respectively, we can write a schema named

sensor as

sensor(time:timestamp, id:integer, temperature:float).

Event An event e over schema s is an ordered list of values that adheres to s. The

order in which the values appear in e matches the order of s. To represent a

measurement taken on ‘April 1st 2010, at 10:00:00’ by a sensor with id = 4

and a temperature reading of 76.5 in schema sensor, we write

<‘2010-04-01 10:00:00’, 4, 76.5>.

Tuple is a synonym for event, and I will use these terms interchangeably.

7

Data Stream A data stream over schema s is a potentially unbounded sequence

of events, with each event adhering to s. For example, consider the stream

DS which conforms to the aforementioned sensor schema. The following

collection of events might be an initial prefix of the DS data stream:

<‘2010-04-01 10:00:00’, 4, 76.5>

<‘2010-04-01 10:00:00’, 3, 75.9>

<‘2010-04-01 09:59:00’, 7, 76.6>,

while the following list is not:

<4, 76.5>

<‘2010-04-01 10:00:00’, 3, 75.9>

<‘2010-04-01 10:00:00’, 7, hot>.

Notice that data streams can be physically disordered. In the first DS exam-

ple, we observe an event for time ‘09:59:00’ after events for time ‘10:00:00’.

Punctuation A punctuation is a predicate that describes a subset of events in

a data stream. Such a predicate is a list of restrictions, ordered according

to the data stream’s schema. Each restriction refers to the domain of the

attribute it is positioned on. Each restriction can contain comparators with

a value (such as > 10,≤ 9, <‘10:00:00 a.m.’), a specific value (equivalent to

using “=”), or the wildcard “*”, which refers to any value. For example, to

8

describe all events in the sensor stream related to the sensor with id = 4,

we write

[*, 4, *].

To describe all readings up to “April 1st 2010, at 10:00:00” from sensor with

id = 4, we write

[≤‘2010-04-01 10:00:00’, 4, *].

Given an event e, we can say it matches a punctuation p if e is in the set of

events described by p. For example, the event <‘2010-04-01 9:00:00’,4,

79> matches the previous punctuation, as it is in the set of all events up to

“April 1st 2010, at 10:00:00” from sensor with id = 4.

Punctuations can be used to communicate context. When an operator emits

a punctuation, it is informing its subseqent operator(s) that it will not emit

further events that match that punctuation.

Punctuated Data Stream A punctuated data stream is a sequence of events

and punctuations with a grammaticality constraint. For any punctuation p

that describes a set of events E , no event e ∈ E is present in the stream after

p. The following sequence is an example of a punctuated data stream over

the sensor schema, where the topmost element is the earliest:

9

<‘2010-04-01 10:00:00’, 4, 76.5>

<‘2010-04-01 10:00:00’, 3, 75.9>

<‘2010-04-01 09:59:00’, 7, 76.6>

[<‘2010-04-01 10:00:00’, *, *]

<‘2010-04-01 010:01:00’, 7, 76.6>.

The following stream is not a punctuated data stream, since a tuple that

matches a punctuation appears after it:

<‘2010-04-01 10:00:00’, 4, 76.5>

<‘2010-04-01 10:00:00’, 3, 75.9>

<‘2010-04-01 09:59:00’, 7, 76.6>

[*, 7, *]

<‘2010-04-01 010:01:00’, 7, 76.6>.

1.2 IMPROVING STREAMPROCESSINGWITHMORE CONTEXT

Contextual information embedded in the stream, specifically punctuations, enables

DSMSs to cope with latency, resource management, and disorder. To illustrate this

paradigm, consider the following input streams for the query discussed in Example

1, with schemas sensor(time, location, speed), and probe(time, location,

speed):

10

sensor probe

<‘10:00:00’, 1, 55>

<‘10:00:00’, 2, 55> <‘10:00:00’,2,65>

<‘10:01:00’, 1, 55> [≤‘10:00:00’,2,*]

<‘10:01:00’, 2, 55>

[≤‘10:01:00’,*,*]

Recall we are joining these streams on time and sensor id. A symmetric hash

join implementation can leverage the punctuation from the probe stream to purge

matching state from the hash table for the sensor stream, and vice-versa. In this

example, the tuple <‘10:00:00’, 2, 55> in the sensor side can be purged once

the [≤‘10:00:00’,2,*] punctuation is received from the probe side.

Now suppose we also see punctuation [≤‘10:01:00’,*,*] on the probe side.

JOIN can output the punctuation [≤‘10:01:00’,*,*,*] once it has seen punc-

tuation from both inputs. This punctuation can then be used by the aggregate to

unblock and produce output for all complete aggregate groups up to the specified

timestamp. The projection does not exploit punctuation.

Punctuation is conveying context downstream, and is being leveraged by var-

ious operators to process the stream. In this research, I extend this contextual

paradigm to consider context which is conveyed upstream during processing. To

motivate discussion, consider Example 2.

11

Figure 1.3: Imputation query plan and divergence among branches.

Example 2. Consider an input stream of sensor data, where a sensor experi-

ences an intermittent failure that causes it to report null values for speed. Input

events are filtered and split into two disjoint streams: clean and dirty. An opera-

tor called IMPUTE processes events for the dirty stream and uses a computationally

expensive method to replace each missing value with an acceptable estimate. Both

substreams are then input to UNION to produced an imputed result stream. Figure

1.3(a) shows an illustration of the query plan.

When the density of events that require imputation is high and when the need

to impute occurs frequently, the relative timestamps in the output will diverge

considerably over time. This observation is illustrated in Figure 1.3(b), where every

other event in the input requires imputation. In this figure, tuples are assigned

an arrival id at the input and tagged to differentiate which side of the union they

came from on the output. This divergence per se may not be a problem if the

12

result stream’s destination is a data archive – but what if this were the “sensor

data” input for the query plan in Figure 1.2? The speed map application has low

utility for tuples that are too late. Knowing the conditions of the freeway an hour

ago defeats the purpose of a “live” speed map. The remark “you would have been

so much better off if you had left before lunch” does not make one feel better about

the recently experienced stop-and-go traffic.

Detecting that events about to be output have lost their utility can be done

by modifying UNION to be aware of this divergence. I call this divergence-aware

union operator PACE. Detection alone is insufficient, as one needs to communicate

this discovery to adapt the query processing and avoid handling events that no

longer have output utility, as will be explained in detail in Section 7.4. Various

approaches to on-line adaptation of query processing have been proposed, such as

STREAMoN [8], which monitors properties of the output to adjust parameters of

operators involved in a query, and control-theoretic approaches that view stream

processing as a control problem, such as work by Carminati et al. [13]. These

approaches have a common property, which is collecting some measurement in the

output, analyzing these measurements in a separate control unit (or monitor), and

using the analysis results to adjust operator properties.

The aforementioned approaches can certainly be applied to the divergence prob-

lem, but I question the need to construct separate machinery to monitor and han-

dle the adaptation. IMPUTE would certainly benefit from receiving a description of

13

Figure 1.4: PACE communicates context information upstream to IMPUTE.

which events have lost utility from PACE, and it could immediately eliminate events

that match this description from its processing queue. This approach would allow

IMPUTE to resume work on tuples that still have utility. PACE already detected

the divergence, and it could send this downstream context upstream. Moreover, it

could communicate it as a description of a set of events. Figure 1.4 illustrates this

communication flow.

In this research, I provide a framework that enables detection, communica-

tion, and exploitation of downstream context to improve query processing, be it

by avoiding the processing of events whose utility has expired, or by avoiding

processing events that do not contribute to the query output, as it is done in

sideways information passing [32]. I also identify other options for improvement,

namely priorization of subsets of the event stream and causing partial results to

be produced.

14

The approach consists in modifying operators to: (1) detect optimization op-

portunities, (2) express these opportunities in terms of both a set of events via

punctuation and an action to be performed on that set, (3) propagate these feed-

back punctuations upstream to antecedent operators, and (4) exploit incoming

feedback to improve local processing. The proposed model is illustrated in Figure

1.5 (b), and contrasted to an alternative centralized approach shown in Figure 1.5

(a).

1.3 ACCOUNTING FOR FEEDBACK-RELATED STATE

One of the main concerns in DSMS design is the accumulation of event-related

state. Punctuated data-stream processing has enabled DSMSs to cleanse event-

related state as the stream progresses over time. While developing the feedback

framework, I noticed that I was introducing context-related state into the op-

erators. The specifics of these new pieces of state are detailed in Chapter 3.

Grosso modo, operators can hold every description received via feedback, and

avoid emitting events described by that feedback. As query processing advances,

this feedback-related state can continue growing. Concerned about unbounded

feedback-related state, I developed a framework to guarantee such state’s correct

disposal.

The intuition is that this state can be cleansed by exploiting the same mech-

anism used to cleanse event-state: punctuation. For example, if an operator is

15

Figure 1.5: Centralized Optimization vs. Localized Optimization. Thick arrows

indicate stream flow. Dashed arrows indicate feedback communication. The tri-

angle represents where optimization opportunities are discovered and interpreted.

In (a), contextual information is sent to a centralized adaptation artifact, which

in turn analyzes the context, determines adaptation opportunities, and commu-

nicates these opportunities to relevant parts of the query. In (b), the adaptation

machinery is embedded in the operators, which need only communicate opportu-

nities upstream.

16

holding feedback that describes events whose timestamps are before “11:00 a.m.”,

incoming punctuation that asserts the current time past “11:00 a.m.” can correctly

trigger the removal of this feedback. The problem is if one wants to make a global

statement about managing state, one needs to know about future punctuation. In

some DSMSs, such as CEDR [27], punctuations (CTIs in CEDR) only occur in the

time-related portion of the events. This limitation is not true in NiagaraST, or in

general when dealing with arbitrarily punctuated streams, complicating progress-

related execution guarantees.

The proposed Inter-Operator Contracts Framework not only annotates streams

with the expected form of incoming punctuations, but also enables pre-evaluation

analysis of a query to reason about its execution safety. With these annotations we

can perform an analysis before the query is executed and assert certain guarantees

(or lack thereof) about result production and state management.

1.4 CONTRIBUTIONS

This research makes the following contributions:

1. An extension to the state of the art in Data Stream Management System ar-

chitectures, where information that may be used to improve processing is sent

counter to the stream direction, from subsequent to antecedent operators.

2. Theoretical contributions, in the form of precise definitions of correctness and

operator characterizations, to exploit downstream context to avoid processing

17

subsets of the stream that do not participate in the output of a continuous

query, hence avoiding unnecessary computations.

3. A theoretical extension to punctuated stream processing where whole-query

analysis is performed on continuous queries and punctuation descriptions to

avoid executing queries that do not eventually produce all correct output or

do not eventually release all pieces of state.

4. An evaluation of the proposed feedback framework in the NiagaraST system.

1.5 ORGANIZATION

The rest of this dissertation is organized as follows: In Chapter 2 I present a re-

view of the literature relevant to both the feedback work and the contracts work.

Chapter 3 contains the proposed feedback model, and details both our view of

where feedback may come from and how it could be exploited, and defines cor-

rectness for feedback propagation and exploitation. I characterize operators found

in the NiagaraST algebra in Chapter 4, proving a subset of correct responses of

feedback, and detailing the procedure one may follow when extending operators

to be feedback-compatible. The contracts framework is introduced in Chapter 5,

where I detail its derivation, explain its application in general, and further extend

it to cover feedback. Chapter 6 includes a summary of the implementation of

18

the feedback framework, detailing the changes made to the NiagaraST architec-

ture. I present an experimental evaluation of the feedback framework in Chapter

7. Chapter 8 contains my conclusions on this work, and a series of open questions

and possibilities for future work.

19

Chapter 2

BACKGROUND AND LITERATURE REVIEW

Data Stream Management Systems emerged from a series of observations around

a particular type of application that was both under-served by database manage-

ment systems and required ad-hoc solutions to be designed from the ground-up.

Applications of this type had a theme in common: monitoring. Schreier et al.

describe a new architecture for turning a DBMS from a passive system, waiting

for queries to be issued in order to evaluate them, into an active system, in which

the acquisition of data would itself trigger computations over it. They called their

system Alert [53]. Systems contemporary to Alert, such as HiPAC [21] and Star-

burst [65], exploited the relational model in various ways, and focused on updating

the state of relations as data entered the system. Another key commonality is the

use of rules as the central entity in these systems.

As streaming needs became better understood, language constructs and inno-

vative architectures were proposed to better address the common requirements of

monitoring applications. Essentially, it was well understood that challenges in-

cluded the unbounded nature of data streams, requirements on expressibility of

interesting queries, scalability, and efficiency in state management. The bulk of

20

the work in this second stage of streaming systems focused on optimizing the design

and architecture of a server that could host continuous queries, often expressed in

a SQL-like language. From this period, notable systems include STREAM [3] and

Aurora [9]. Seminal work in defining languages to express continuous queries in-

cludes Hancock [19] and CQL [4]. Systems that focused on addressing out-of-order

processing, the unbounded nature of streams, and characterizing temporal seman-

tics include NiagaraST [40, 63], CEDR [27], and Gigascope [20]. The notions I

adopted in this research, and described in Chapter 1, come directly from the work

done in this era. At the time of this writing, I am tempted to state that the require-

ments, characteristics, and challenges of systems that serve continuous queries are

well understood – so well understood that we are seeing commercial implementa-

tions of stream engines being offered today. Examples include IBM’s InfoSphere

Streams [12, 31], Microsoft StreamInsight [46], Oracle CEP [51], Streambase [55],

and Truviso [58].

My work arrives to the field on top of these foundations, and at the beginning of

a new stage in stream processing. For the most part of its research years, the dom-

inating paradigm of streaming systems was a client-server model. The continuous

queries being evaluated, in most scenarios, were the primary concern of event-

driven solutions. Much work went into making sure the queries were evaluated as

efficiently as possible in these systems, as well as into enriching the semantics and

behavior of the stream-relational operators involved. Some work also went into

21

resiliency of the queries, as was the case with replication in Borealis-R [30]. This

thesis, even though it concerns extending the internal capabilities of the system,

is mostly focused on the edges of the continuous query. Increasingly, streaming

applications are now a part of larger systems, and are merely a component inter-

acting in larger systems. We may be at the beginning of the next era of stream

processing. Consider, for example, one of the supported models of deployment of

Microsoft StreamInsight. A streaming engine, capable of hosting multiple queries,

can be created on demand inside another process – as opposed to the classical

client-server model, where the server would run in its own process, and more often

than not in a different machine. The type of streaming applications that are being

built using this embedded model is opening up interesting opportunities to define

and interact with streaming engines.

This research looks at a streaming query as a component that can receive ex-

ternal stimuli from the output side in the form of contextual information, as well

as contextual information generated within the query. Not only are input-stream

properties defining the behavior of the streaming query, but also the consumer of

a query’s output can express different needs. My exemplar application is a query

whose evaluation is not keeping up with a service-level agreement expected from

the consumer, and the consumer expresses a desire for the query to catch up.

The runtime dynamic implications are the propagated as inter-operator feedback

through the query. As an embedded component, it is reasonable to expect some

22

execution guarantees from the streaming query. Specifically, the second aspect of

this work looks at guaranteeing that a query’s execution will remain bounded and

well-behaved with respect to event-related state management and result produc-

tion. These guarantees will be evaluated before the query is executed.

In this Chapter, I present several areas related to my research. I have orga-

nized related work in four sections, each of which matches an aspect of this thesis’

contributions. First, I discuss how contextual information is used to evaluate con-

tinuous queries. Second, I give an overview of how other areas of research have

incorporated notions of feedback, both adaptively and reactively. Third, I discuss

how the static analysis of a continuous query helps determine runtime properties

to guarantee its successful execution. Last, I bring to the reader’s attention an

emerging design pattern in stream engines in which an operator is responsible for

activities other than its functional description.

2.1 EXPLOITING CONTEXTUAL INFORMATION

The design and implementation of stream systems responded to a series of chal-

lenges present in the nature of data streams. Babcock et al. identify several im-

portant challenges and considerations this domain, mostly due to the unbounded

nature of streams, data density, and processing models [7]. In addition to these

challenges, Golab et al. also discuss the latency requirements of applications con-

suming data streams, prominently the need to quickly react to novelties in the input

23

streams [26]. Continuous queries, as opposed to traditional database queries, are

often evaluated over a subset of the stream, as opposed to all of the data in the

stream. This partitioning of the stream, called windowing, proved very popular in

streaming systems [35, 40], however, understanding when state could be correctly

purged, as well as when a result was deemed to be correct, proved challenging from

an implementation perspective, especially for disordered streams. Both problems

disappear when a notion of stream progress is present.

The Aurora system [9] did not require ordered arrival of stream events, neither

did the evaluation of aggregates require sorting, as strongly stated in Abadi et al.

[2]. The system exploited two notions to cope with disorder: first, if events arrive

out of order, they can simply be dropped at the input. However, the authors

recognize this restriction is too strong for most scenarios; they also offered the

concept of a slack parameter that bounded disorder. The problem of determining

whether all events for a particular window have arrived remains when elements are

out of order beyond the slack parameter, or when there are lulls in transmission.

Aurora addressed this issue by specifying a timeout parameter, which would cause

window results to be emitted as correct and subsequent, too-late tuples to be

ignored. Notice this system-oriented approach is well within the spirit of stream

systems, where approximate results may be desired over complete results with

unacceptable latency. In the Aurora model, stream progress is determined not

only as a function of incoming events, but also as a function of the system’s clock,

24

as evidenced by the timeout parameter.

In distributed systems, Aguilera et al. introduced a powerful construct called

Heartbeats, a “periodic I-am-alive signal” sent by each node in a distributed sys-

tem. Different from time-outs, which could incorrectly mark a node as unavailable,

a system need only pay attention to the cumulative number of heartbeats sent by

a node to asses node health. In STREAM, Srivastava et al. extended this notion

to address the liveliness problem of pushing tuples through the system [54]. First,

they make strong assumptions of deterministic bounds in skew and disorder. Sec-

ond, their heartbeat signal carries application-time information. Third, events are

not sent to the query until a heartbeat arrives with a later application-time than

the buffered events. A heartbeat h sent to a query Q causes all events buffered at

the input of Q whose application time is less than h to be application-time ordered

and pushed through the query. An operator O in query Q will emit a heartbeat h

once it has processed all events with application time prior to h.

Johnson et al. [33, 42] further extended the idea of heartbeats not only to ad-

dress liveliness, but also to deal with disorder, unblock operators, and propagate

temporal updates downstream through the query. A key aspect of their implemen-

tation is that the temporal update is not generated ad-hoc inside the operator,

but rather carried forward as the heartbeat propagates through the query plan.

In this respect, Gigascope’s heartbeats, its application and uses are very similar to

the uses and applications of Niagara’s punctuations [62, 63], which we detailed in

25

Chapter 1. Both heartbeats in Gigascope and punctuations are conveying a spe-

cific contextual meaning, that all events described by a specific punctuation have

been seen, and that no event described by the punctuation should be expected

after it.

Hammad et al. proposed a different approach to understanding stream progress.

Time Probing is a technique used to request progress information from antecedent

operators [29]. In search for guarantees on when it is correct for a given operator O

to purge state, O issues a probe to antecedent operators to obtain their maximum-

seen timestamp at the time of the probe. If an antecedent operator is still working

on events prior to the ones O is planning to evict, purging is not correct. This

approach relies on operators having to keep track of progress and respond to probe

signals.

There is a common theme in all the techniques I have described: The state of

progress upstream (be it data sources or antecedent operators) is communicated

downstream. There is no doubt that context detection, specifically progress, has

proved advantageous to stream processing. It has enabled operators to be de-

signed to unblock and purge state correctly. In some systems, context detection

is propagated as part of the stream, while in others, it is discovered or generated

on demand. Regardless of the origin of context, its application to low-latency

result-production and optimal resource usage is evident.

26

My research is also exploiting contextual information to benefit stream pro-

cessing. My work distinguishes itself from current contextual work in terms of

where discovery of context occurs and how it is communicated to other operators.

In my work, this context originates downstream, not upstream, and is communi-

cated counter to the stream direction, not in the regular stream direction. This

downstream context is communicated by a feedback punctuation, following the

theme of systems that rely on descriptions of sets of tuples. Unlike punctuation,

feedback punctuations are not part of the stream, rather, they flow outside of the

data queues. Similar to time probing, there is a notion of communicating with

antecedent operators, but these communications are not requests, rather, they are

the delivery of contextual information.

2.2 RUNTIME ADAPTATION

During query execution, changing properties of the input streams, as well as re-

source limitations, can affect the evaluation of a continuous query. A central

contribution of my thesis is the ability to use feedback as a trigger for avoiding

unnecessary work in a continuous query. In this section, I will situate the work

with respect to two main areas in stream engine design: scheduling and shedding

load, and the use of feedback mechanisms.

27

2.2.1 Adaptation of operators and plans

When evaluating a continuous query, operator scheduling becomes critical. The

obvious reason is the unbounded nature of streams – one cannot schedule an opera-

tor and wait until it finishes consuming all of its input, as the end of the input may

not happen. Moreover, since resources are bounded, there is a limit in how many

events can be waiting on an operator’s input queue. Unsurprisingly, most stream-

system descriptions mention this resource limitation as a motivation for operator

scheduling. While it is possible to delegate scheduling to the operating system, by

assigning one operator per thread (as it is done in NiagaraST), a more common

approach consists in reasoning about state to schedule operator execution. Carney

et al. describe how operators in Aurora are scheduled in an attempt to maintain an

expected quality-of-service level [15]. The Aurora visual query language represents

a workflow-level abstraction, in which operators (typically represented as boxes)

are interconnected via arrows (queues). Various consecutive operators can also be

grouped in a superbox, and the superbox itself can be scheduled for execution as

a single unit. During execution, there is a notion of tuple-processing cost, as well

as latency of tuples waiting to be processed. The objective is to estimate which

box (or superbox) can yield the maximum benefit in aggregate quality of service,

if scheduled next.

A similar scheduling technique, consisting of grouping chains of operators, was

proposed by Babcock et al. for the STREAM system. They observed that simple

28

scheduling techniques, such as first-input, first-output, or greedy approaches based

on number of input elements to an operator, did not present significant advantages

until combined toward the goal of maximizing throughput [3, 6].

Schedulers evolved to include runtime-derived statistics. Avnur et al. intro-

duced the construct of Eddies, mechanisms that can adaptively re-order operators

during query execution [5, 17]. An eddy will dynamically choose where to send a

particular tuple to be processed based on policies, such as operator cost, selectivity,

or queue lengths. Eddies were shown to be beneficial in the presence of multi-way

joins, where selectivity and other derived statistics helped route an event to one

join over the other (when possible) in an attempt to reduce query-processing la-

tency. Babu et al. added an adaptive monitor to STREAM, called StreaMon, to

re-order joins based on greedy policies, again, in an attempt to minimize resource

consumption and improve throughput [8].

Nehme et al. introduced a “middle-ground” variation to adaptive query pro-

cessing, called Query Mesh [48]. Their system acknowledges data distribution can

shift over time, and uses a classifier to detect dominance of a particular distri-

bution at any given time. When a pattern shift occurs, tuples are routed to one

of many alternate query plans whose physical evaluation is better tuned for the

incoming distribution. The system computes the set of possible query plans and

the classifier based on a training data set.

Works et al. introduced an adaptation technique that favors (i.e., prioritizes)

29

processing of a subset of the input stream [66]. Their Proactive Promotion Engine

makes decisions on scheduling based on priority punctuations, which are elements

in the stream describing a set of tuples and their relevant characteristics with re-

spect to a potential preferential switch. Priority punctuations are injected based by

classifier operators, which evaluate runtime properties against a trained classifier.

Notice the systems I have described attempt to collect runtime information

to adapt during query execution. Runtime information includes event-derived

properties, such as which input queue has the tuple that has been waiting to be

processed the longest, as well as learning the selectivity of operators, or collecting

statistics on memory usage. All these concerns, both system- and query-related,

have been thrown into the mix with the goal of maintaining optimal continuous

query evaluation. However, scheduling enough is not sufficient in some scenarios.

Consider the motivating example in Figure 1.4. Imagine a particular scheduling

technique that realizes EXPENSIVE takes considerably more time processing events

than all other operators, and therefore schedules it to be executed most of the

time. Such a scheduling policy, in the most optimistic case, could minimize the

divergence in application-time as observed by the PACE operator. While scheduling

has minimized the divergence, the query consumer (the speedmap) will receive all

tuples late if resources are insufficient. The policy would minimize divergence at the

expense of hurting latency and throughput. Assume scheduling tries to maximize

throughput and schedules all other operators more frequently than EXPENSIVE.

30

No such scheduling policy could prevent the expensive branch from accumulating

work and becoming progressively later. The techniques I introduce in this thesis

are outside of scheduling by necessity not only because of the extreme case, but also

because I argue for cases where detection of service-level agreement violations occur

at the output edge (and possibly outside) of the query. However, the technique

is not isolated from scheduling – operators encapsulating the feedback mechanism

still need to be scheduled for execution.

The Aurora system has a technique, called load shedding, that drops work

when query processing is not keeping up with an expected quality-of-service metric

[56]. Data rates are input to a load shedder component, which is in charge of

maintaining a load-shedding roadmap for the particular query. This roadmap has

candidate locations where a drop operator can be instantiated (or removed, if

not needed). Specification of an expected quality of service entails details about

throughput and rates. The load shedder is effectively finding a new query plan that

can maximize quality of service based on available resource by knowing how much

processing it is avoiding. A drop location is favored over another based on whether

the least amount of information is dropped for the largest throughput gain. In a

later refinement, Tatbul et al. introduced an operator capable of dropping entire

windows of data, requiring the operator to have knowledge of downstream window

semantics [49].

My research is also dropping tuples, based not on rate or cost, but on necessity

31

for the query output. Consider the speedmap example. Rather than dropping, say,

every other tuple input to EXPENSIVE, I argue it is more meaningful to drop a spe-

cific subset of tuples that will yield not-particularly-useful results. The approach I

propose has a declarative flavor to it, rather than an operational flavor, in the sense

that I name the tuples to avoid – rather than saying I wished I saw fewer tuples.

Notice that the proposed technique will also be applicable even when there is no

resource contention in the system – the consumer of a query may be experiencing

network congestion even though query execution is well within resources in the

stream engine’s process.

The approaches I have described rely on centralized, special components of the

engine (e.g., the load shedder, StreaMon, Eddies) to detect and initiate runtime

adaptations of the query. Another key difference in my research is I do not impose

a new construct – rather, I empower operators to detect, exploit, and propagate

query-optimization opportunities.

2.2.2 Feedback mechanisms

Several stream systems send information contrary to stream direction during ex-

ecution in order to adapt query processing. In NiagaraCQ, Shanmugasundaram

et al. had the ability to request partial results from antecedent operators [36] by

sending a control request via a control channel that interconnects operators in a

32

query plan. As I discuss in Chapter 6, NiagaraST is a descendent of this architec-

ture, and I extend this control mechanism to carry feedback punctuations as well

as other messages.

Inter-operator control channels are not exclusive to Niagara. Borealis, the

distributed version of Aurora has a mechanism called Control Lines [9]. These lines

feed operators with functions that affect the operator’s behavior, such as decreasing

the selectivity of a filtering operator. Borealis maintains a centralized repository of

user-defined applicable functions. An operator called Bind analyzes the incoming

stream to select (or create) a new function from the repository. The results of Bind

are sent through the control line to the operator, along with instructions on how to

apply the changes. Control Lines, as well as instances of Bind, are explicitly created

for each operator at query-design time. An application of feedback discussed in

Borealis consists in enabling online modification of continuous queries to fulfill a

quality-of-service specification [1].

Feedback loops are common in control theory, where a particular systems out-

put is continuously analyzed, and the result of this analysis is used to alter some

of the system’s parameters to achieve a specific workflow. Yu et al. reconsider Au-

rora’s load-shedding strategy with a control-theoretic point of view. Their work

models stream processing as a feedback loop, where an actuator (the load shed-

der) sheds tuples at the edge of the query. They claim their actuation can also

33

be placed inside the query. In any case, a very rigorous modeling and under-

standing of stream characteristics (such as drastic changes is incoming rates), as

well as shifting processing costs, leads to some complications in designing the ap-

propriate controller for a continuous query [59, 60]. My work is related to the

notion of feedback in the sense that discovery of opportunities may occur down-

stream, and this knowledge is sent upstream to alter query performance. Unlike

as in control-theoretic approaches, my architecture does not send this information

through extra-operator channels, rather, it does so in an inter-operator fashion.

2.3 QUERY PROPERTYDECLARATION ANDDERIVATION PRIOR

TO EXECUTION

As I have mentioned before, stream processing is challenging primarily due to

the unpredictable behavior of data streams. In the previous section, we primar-

ily focused on runtime adaptation to dynamic properties of the stream. In this

section, we will discuss a complimentary approach towards better predictability of

streaming query evaluation, where properties of the query are described or derived

prior to its execution. In particular, in this section I position the work detailed in

Chapter 5.

Tatbul et al. consider the problem of hitting resource limits during query eval-

uation and introduce the concept of load shedding, where events are dropped in an

attempt to keep the query running when the system is running out of resources.

34

Aurora makes some decision on-the-fly with respect to when and where in the

query plan it should drop events, and it also determines how many events to drop.

These decisions are the outcome of an optimization problem in which the main

constraint, a quality of service specification, is stated prior to execution. In this

respect, run-time properties of the query are derived based on the quality-of-service

constraints stated for the query. In particular, these are the operating parameters

for pre-computing the load-shedding roadmap discussed in Section 2.2.1. My re-

search shares a similarity with this approach only in the sense of annotating the

query on one of its ends, but with two important distinctions. First, I aim to-

ward deriving run-time guarantees with respect to result production and state

management, as opposed to maintaining a specific quality-of-service requirement

on a query’s output. Second, the annotations I will employ mention punctuation

properties of input streams to a query, rather than runtime expectations of said

query.

Towards the end of their seminal punctuation work, Tucker et al. started look-

ing at characterizing the types of streams that individual operators could support

[61]. Their framework clearly defines the notion of a punctuation scheme, which

describes the type of punctuations present in a data stream. For each streaming

operator in their query algebra, they show there exists a family of punctuations of

interest depending on what the operator does. This characterization enables them

to prove a query benefits from a given scheme, where the benefit entails enabling

35

query output production as well as eventual cleansing of state. Our work in this

area further extends these notions by describing specific instances of input and

output stream punctuation styles, called contracts, offered by a given operator.

Moreover, we support more than one option per logical operator. We take the

approach of assuming physical implementations of the operators exist and offer

specific actions in the context of the physical implementation. When specific oper-

ators are put together in a query, we determine the safety of executing this query

given the set of offerings available. A second extension consists in distinguishing

various different types of stream progress, specifically the “+” and “#” patterns.

Furthermore, in my framework there is a notion of query annotation prior to ex-

ecution, where the annotations serve as an abstraction of supported punctuation

patterns in inputs and outputs of any given operator. I also extend the framework

to account for feedback punctuations.

Li et al. also discuss annotating a query with punctuation styles expected to

be in the stream [37]. In their work, they focus on the effect of different styles of

punctuation in the JOIN operator. Specifically, they looked at re-arranging multi-

joins to guarantee correct execution. My work attempts to validate queries with

multiple kinds of operators, but does not consider query rearrangement in order

to find a feasible query plan.

36

2.4 MULTI-FACET OPERATOR DESIGN

A common design pattern I have observed in stream-processing systems consists

in requiring an operator to do work beyond its temporal-relational definition. As-

pects of such extended work include communicating context downstream or being

responsible for other changes in the query. My research is also asking extra work

from operators: they now are responsible of detecting, responding to, and produc-

ing feedback. In this section I bring attention to the ancillary activities operators

are being asked to perform in various systems.

When dealing with temporal semantics, as it is the case in the CEDR system

[27], operators are responsible for handling CTIs. This responsibility is not sur-

prising, as these stream elements are used by operators to produce output and

cleanse state, and CTIs need to be propagated downstream. This pattern is also

present in Gigascope [33], NiagaraST [62], and STREAM [54].

In CEDR, an operator may issue speculative output, which is a result based

on the stream seen so far. This speculation enables low-latency result produc-

tion. In addition to handling time-carrying signals, operators in CEDR are also

in charge of issuing retractions when they have revised estimates of a particular

quantity. In contrast to CEDR speculation, partial-result estimation in the con-

text of windowed-queries is possible in NiagaraST with an on-demand mechanism

called a “prod”, as introduced by Bhat [11].

Beyond time- and result-related activities, operators have been asked to do

37

more work in the stream world. In previous work, we asked operators to adapt

and communicate schema changes during query execution when possible [23, 57].

In that scenario, we preceed evolutionary changes with a marker called an “accent”,

which describes the evolution and the set of tuples it applies to. Operators are then

responsible to adapt to the evolution when it is correct to do so, and propagate this

contextual information downstream. Nehme et al. asked stream operators handle

access control, in particular, responding to a type of punctuation called security

punctuation. These security punctuations precede and describe a set of tuples over

which a security description, declared in the punctuation, applies. In this respect,

the work is similar to the schema-evolution approach, where a description and an

intent precede a set of tuples. These two approaches differ from regular punctuation

work in their preceding the set of tuples they describe instead of preceding it.

The feedback work described in this thesis has extended two interesting patterns

in streaming system design: first, using a descriptive marker and an intent to refer

to a set of events in the stream, and second, extending operator implementations

to handle these markers. In the case of heartbeats, CTIs, and punctuations, the

intent of the marker is implicit, that is, it communicates the passage of time or

other progress. Operators then use this knowledge to perform some actions. In

the case of accents and security punctuations, the intention is explicitly declared

– either by describing a schema-evolution rule to be enacted or a security-policy

to be enforced. Feedback punctuations also make their intent explicit, as we will

38

examine in Chapter 3.

39

Chapter 3

FEEDBACK MODEL

In Chapter 1 we discussed how downstream context can be exploited to improve

query processing, and sketched our working hypothesis. In this chapter, I formalize

the problem statement, state the research hypothesis, and introduce a feedback

model to test the hypothesis. I illustrate how the model covers both sources and

types of downstream context, and how this information is expressed in terms of

the data.

Problem statement. How can one identify, express, and exploit downstream

context information to improve stream query processing?

Hypothesis. One can extend query operators to identify and exploit contex-

tual information to improve query processing. The contextual information can be

expressed as a description of a set of tuples and an intended action on that set of

tuples. These descriptions can be communicated to antecedent operators, during

runtime, to improve query processing.

I will pursue a design that empowers adaptation by the operators in two modes:

One, when the opportunity to adapt is discovered within the operator (as is the

case with adaptive windowing by Li et al. [41]), and second, when the opportunity

40

to adapt is expressed as context from downstream. This context may have been in

turn have been discovered by a subsequent operator, or sent explicitly by a client

subscriber to the query.

3.1 TYPES AND SOURCES OF FEEDBACK

A feedback punctuation carries two pieces of information: the intent of the feed-

back and a predicate that describes the set of tuples associated with the feedback.

Feedback punctuations flow from one operator to the next against the stream direc-

tion. From the motivating examples described in Chapter 1 one can observe that

(1) discovery of optimization opportunities for an operator can occur downstream

in the query plan, and (2) propagating feedback information upstream may benefit

query processing efficiency by having antecedent operators exploit the discovered

opportunities. In this section, I present different types of feedback punctuations

and their potential applications, discuss potential sources of feedback, and present

a range of responses that operators may exhibit when receiving feedback punctu-

ations.

3.1.1 Types of Feedback Punctuations

I have hinted at having more than one intention associated with a feedback punc-

tuation. In stream processing, one can observe the need to avoid unnecessary

41

work (e.g., avoid processing tuples upstream if they are not part of a result down-

stream), the need to prioritize processing of some tuples, and the need for trigger-

ing on-demand partial result production. I have expressed these three needs as the

following types of feedback punctuation.

Assumed. An assumed punctuation communicates a set of tuples that may

be avoided. Consider an operator, O, that produces feedback stating that any

tuples with timestamp prior to “10:00 a.m.” will be ignored. O’s intention is to

inform antecedent operators that no tuple matching the feedback punctuation will

contribute to O’s subsequent result production. This type of feedback punctuation

has more of the flavor of a hint than a command – the issuing operator does not

assume the receiving operator will react. The receiving operator then has latitude

in responding to the feedback punctuation – it can suppress production of some or

all tuples that match the description.

Desired. A desired punctuation has the intent of prioritizing production of

the set of tuples described. Consider a scenario in which prioritized processing

of subsets of tuples is required: A user drives through a freeway system and is

interested in receiving the most up-to-date information available for her current

location, but is willing to tolerate increased delay in data from other locations. I

propose desired punctuation as a type of feedback that can enable prioritization.

To illustrate the use of desired punctuation, consider a new binary operator:

IMPATIENT JOIN. This operator is eager to produce results. Consider joining probe

42

vehicle data and sensor data. Potentially, there are considerably fewer vehicle-

reported events than sensor-reported events, as instrumented vehicles tend to be

an expensive means to collect data. IMPATIENT JOIN can send desired punctuation

feedback to the sensor stream saying “I have vehicle data for segment #3 up to

10:00 a.m. today”. Antecedent operators may wish to prioritize processing data

for that segment and time period, since IMPATIENT JOIN can use such results

to produce output. Unlike assumed punctuation, if this new type of feedback is

exploited by an antecedent operator, event production time and order is altered,

but not result contents. We have found similar uses for describing the need to

prioritize computation of a set of tuples in the stream, most notable in the work of

Works et al. [66]. In their model, the processing engine makes scheduling decisions

based on priority punctuations. A priority punctuation describes the set of tuples

of interest, but flows in the same direction as the stream.

Demanded. A demanded punctuation conveys the intent of being willing to

accept an approximate result. A demanded punctuation carries the sentiment of “I

need a result now, even if it is a partial one.” Production of this feedback may be

triggered by a utility-policy violation. For example, consider a financial speculator,

whose margin of action is limited to a few seconds. The speculator needs to decide

whether to buy or pass on a particular currency based on fluctuating exchange

rates. She would like to receive a best guess estimate on the trend in the exchange

rate in less than 5 seconds. A demanded punctuation may cause some aggregates

43

to unblock and produce partial results. In this example, partial results are better

than no results, or seeing results after the end of the margin of action. It is also

possible for an operator to produce both partial and final results, but this duality

would require changes to downstream operators.

Notice a system requiring ordered processing, such as a ordering based on

timestamped-arrival order, would not be amicable to supporting desired and de-

manded feedback. By definition, this type of feedback affects the order in which

a stream would be produced. Moreover, assumed and demanded also modify the

content of the stream: Assume suppresses some elements in the stream, while de-

manded can also alter the values of an event. The bigger claim I am making by

supporting these types of feedback is that the user’s intent is precisely to affect

stream evaluation in these ways.

3.1.2 Sources and Applications of Feedback

I have identified three kinds of feedback sources, as well as possible applications of

feedback depending on the feedback’s origin. The following list is not exhaustive.

Explicit. The definition of the query plan may include explicit policies that

require enforcement. Consider uniting two arbitrary streams, and a policy restric-

tion mandated by an application that requires that the result stream exhibit no

more than 1 minute of disorder relative to the event timestamps. The query and

policy can be expressed in a CQL-like language [4] as:

44

SELECT *

FROM stream1 UNION stream2

WITH PACE ON MAX(stream1.time, stream2.time)

1 MINUTE

In the previous expression, PACE ON MAX(stream1.time, stream2.time) 1

MINUTE parameterizes the PACE operator to bound divergence below to 1 minute.

One possible implementation of such a restriction may translate the expression

into a query plan with a PACE operator at the top of the query; PACE will compare

the timestamp attributes of stream1 and stream2. If events are lagging beyond

the 1-minute tolerance with respect to the latest observed timestamp, PACE could

generate feedback punctuation to inform antecedent operators that events with late

timestamps have been seen and are being ignored, so production of such events

should be avoided.

Adaptive. I envision adaptive versions of existing operators being able to

discover processing opportunities in their streams. Consider a probe-vehicle data

stream and a sensor data stream. Both streams are joined on location using tum-

bling windows of 1 minute. Assume a punctuation arrives on the probe-vehicle

stream, indicating all vehicle data has been seen for window 4. Assume the sys-

tem can determine that window 4 was empty, that is no events arrived for that

window. A thrifty version of JOIN – THRIFTY JOIN – could detect that window

4 is empty, and provide feedback to the sensor stream. Antecedent operators in

45

the sensor stream can choose to stop producing events that would be part of the

useless window.

Event-driven. In addition to explicit declaration of policies and adaptive

generation of feedback, I have considered event-driven feedback. Consider a speed-

map client application, which is a consumer of a continuous query that produces

the stream of events describing road conditions. Consider zooming into a section

of a speed map. Feedback could be sent to the query as a result of the action of

zooming into an area of the map. The query may momentarily avoid processing

events that pertain to areas of the speed map that are not in view at the moment,

saving processing power. This capability is of potential interest for scenarios in

which the streaming computation occurs in the device itself, or where minimizing

network traffic is desirable (such as when clients interact with servers via wireless,

per-megabyte priced plans, or such communication consumes power that shortens

battery life).

3.2 RANGE OF OPERATOR RESPONSES TO FEEDBACK

Feedback punctuations enable a range of responses by the receiving operators. In

this section, I analyze these responses in detail for assumed punctuations, which

is the main focus of this dissertation.

Consider the stateful, windowed operator AVERAGE, whose input stream has the

schema probes(windowID, speed), and an output schema (windowID,

46

avg(speed)). Assume the window IDs correspond to fixed-length windows. In

these schemas, WindowID refers to a unique identifier per windowing group, as used

by Li [38]. Assume AVERAGE’s implementation has a simple hash table (indexed

on window ID), to which two quantities, sum and count, are recorded. When an

entry is covered by an input punctuation, sum is divided by count and an output

event is constructed and emitted.

Suppose the AVERAGE operator receives an assumed punctuation of the form

[<20,*]. AVERAGE can avoid output of results for windows with IDs less than 20,

perhaps simply by discarding the result once it is computed, or more aggressively,

purging its internal state and avoiding recreation of windows known to be un-

needed. Furthermore, this contextual observation about a window no longer being

needed can be propagated to the antecedent operator.

Consider AVERAGE receiving an assumed punctuation in the form of [*,≥50],

indicating that windowed averages of speeds greater than or equal to 50 will be

ignored. Local enforcement by purging of active windows is not a correct response

for this feedback. Suppose Window 4 is active and has a current partial average

of 51. Purging this window from the hash table would be a mistake, as future

events arriving on its input could cause the average for Window 4 to drop below

50. Similarly, propagating assumed punctuation is an incorrect response, as no

assumptions on unseen events can be made. Correct response options that optimize

processing exist. If grammatical punctuation arrives on its input and indicates that

47

all events for Window 4 have been seen, and the current partial average of that

window is 51, AVERAGE can avoid constructing and outputting an output event.

The range of correct responses may also be limited by the form of the punctua-

tion. Consider probe-vehicle and traffic-sensor streams, with the following schemas:

detector(id, freeway_id, milepost, timestamp, speed), and

probe(id, freeway_id, milepost, timestamp, speed).

Consider joining the streams on freeway_id, milepost, and timestamp, lead-

ing to an output schema (probe.id, detector.id, detector.speed, freeway

_id, milepost, timestamp, probe.speed). If JOIN receives the assumed punc-

tuation [*,11,30,10:00:00,*,*,*] it can safely propagate the feedback to both

of its inputs, albeit not in that exact form. In contrast, if JOIN receives the as-

sumed punctuation [*,*,*,*,≥50,*,*], feedback can only be propagated to the

antecedent operators of the probe stream, as the feedback refers only to attributes

present in that stream.

Appropriate responses can also depend on operator state. Consider a tumbling

window MAX on the speed values from the probe stream, whose output schema is

(window id, max(speed)). The MAX operator maintains a partial aggregate per

active window. If MAX receives a punctuation of the form [*,≥50], MAX has the

opportunity to perform at least two actions: It can close all open windows for

48

which the partial aggregate matches the assumed punctuation, and should prevent

those windows that match the assumed punctuation from re-forming. Prevention

can be locally enforced with a guard on MAX’s input, since the antecedent operator

may still produce events leading to undesired window values before it receives and

acts on propagated feedback.

While I have identified what operators may discover and propagate as feed-

back, a critical component of the architecture consists of defining what it means

for operators to correctly exploit processing opportunities expressed by received

feedback.

3.3 CORRECT EXPLOITATION

I characterized assumed punctuation using the following notation: Consider an

operator O, which consumes an input stream SI and produces an output stream

SR. O receives assumed feedback punctuation f , and produces assumed feedback

punctuation g. The expression subset(stream, punctuation) refers to the set of

events in stream that match the predicate of the punctuation.

Definition 1. An operator O correctly exploits a processing opportunity ex-

pressed by feedback punctuation f if, after exploitation, O produces an output

stream S such that SR − subset(SR, f) ⊆ S ⊆ SR. This correctness range is

reasonable, since the subsequent operator has indicated it will ignore everything

in subset(SR, f), but does not expect strict removal.

49

By bounding correctness, we allow operators to exhibit a null response (S ≡

SR) and still deem that response as correct. Alternatively, other operators may

aim for maximum exploitation, that is producing SR − subset(SR, f). Allowing

an operator to work within these two endpoints gives a very useful advantage,

since the operator may in fact be maximally efficient from the point of receiving

the feedback onwards, but it may have emitted events covered by the feedback

before the feedback arrived. However, no exploitation of assumed punctuation

should insert events in S that would not have normally appeared in SR. Note this

condition implies S ⊆ SR.

For illustration, consider the SELECT operator, which receives assumed feedback

punctuation f . If SELECT does not exploit f , its output stream is SR. If SELECT

exploits f by adding f ’s predicate to the selection condition and no matching

output has been emitted already, its output is SR−subset(SR, f). If some output

has been emitted before f is added to the selection condition, any events that match

f in that output are in SR. SELECT correctly exploits f in this scenario, since its

output S, whether exploiting f maximally or not, is in the SR− subset(SR, f) ⊆

S ⊆ SR range.

3.4 SAFE ISSUANCE

Feedback may be propagated to antecedent operators. Such propagation depends

on the ability to compute a function that maps from output to input schema,

50

which may not exist for all operators and attributes. Even when the mapping

exists, special care on the construction of the propagated feedback punctuation g

must take place.

Definition 2. Operator O correctly issues g, if it will continue to behave

correctly if any antecedent operator correctly exploits the opportunity expressed

by g.

Consider two streams with the following schemas: A(a, t, id) and B(t, id,

b). Consider an equi-join of both streams on t and id. The output schema of

JOIN is C(a, t, id, b). For feedback f [*,3,4,*], JOIN can correctly issue gA

[*,3,4] and gB [3,4,*] to inputs A and B, respectively. If f is [50,*,*,*], a

correct issuance is [50,*,*] to input stream A. One cannot issue anything mean-

ingful to B, since that input does not know about A, and [*,*,*] would mean

we are not interested in anything. For the feedback f [50,*,*,50], no correct

issuance exists. One might be tempted to issue [50,*,*] to A and [*,*,50] to

B. Assume we in fact do that. Consider the event <50,1,1> from A, and the event

<1,1,1> from B. They would join and produce <50,1,1,1>, which is not covered

by the feedback [50,*,*,50]. However if we did issue the aforementioned por-

tions, we could have missed the <50,1,1> event from A, hence causing an incorrect

suppression from the JOIN.

In this Chapter, I have presented you with an intuition as to how the feedback

model can work in a streaming engine. I have shown examples of various aspects of

51

the model by referring to common streaming operators, and have hinted as to how

various operators can exploit feedback to save resources. Later in this Thesis, I will

formally characterize what operators can correctly do in the presence of feedback

(Chapter 4). I am also concerned about state introduced by feedback handling,

such as the guards that are mounted on inputs and outputs. In Chapter 5, I

introduce a framework that enables us to reason about state and make guarantees

based on describing the punctuations one expects to see in a stream, as well as by

describing feedback punctuations expected to be generated.

52

Chapter 4

OPERATOR CHARACTERIZATION

A central component of the feedback architecture consists in extending the design

of operators to react to feedback. An operator’s reactions can range from simply

ignoring feedback to cleansing internal state, depending on the feasibility of im-

plementing a response given a particular physical implementation of the operator.

In this chapter, I characterize some possible responses to assumed punctuation

for a representative set of operators in the NiagaraST algebra. I present proofs

of correctness for these responses. In some cases, I also illustrate some responses

that might at first seem reasonable, but are actually incorrect, and indicate the

problem with each.

4.1 CHARACTERIZATION STRATEGY

First, let us review the various mechanisms an operator has at its disposal in

the feedback architecture. An operator can (1) activate a guard on the output

(avoiding emission of an event that matches the feedback since the subsequent

operator presumably will ignore it), (2) activate a guard on the input (avoiding

computation on a tuple that corresponds to the feedback), (3) purge internal state

53

of tuples that match the feedback, (4) translate the feedback punctuation and

propagate it upstream, or (5) a combination of the above. It is of course possible

to have more than one physical implementation of the operator, and have each one

implement one or more response strategies.

For the remainder of the thesis, I will use the symbol ¬ to denote assumed

feedback punctuation. The expression ¬[∗,≤ 4, ∗] denotes a feedback punctua-

tion where the second attribute has a predicate. An assumed punctuation has, at

most, one comparison predicate per attribute. A predicate can be one of ≤, <,≥,

or >, followed by a value in the domain of the attribute, or just a value, which is

interpreted as equality. The limitations I impose in the framework (one compara-

tor per attribute and only supporting a few of them) are merely for expositional

convenience. Conceivably, one could use regular expressions for each attribute, or

some other pattern specification.

To characterize an operator’s response, I will examine properties of the assumed

punctuations the operator will receive as input. These feedback punctuations are

always expressed in terms of the receiving operator’s output schema. An important

distinction among operators is what the attributes in the output can tell us about

the work the operator is doing. For example, if we examine the output of a hash-

join, its schema contains attributes on which a join condition was evaluated. The

join operator is accumulating and organizing state by these attributes, i.e., they

are the keys in each side’s hash tables. Intuitively, if the join operator will respond

54

to assumed punctuation by cleansing the corresponding state, it is then of interest

to distinguish whether the feedback refers to attributes in the join condition.

In general, I will pay attention to feedback that refers to attributes that func-

tionally determine event-associated state for a given operator. My strategy con-

sists in examining how operators behave and identify these interesting attributes.

I then characterize what an output schema for an instance of the operator would

be, enumerate potential responses, and prove (or disprove) their correctness.

4.2 OPERATOR CHARACTERIZATION

In this section I present characterizations for SELECT, PROJECT, UNION, JOIN,

BUCKET, AVERAGE, COUNT, MIN, and MAX. These operators are representative of what

one could find in other streaming algebras, with perhaps the most distinct being

BUCKET. I describe what each operator does and then proceed to its characteriza-

tion.

To guide the discussion, we will adopt the following concepts: Let A be the set

of attributes in the schema of a stream S. A feedback punctuation fp defined in

terms of the schema of S contains an entry for each attribute a ∈ A. The entry

can either be a predicate p (with a comparator and a value v), or the symbol ∗.

A value v is in the domain of the attribute a it appears on. The symbol ∗ means

“any”, similar as we use it with forward punctuation. Let SR′ be the output of

the operator after enacting a response to fp. Recall that a particular response is

55

correct if SR− subset(SR, fp) ⊆ SR′ ⊆ SR.

4.2.1 Guards

A guard is the in-operator mechanism I use to store the information from a given

feedback punctuation. Specifically, a guard is a collection of records. A guard

record contains a set of predicates. Each predicate in a guard record comes from a

feedback punctuation. If an event e matches at least one record in the guard, it is

removed. A guard can be mounted on the input or the output of an operator. A

record in an operator’s input guard can only refer to attributes in the operator’s

input schema, and correspondingly for the output.

4.2.2 SELECT

The SELECT operator applies the predicate f to its input stream S and produces

an output stream SR such that SR = {e ∈ S|f(e) = true}. Let us consider a

possible response to feedback, in which we add the feedback’s predicate to an input

guard.

Response:

1. Create a new guard record r.

2. Add all p ∈ fp to r.

3. Add r to the input guard.

56

Proof of correctness of exploit:

Recall that a response to a feedback punctuation (fp) is correct if the output of

the operator contains elements originally in the output of the operator and at most

excludes all elements described by fp, that is, SR− subset(SR, fp) ⊆ SR′ ⊆ SR.

I will first prove the first containment, SR′ ⊆ SR directly, and the second one by

showing (SR− SR′) ⊆ subset(SR, fp), i.e., any dropped output matches fp.

Part 1: SR′ ⊆ SR. An event e in SR′ is also in SR since all events output by

the operator come directly from the input and are not modified, which means the

output when enacting this response contains only events that the operator would

have produced without the response.

Part 2: (SR − SR′) ⊆ subset(SR, fp). Take an event e ∈ (SR − SR′). This

event is not in SR′ as a consequence of the exploit. The input guard is only

dropping events that would be in SR if they match one of its records. The record

added to the guard at the time of the exploit contains exactly the predicates in

fp, which means e must also be in subset(SR, fp). ut

With a correct exploit in place, that is the input guard, let us consider the

following propagation:

Propagation:

1. Propagate fp.

Propagation requires no translation in this case, since the input schema and

57

the output schema of the operator are the same.

For propagation proofs, let S ′ be any input allowed with the propagated feed-

back fp.

Proof of correctness of propagation:

We need to show that a specific propagation does not cause the operator’s output to

be incorrect. In the case of SELECT, we prove a stronger statement: the operator’s

output is unchanged, given the response above.

Recall the input guard is in place before propagation occurs. Going from S

to S ′ could only potentially reduce SELECT’s output, since correct responses to

feedback do not generate more events in an operator’s output. However, an element

e ∈ (S − S ′) must also match fp, which would cause the input guard to drop it,

hence, e could not be part of SR′. ut

For the rest of the operators, I will follow the same pattern: Offer a response to

feedback, prove its correctness in two parts by showing containment, offer a prop-

agation action with the response enacted, and prove correctness of the response.

4.2.3 PROJECT

PROJECT is a stateless operator. Like its relational counterpart, the operator is

used to indicate which attributes from the input schema appear in the output

schema. It is also used to create new attributes in the output schema as a result

58

of a stateless computation over an event’s values. The operator maintains a 1:1

relation between its input and output streams, that is, every event in its input S

causes an event in its output SR.

The operator can modify the output schema in four non-mutually exclusive

ways:

1. An attribute appearing in the schema of S does not appear in the schema of

SR.

2. An attribute appearing in the schema of S is renamed in the schema of SR.

3. An attribute appearing in the schema of S is duplicated and renamed in the

schema of SR.

4. An attribute appearing in the schema of SR is the result of a stateless com-

putation over values for attributes in the schema of S.

Recall we have input and output guards as mechanisms to exploit feedback.

When discussing SELECT, I used an input guard. In this case, I consider using

an output guard to avoid computing a translation from output schema to input

schema. Consider the ways in which PROJECT alters the schema. The first case

does not present any particular complications. For the second case, we would need

the operator to be able to invert a name mapping. For the third case, we would

need to decide whether a reference to a duplicate element (but not the original one)

maps back to only the originating attribute. For the fourth case, we would need

59

to compute the pre-image of a given value to correctly guard against its creation.

Using an output guard avoids these complications.

1. Create a new guard record r.

2. Add all p ∈ fp to r.

3. Add r to the output guard.

Proof of correctness of exploit:

The proof is organized as for SELECT, with SR′ being PROJECT’s output after

enacting the response.

Part 1: SR′ ⊆ SR. By construction, the output guard does not create events

that would not have appeared in the output had the operator not enacted a guard

on fp. Thus, an event e in SR′ is also in SR.

Part 2: (SR− SR′) ⊆ subset(SR, fp). The set (SR− SR′) describes exactly

the elements that have been left out by the output guard, that is, if an event e is

in (SR − SR′), but not in SR′, it must also match fp, which means e must also

be in subset(SR, fp). ut

With a correct exploitation in place, that is, the output guard, let us consider

the following propagation:

60

Propagation:

1. If and only if all p in fp refer to attributes present in both the output and

input schema (case 1):

2. Create fp′ with each p in fp and with “*” for each attribute a in the schema

of S but not in the schema of SR.

3. Propagate fp′.

Proof of correctness of propagation:

We can prove that given the placement of the output guard and since we propagate

only if attributes mentioned in fp are both in the output and input schemas, the

output of PROJECT is unchanged if an antecedent operator correctly exploits fp′.

Recall the output guard is in place before propagation occurs. Let S be the

original input to the operator, and S ′ be a possible input stream after an antecedent

operator exploits fp′. Going from S to S ′ could only potentially reduce PROJECT’s

output, since correct responses to feedback do not generate more events in an

operator’s output.

If e is in (S − S ′), it must be true that e matches fp′. It must also be true

that the event e′ resulting from performing the projection matches fp, because of

how we construct fp′. e′ would then be discarded by the output guard, which has

a record for fp. Hence, the output of the operator is unchanged by an antecedent

61

operator acting on fp′. ut

If we are interested in supporting propagation in the presence of renames,

all that is required is support for reverse-renaming of an attribute’s name when

creating fp′. This capability would allow us to relax the if and only if constraint in

the propagation strategy. Note we could support this propagation with the same

output guard.

4.2.4 UNION

UNION is a stateless operator which generally does not apply any function or trans-

formation on the content of incoming events, and does not eliminate duplicates.

The only restriction it imposes is that both of its inputs are union-compatible,

which means corresponding attributes are in the same domain. In NiagaraST,

because of a unique-name limitation of the XML-QL query language, the operator

must map explicitly distinct names to one unique output name, which requires

some translation of an incoming fp to the schema names of the input. For sim-

plicity, let us characterize the operator ignoring this implementation detail.

To exploit feedback punctuation, I will employ an output guard.

Response:

1. Create a new guard record r.

2. Add all p ∈ fp to r.

62

3. Add r to the output guard.

Proof of correctness of exploit:

The proof is organized in two parts as before.

Part 1: SR′ ⊆ SR. In this case, an event e in SR′ comes from one of the

UNION inputs, and was not modified or created in any way, which means it is also

in SR.

Part 2: (SR − SR′) ⊆ subset(SR, fp). An event e in (SR − SR′) but not

in SR′ must have been dropped by the output guard, which means e matches fp,

and must be in subset(SR, fp). ut

With this correct exploitation in place (output guard), consider the following

propagation:

Propagation:

1. Propagate fp to both inputs.

Proof of correctness of propagation:

We can prove that the output of UNION is unchanged.

Recall the output guard is in place. Unlike unary operators, we have two input

streams here: SL and SR for the left and right input. Let SL′ and SR′ be the

inputs after an antecedent operator in each input exploits the propagated feedback.

63

On the left side, if an event e is in (SL− SL′) but not in SL′, it matches fp.

This means e will also be discarded by the output guard. And since no exploitation

of assumed punctuation creates new elements but can only reduce the number of

elements in a stream, the exploitation on the left side did not contribute to a

change in the UNION output. The same argument applies to the right side. ut

4.2.5 JOIN

JOIN is the first operator where the notion of attributes of interest comes to play.

Consider the output schema of a join operator (for simplicity, I only consider a

equi-join). In general, it contains three distinct sets of attributes: The set L which

contains attributes exclusive to the operator’s left input, the set R which contains

attributes exclusive to the operator’s right input, and the set J which contains the

attributes named in the join condition. This last set J contains the interesting

attributes.

JOIN can have various physical implementations. One of the most common ones

in stream systems is a variant of hybrid hash-join, which maintains two pieces of

state: on each input side, the operator maintains a hash table indexed on the join

attributes, adding every incoming event to the table. When an event comes to one

input, the operator looks for a match on the opposite side’s hash table, and if there

is a match, the operator constructs and emits an event. The operator can release

state when it receives a punctuation on one input, by scanning and deleting entries

64

in the opposite input’s hash table. Li et al. [40] provide a detailed description of

the NiagaraST implementation of this join strategy.

Let us consider the following cases for feedback punctuation:

1. Feedback punctuation refers to attributes exclusive to one input (L or R).

2. Feedback punctuation refers to attributes exclusive to the join condition (J).

3. Feedback punctuation refers to attributes not in the join predicates, but

involving both inputs (L and R).

4. Feedback punctuation refers to attributes involving both inputs including

some in the join predicates (J , L, and R).

5. Feedback punctuation refers to attributes in the join condition and one of its

inputs (J and L, or J and R).

Let HL be the hash table associated with the left input, and HR be the hash

table associated with the right input.

Case 1. Feedback punctuation refers to attributes exclusive to one input

(L or R).

Without loss of generality, let us consider only feedback punctuation on L. Let X

be the set of tuples in HL described by fp.

65

Response:

1. Update HL← HL−X

2. Create a new guard record r.

3. Add all p ∈ fp to r.

4. Add r to the left input guard.

The external effect of this strategy is the same as using an output guard on

fp. Notice by purging state and guarding the inputs we avoid the work associated

with constructing some tuples that would be thrown out by an output guard.

Proof of correctness of exploitation:

The proof is organized in two parts, as before.

Part 1: SR′ ⊆ SR. An event e is in SR′ if and only if join creates it based

on arrival on one input and a match on the other input’s state occurs. In our

exploitation, we did not add any state to either hash table (in fact, we removed

state from HL). Thus, e must also be in SR, since the exploitation only reduced

the possible elements from SR.

Part 2: (SR − SR′) ⊆ subset(SR, fp). Take an event e ∈ (SR − SR′). This

event is not in SR′ as a consequence of the exploit. The input guard is only

dropping events that would contribute to output in SR if they match one of its

records. In addition, the updated hash table may have removed state contributing

66

to SR. The record added to the guard at the time of the exploit contains exactly

the predicates in fp, which means e must also be in subset(SR, fp). ut

Let us now assume that the hash table purge occurred and the input guard is

in place for the left input.

Propagation

1. Send a feedback punctuation fp′ with all p in fp to the left input only.

Proof of correctness of propagation:

I will prove that the output of the operator is unchanged as a consequence of the

propagation (and the exploitation in place):

Recall the input guard is in place before propagation occurs. Going from S to

S ′ could only potentially reduce JOIN’s output, given the nature of exploitation

of assumed punctuation. However, an element e ∈ (S − S ′) must also match fp′,

which would cause the input guard to drop it, hence, e could not contribute to

elements in SR′. ut

Case 2. Feedback punctuation refers to attributes exclusive to the join

condition (J).

Attributes in J are present in both input schemas, which means all p in fp can be

evaluated against both HL and HR. Let X be the set of events in HL that match

all p in fp, and Y be the set of events in HR that match all p in fp.

67

Local exploitation

1. Update HL← HL−X

2. Update HR← HR− Y

3. Create a new guard record r.

4. Add all p ∈ fp to r.

5. Add r to the left input guard.

6. Add r to the right input guard.

Proof of correctness of exploit:

We follow the same strategy as before. Let SR′ being JOIN’s output after enacting

the response.

Part 1: SR′ ⊆ SR. The exploitation has performed two main actions: first, it

purged both hash tables from entries that matched fp. Second, it added records to

the input guards to specifically leave out further events that match fp. Neither of

these actions is generating an element not originally in SR, but merely subtracting

– hence, an event e in SR′ is also in SR.

Part 2: (SR − SR′) ⊆ subset(SR, fp). Take an event e ∈ (SR − SR′), and

note that e is obtained as eL ./ eR, where eL is an event from the left input and

eR is an event from the right input. Since fp’s predicates are declared only on

68

common columns, if e matches fp each of eL and eR do so as well. This event

e is not in SR′ as a consequence of the exploit – either a constituent for it was

removed from state, or an input guard prevented a constituent event from entering

the operator. An input guard is only dropping an event that would contribute

to an event in SR if the incoming event matches one of the guard’s records. The

record added to the guard at the time of the exploit contains exactly the predicates

in fp. Additionally, constituents in the hash tables that were purged at the time

of exploitation strictly matched fp, therefore, e must also be in subset(SR, fp). ut

With the input guards in place and the state purged after this exploitation, let

us consider the following propagation strategy:

Propagation

1. Send a feedback punctuation fpl with all p in fp to the left input and “*” in

the rest of the schema.

2. Send a feedback punctuation fpr with all p in fp to the right input and “*”

in the rest of the schema.

Proof of correctness of propagation:

I will prove that the output of the operator is unchanged as a consequence of the

propagation (and the exploitation in place).

Consider SL and SL′ as the left input stream before and after propagation,

69

respectively. Recall the input guards are in place before propagation occurs. As

stated before, going from SL to SL′ could only potentially reduce JOIN’s output.

An element eL ∈ (SL − SL′) must also match fpl, which also means it is a

constituent for an event e that matches fp, therefore, eL could not contribute to

elements in SR′. This argument also holds for the right hand side. ut

Case 3. Feedback punctuation refers to attributes not in the join pred-

icates, but present in both inputs (L and R)

Local exploitation

1. Create a new guard record r.

2. Add all p ∈ fp to r.

3. Add r to the output guard.

Proof of correctness of exploitation:

The proof structure follows the same pattern as before. Notice that when proving

correctness of an exploit that only mounts an output guard the correctness doesn’t

really depend on the specifics of the operator. The proof used for PROJECT, for

example, works here as well.

Part 1: SR′ ⊆ SR. By construction, the output guard does not create events

that would not have appeared in the output had the operator not enacted a guard

on fp, thus, an event e in SR′ is also in SR.

70

Part 2: (SR− SR′) ⊆ subset(SR, fp). The set (SR− SR′) describes exactly

the elements that have been left out by the output guard, that is, if an event e is

in (SR − SR′), but not in SR′, it must also match fp, which means e must also

be in subset(SR, fp). ut

Notice unlike Case 1 and 2, in this exploitation I did not purge state. I will

illustrate why that response to feedback could lead to incorrect behavior.

One may be tempted to purge both HL and HR and send feedback, but this

will yield incorrect results. To prove this behavior is wrong, consider the streams

S1 and S2 with schemas S1(a, b), S2(b, c), and consider the join S1 ./ S2. Now

consider the following events:

S1 S2

<1,1> <1,2>

<2,1>

<3,1>

<4,1>

[*,1]

Now consider the feedback punctuation ¬[≤ 3, ∗,= 2]. If we were to decompose

this punctuation in left and right constituents, we would be tempted to remove

state associated with the tuple <1,2> on the right side. Now suppose the fp arrives

before the tuple <4,1> is seen on the left input. There would be no state for it to

match with, hence, the tuple <4,1,2>, which would have been in SR, and is not

71

in subset(SR, fp), would not be present in the output of the operator, hence this

being an incorrect response. Any propagation would also be incorrect for the same

reason.

Case 4. Feedback punctuation refers to attributes involving both inputs

including some in the join predicates (J, L, and R)

Guarding output, just as we did in Case 3, applies to this case and can be proved

the same way. However, I would like to discuss why a response involving purging

would be incorrect in this case.

One may be tempted to purge bothHL andHR, but this exploitation will yield

incorrect results. To show this behavior is wrong, consider the streams S1 and S2

with schemas S1(a, b), S2(b, c), and consider the join S1 ./ S2. Now consider the

following events:

S1 S2

<1,1> <1,1>

<2,1> <1,2>

<3,1>

<4,1>

[*,1]

Now consider the feedback punctuation ¬[≤ 3, 1,= 2]. If we were to decompose

this punctuation in left and right constituents, we would be tempted to remove

72

state associated with the tuple <1,2> on the right side, and tuples <1,1>, <2,1>,

and <3,1> on the left side. Now suppose the fp arrives before the tuple <4,1> is

seen on the left input. There would be no state for it to match with, hence, the tuple

<4,1,2>, which would have been in SR, and is not in subset(SR, fp), would not

be present in the output of the operator, hence this response is incorrect. Similarly,

propagating the constituents would lead to incorrect output by the operator.

Case 5. Feedback punctuation refers to attributes in the join condition

and one of its inputs (J and L, or J and R)

We can adopt an exploitation and propagation strategy as the one shown in Case

1, with identical derivation. I want to discuss a seemingly correct propagation

strategy that one may consider in this case, but can be shown to be incorrect.

We could be tempted to send all p in fp that refer to the join condition to the

right input as well. This behavior would be incorrect, as the following counter-

example shows:

Consider the streams S1 and S2 with schemas S1(a, b), S2(b, c), and consider

the join S1 ./ S2. Now consider the following events:

73

S1 S2

<1,1> <1,1>

<2,1> <1,2>

<3,1>

<4,1>

[*,1]

Now consider the feedback punctuation ¬[≤ 3, 1, ∗]. If we were to decompose

this punctuation in left and right constituents, we would send ¬[1, ∗] to the right

input. Suppose fp arrives before <1,2> on the right side. This tuple may have

been suppressed by antecedent operators, and there would be no way to produce

<4,1,2>, which would have been in SR, and is not in subset(SR, fp), which would

yield an incorrect result, hence, it is not correct to propagate the feedback to the

right side.

4.2.6 BUCKET

In NiagaraST, the BUCKET operator encapsulates the windowing logic. This opera-

tor, fully parameterized by naming the progressing attribute over which windowing

is performed, as well as the slide and range, appends a window-identifier called WID

to every output event. Li et al. introduced and formalized the windowing seman-

tics, and further exemplify its uses [40]. By decoupling windowing specification

and computation from other commonly used window aggregate functions, such as

74

sum or average, an aggregate operator need not implement windowing semantics

– it simply performs a group-by WID and carries on its computation.

For example, consider counting the number of events in a one-minute sliding

window over the following stream with schema s(time,value):

<‘10:00:00’,‘a’>

<‘10:00:30’,‘b’>

<‘10:01:00’,‘b’>

<‘10:01:30’,‘a’>

[≤‘10:01:30’,*]

BUCKET is parameterized by declaring slide, range, and the windowing at-

tribute wattr. Suppose we set slide = range = 1 minute, and use time as

the windowing attribute. BUCKET would output the following stream with schema

t(wid,value):

<1,‘a’>

<1,‘b’>

<2,‘b’>

<2,‘a’>

[≤ 2,*]

75

Notice the operator works both on events and punctuations. For example, a

subsequent COUNT operator need not worry about windowing semantics, and can

simply count the number of events grouped by WID.

Notice BUCKET is not truly stateless in its described form. Aside from the initial

parameters, BUCKET needs to hold runtime-related state, namely, the timestamp to

to which it assigned the first WID, “1”. There are some consequences with this ap-

proach: First, since NiagaraST does not require ordered input to process a stream,

the window with ID 1 may not necessarily be the first chronological window. Oper-

ationally, we may see a WID “0”, or negative WIDs. Second, from the output-schema

perspective, the meaning of the WID is lost – it is merely a number used to group

on.

In order to interpret a WID’s temporal meaning, we need to know the range,

slide, and initial timestamp from BUCKET, the last one being runtime state of the

operator. Arguably, one could redesign BUCKET so the initial timestamp is a query-

declaration-time parameter, giving control to the query writer as to what a specific

WID represents. These considerations are of interest to us, since we will need to map

a WID to timestamps if we want to propagate a translated feedback punctuation

referring to that WID.

Exploitation for BUCKET does not present a significant challenge, and can be

well-served by the use of an output guard.

76

Response:

1. Create a new guard record r.

2. Add all p ∈ fp to r.

3. Add r to the output guard.

Proof of correctness of exploit:

As we have show before, since the response is strictly mounting an output guard,

we can use the same proof structure shown in PROJECT (and repeated in JOIN.

Propagation of feedback, however requires carefully computing and crafting a

description of the window constituents one is trying to avoid. Tatbul et al. had to

similarly examine window contents in the context of load shedding [49].

Consider the schemata S(wattr, A) and SR(WID,A) respectively, where wattr

is the windowing attribute, WID is the emitted window ID computed over wattr,

and A is a set of other attributes.

In practice, we have encountered use of two types of windows: tumbling and

sliding. I will discuss them separately.

Tumbling windows (slide = range)

In a tumbling window, an instance of BUCKET maps a range of values in wattr to

a single WID as a function f of to:

77

WID = f(wattr, to, slide) = b(wattr − to)/slidec+ 1

For example, consider the integers in the range [1, 5], and slide = range = 2.

Suppose we see the number 1 first, therefore assigning the WID = 1 to it, i.e.,

to = 1. We then notice the following WID assignments:

integer assigned WID

1 1

2 1

3 2

4 2

5 3

Notice each window contains a possible range of values. In this example,

WID = 1 includes the range [1, 3). We can calculate the upper and lower bounds of

a window, given itsWID, slide, range, and to by applying the following functions:

upper = Upper(WID, to, slide) = WID ∗ slide+ to

lower = Lower(WID, to, slide, range) = WID ∗ slide+ to − range

The main consideration is how to compute the interesting set to avoid and

describe it in a feedback punctuation to be propagated. Suppose, for example,

that fp contains the predicate ‘= n’ over the WID attribute. Ideally, we could

78

formulate an fp′ for which the range [lower, upper] for n is named in as a value

in wattr. Since we restricted feedback punctuations to name a comparator and a

value only, this translation is not possible. We therefore consider only the cases

using the <, ≤, >, and ≥ comparators. Assume we receive feedback with the

comparator < on WID. Also assume the correct exploitation using an output

guard is enacted.

Propagation:

1. Compute upper = Upper(WID − 1, to, slide).

2. Create a feedback punctuation fp′ with the predicate over wattr: wattr <

upper.

3. Propagate fp′.

Proof of correctness of propagation:

Recall the output guard is in place before propagation occurs. As discussed before,

going from S to S ′ only potentially reduces the operator’s output. Assume there is

an element e in (S − S ′) that matches fp′. Now assume the operator creates e′ by

computing WID and creating e. It is also true that this e′ matches fp, which is in

the output guard. Hence, e could not contribute to output in SR′, which means

SR′ is unchanged. ut

The rest of the comparators require changes to how upper is computed and fp′

79

Figure 4.1: Sliding Windows illustration. Events e1, e2, ... are assigned to windows.

In this example, range = 3 and slide = 2. Notice an event can participate in more

than one window.

is constructed. For example, assume slide = range = 2, to = 0, and feedback on

WID with the predicate ≤ 4. If we compute upper as is, we will be propagating

feedback that does not cover the constituents of WID4.

When encountering ≤, one needs to compute upper = Upper(WID, to, slide)

and propagate. For >, we need to find the upper limit of the window upper =

Upper(WID, to, slide) but construct fp′ with the condition over wattr: wattr >

upper. For ≥, the propagation strategy is the same as for >, only computing

upper = Upper(WID − 1, to, slide).

Sliding windows (slide < range)

Sliding windows are important features of stream processing. In contrast with

tumbling windows, sliding windows overlap, meaning an event e may participate

80

in more than one window. In Figure 4.1 I illustrate this characteristic.

The main concern when translating feedback is to make sure we do not cover

overlapping windows by accident. For a time-based slide and range, there is a k

such that windows more than k apart do not overlap. For example, with range =

10 and slide = 3, we have k = 4 (k = drange ÷ slidee). By finding this k and

avoiding the overlaps in each direction, we can support sliding windows by simply

offsetting the upper quantity.

4.2.7 AGGREGATES

When one needs to compute a quantity over a finite set of events, one generally uses

a group-by to define the groups and then applies the computation. These compu-

tations are usually called aggregates. In streaming systems, one most commonly

computes windowed aggregates, that is, aggregates over time as well as groups.

In NiagaraST, the engine computes windowed-aggregates in aggregate operators,

which need only know of group-by mechanics, but not time. This simplification is

achieved by computing the WID using BUCKET, as discussed in Section 4.2.6. In this

section, we will characterize the aggregate operators available in the NiagaraST

algebra: AVERAGE, COUNT, MIN, and MAX.

Consider the aggregate operator AGG, with input schema s(G,X), and output

schema sr(G,Y), where G is a set of grouping attributes. Let S be the input

81

stream, and Y the result of computing the aggregate agg over each distinct sub-

set Si = {e|e ∈ S ∧ e[G] = gi}, where all events in Si have the same values for

attributes in G. Let fp be a feedback punctuation. Let us also consider the aggre-

gate’s internal state, H, which is a set of events arranged by grouping attributes.

Let SR be the output stream.

Let us first consider the case in which fp’s predicates p only refer to attributes

in G.

Response:

1. Create a new guard record r.

2. Add all p ∈ fp to r.

3. Add r to the input guard.

4. Remove all events h ∈ H for which match(fp, h) is true.

Enacting a response with only steps 1–3 would be incorrect, as we would poten-

tially introduce elements not originally in SR, i.e., intermediate results for which

we suppressed further input. Enacting a response with only step 4 would also be

incorrect, as partial groups could re-form.

82

Proof of correctness of exploit:

The proof follows the same two-part strategy as before. Let SR′ be AGGREGATE’s

output after enacting the response.

Part 1: SR′ ⊆ SR. The exploitation is similar to the one we used in SELECT,

from the point of view of the guard – only elements that match fp are being left

out. Notice however that we also purged partial state from H – no tuple that

was not originally in SR will ever be emitted. Since we purge state and prevent

re-formation of purged groups, the operator only works over complete versions of

Si. Hence, if e is in SR′, so is it in SR.

Part 2: (SR − SR′) ⊆ subset(SR, fp). Let e[G] = gi, e is derived from Si.

If e is not in SR′, it must be the case that Si itself is missing as a consequence

of the exploit (removing state and preventing re-formation). Now suppose e ∈

(SR − SR′). There cannot be output in SR′ for gi with a different value (as in

Part 1), so it must be the case that SR′ has no event for group gi, which means e

must also be in subset(SR, fp). ut

Propagation:

1. Create a feedback punctuation fp′.

2. Add all p in fp to fp′.

3. Propagate fp′.

83

Proof of correctness of propagation:

We can prove that the output of the aggregate as of the time of exploitation remains

unchanged by the propagation.

Recall the input guard is in place, and recall going from S to S ′ only reduces

the number of elements. If an element e is in (S − S ′), it must also match fp′,

which would cause the input guard to drop it, hence, e cannot contribute to any

e′ in SR′. ut

Let us now consider the case in which a predicate p in fp refers to Y . One

could potentially go through the intermediate operator state and purge existing

matches, but this would be incorrect, as fp is referring to values over complete

Sis, and not partial ones.Instead, guarding the output and performing the check

on a value computed with a complete Si is a better strategy.

Response:

1. Create a new guard record r.

2. Add all p ∈ fp to r.

3. Add r to the output guard.

Proof of correctness of exploit:

We can prove correctness as we have done in previous operators since we are

only mounting an output guard, and not affecting any of the operator’s internal

84

structures.

In the case in which a predicate p in fp refers to Y , it is not possible to compute

a satisfactory pre-image of fp to propagate further as feedback for any arbitrary

aggregate. In the next sections we discuss whether propagation exists for this case

for specific aggregates, and assume the correct response with an output guard is

enacted.

AVERAGE

For AVERAGE, no fp′ can be propagated safely, since the evaluation against the

predicates in fp requires the aggregate value v to be fully computed. A change in

the set of events used to compute a particular v could result in a new value, v′,

originally not in SR.

COUNT

The count of events in a group increases monotonically as events are added to said

group. For this reason, little can be done when the predicate over the count is one

of <, ≤, or =. However, if the comparator is one of > or ≥, we can advantageously

cleanse state and propagate.

Consider the case in which the comparator is one of <,≤, or =. In this case,

no fp′ can be propagated safely, as any incoming event may increase the count

and take the value for a particular group above the guard’s condition. Avoiding

85

these events would be incorrect, as the set of events used to compute a particular

v could result in a new value, v′, originally not in SR.

Now consider the case in which the comparator is > or ≥. We could intuitively

examine the intermediate state, identify groups that already match or exceed the

guarded quantity, and propagate those group IDs as feedback.

MIN

The minimum value of a specific attribute in a group of events can only decrease

as events are added to said group. Assume H holds key value pairs h = (g, v)

where g is the grouping attributes and v is the current minimum.

Consider the case in which the comparator is one of >,≥, or =. Similarly to

COUNT and AVERAGE, no fp′ can be propagated safely, as any incoming event may

decrease the minimum value of its group below the guard’s condition. Avoiding

these events would be incorrect, as the set of events used to compute a particular

v could result in a new value, v′, originally not in SR.

Consider the case when the comparator is one of < or ≤. As we did with

COUNT, perusing the intermediate state to find group ids for which the value is

already below the guarded value, we could propagate those group IDs as feedback.

MAX

The MAX operator is handled similarly to MIN, but with the inequalities reversed.

86

4.3 REMARKS

In this chapter, I have characterized a set of response actions and propagation rules

for commonly used operators in the NiagaraST algebra. We specifically described

the effect responses have on events in an operator. I have shown the actions in terms

of the constructs introduced in Chapter 3, namely input and output guards. Note

that more actions can still be possible. For example, consider the COUNT operator.

I have proposed a characterization in which one pays the cost of sweeping its state

H and comparing it to a feedback punctuation fp only when said punctuation

arrives. We then mount guards to avoid re-forming deleted groups, or emitting

results which match the fps received. COUNT and MIN could also be amenable to

state purges, provided one also creates an input guard to prevent removed groups

from re-forming.

The proofs of correctness of propagation I showed benefited from having an

exploit in place, so it was easy to show that the overall output of the opera-

tor remained unchanged as a consequence of the propagation. This need not

be the case. For example, assume SELECT simply propagates the feedback it

receives, without exploiting it. Proving the propagation is correct would then

have to show that for a possible S ′ in which elements originally in S matching

fp have been removed, the output of SELECT remains in the correct range, i.e.,

SR− subset(SR, fp) ⊆ SR′ ⊆ SR. The change here is that SR′ materializes as a

consequence of S ′, and not as a consequence of a local guard.

87

One additional exploitation side effect for aggregates can involve a state sweep

every time there is a state change to compare the updated value to existing guards.

Adding this check would enable cleansing state early and propagating new feedback

referring to that state. This response can be proven correct, and opens up the

possibility of scheduling opportunity-discoveries in these types of operators. I

think a cost-based selection of responses could be a rather challenging undertaking,

since benefit is dependent both on timing of feedback and additional measurable

characteristics of the input stream. In my work, however, I have chosen not to

explore the mechanics of optimizing such a system, but notice the framework does

not prohibit sophisticated operator implementations. As I will show in Chapter 7,

with these basic constructs it is already possible to observe significant processing

savings.

88

Chapter 5

EXECUTION GUARANTEES

One of the main concerns in DSMS design is the accumulation of event-related

state. As I mentioned in Chapter 1, punctuated data-stream processing has en-

abled DSMSs to cleanse event-related state as the stream progresses over time.

While developing the feedback framework, I noticed that the technique introduces

context-related state into the operators; operator guards may keep accumulat-

ing guard conditions as more and more feedback is sent to operators. Concerned

about unbounded feedback-related state, I started development of a framework to

guarantee this context-related state’s correct disposal.

The initial intuition is that guard state can be cleansed exploiting the same

mechanism as event-state: Punctuation. For example, if an operator is guarding

on timestamps before “11:00 a.m.”, incoming punctuation that states the current

time is “past 11:00 a.m.” can correctly trigger this guard’s removal. The problem

is if one wants to make a universal statement about managing state, one needs to

know about future punctuation. In general, we have no guarantee about incoming

punctuation describing attribute values (or derivatives of these, such as WIDs) on

which operators may be blocking or accumulating state. In some systems such

89

as CEDR [27], CTIs only refer to time-progressing attributes, hence, blocking or

stateful processing associated with time may be safe, provided CTIs continue to

arrive. I wish to make a similar safety claim about arbitrarily punctuated queries.

In order to reason about context-related state, I set out to understand the impli-

cations of punctuations. I developed a framework, Inter-Operator Contracts, that

not only annotates streams with their expected punctuations, but also enables pre-

evaluation analysis of a query to reason about its execution safety. In Sections 5.3

– 5.5, I present the framework from the perspective of regular punctuated stream

processing. This derivation was previously published in Fernández-Moctezuma

et al. [22]. In Section 5.6, I extend the framework to to describe feedback and

guarantee removal of feedback-related state. In Section 5.7, I present a recursive

algorithm to determine whether a query plan is safe to execute given its contracts.

The derivation presented in this chapter uses a generic stream algebra, largely

inspired by NiagaraST’s. My intention is to show the broad applicability of the

technique without tying it to a specific system.

5.1 MOTIVATING EXAMPLE

Consider two streams, Msg1 and Msg2, that contain records of messages sent be-

tween operating system processes hosted in two separate processing units. Both

streams have identical schemas (timestamp, sourceID, destinationID), where

the latter two attributes refer to process IDs, and processes are uniquely identified

90

across the lifetime of the stream. One wishes to compute the messaging ratio of

processes hosted in the processing unit from which Msg1 comes with respect to

processes in the other source, in 1-minute tumbling windows. For each source pair,

this computation determines which of the two sources dominates messaging. A

query plan that computes this ratio is in Figure 5.1.

Figure 5.1: Sample streaming query plan to compare the ratio of sent to received

messages among pairs of processes located in different CPUs over 1-minute tum-

bling windows. Operator instances are uniquely identified by a superscript.

91

For each stream, the count of messages, grouped by process pair, per window is

computed separately. First, the WINDOW operator (ω) produces a window id (WID)

for each event by applying its windowing function over the timestamp attribute.

Next, the PROJECT operator (π) projects the timestamp out. The COUNT operator

produces a count of the events seen in a given window for every pair of mes-

saging processes. The two substreams are then window-joined, and the resulting

substream is projected to compute the ratio.

Both instances of COUNT will block until the correct count can be emitted –

i.e., when there is certainty that all elements in a particular group have been seen.

JOIN (./) will accumulate state associated with both of its inputs until the state

is not required to produce future results.

Since the data in the stream progresses through time, punctuation based on the

timestamp attribute is intuitive. In NiagaraST, the WINDOW operator maps time-

stamp punctuation to WID punctuation [40]. COUNT can correctly produce results

after seeing WID punctuation, and JOIN can cleanse state as time progresses. For

example, consider the following stream in Msg1, where events are bracketed with

“< >”:

<‘9:59:30 a.m.’, 1, 2>

<‘9:59:45 a.m.’, 1, 3>

[≤‘9:59:59 a.m.’, *, *].

92

Assume the two events’ timestamps map to the window with WID = 959. The

output stream of the WINDOW operator has schema (WID, timestamp, sourceID,

destinationID), and contains the following events and punctuation:

<959, ‘9:59:30 a.m.’, 1, 2>

<959, ‘9:59:45 a.m.’, 1, 3>

[≤959, *, *, *].

COUNT processes its input, which causes it to track two groups, and holds

result production until the aggregates are known to be complete – specifically,

when the operator has certainty that no other events corresponding to current

groups will arrive. The punctuation [≤959, *, *] (from PROJECT) closes the two

existing groups, and COUNT outputs the stream with schema (WID, sourceID,

destinationID, count):

<959, 1, 2, count:1>

<959, 1, 3, count:1>

[≤959, *, *, *].

Assume the right input to JOIN is

93

<959, 2, 1, count:1>

[≤959, *, *, *],

JOIN produces the following result stream with schema (WID, sourceID,

destinationID, Msg1.count, Msg2.count):

<959, 1, 2, 1, 1>

[≤959, *, *, *, *].

Stream progress in this example was tracked with punctuations covering the

passage of time – in particular, punctuating events in the timestamp attribute.

Progress in this example can also be measured differently. When a process termi-

nates, a punctuation on events on the process ID attribute can be inserted into

the stream. Let us assume that the process with ID = 1 terminates. The input

stream on Msg1 is:

<‘9:59:30 a.m.’, 1, 2>

<‘9:59:45 a.m.’, 1, 3>

[*, 1, *].

94

The output stream of the WINDOW operator is

<959, ‘9:59:30 a.m.’, 1, 2>

<959, ‘9:59:45 a.m.’, 1, 3>

[*, *, 1, *].

After projection, COUNT processes its input. In this revised example, the punc-

tuation [*, 1, *] (from PROJECT) closes the two existing groups, and COUNT out-

puts the stream

<959, 1, 2, count:1>

<959, 1, 3, count:1>

[*, 1, *, *].

Assume the right input to JOIN is

<959, 2, 1, 1>

[*, *, 1, *],

JOIN produces the following result stream with schema (WID, sourceID,

destinationID, Msg1.count, Msg2.count):

95

<959, 1, 2, 1, 1>

[*, 1, *, *, *].

This example shows that tracking progress on more than one attribute is pos-

sible. Tucker [62] provides additional examples of queries whose progress is not

necessarily measured in time.

5.2 REASONING ABOUT UNBOUNDED STREAMS

One of the main challenges when processing unbounded streams consists in rea-

soning formally about all elements in a stream. Even if one could show that an

operator produces all the right output once it sees all of its input, that guarantee

has little value in practice, since one would like a query to behave well during

execution, not just after seeing all input. This requirement suggests one needs a

way to characterize “good behavior” incrementally.

We use a contracts framework to make statements about the relationship be-

tween an operator’s input stream(s) and it output stream(s). One way to reason

about processing consists in decomposing the stream into discrete, bounded sub-

sets both at the input and the output. Let T be the set of all events (tuples) in

a stream. Let h be a partition function that maps an event to a natural num-

ber, h(t) → N, defined over all possible events in the domain of T . Although

96

the partition function is defined here as a mapping to the natural numbers, any

other countable set (such as timestamps or processIDs) would work as well. Let

us consider an unbounded stream S, and let T be the set of all events in S. We

define a set Hi as the events t ∈ T such that h(t) = i: Hi(S) = {t ∈ T |h(t) = i}.

We say that stream S has a Piece-wise Finite Decomposition (PFD) with respect

to h if every Hi(S) is finite.

Consider an operator O that maps streams over domain D to streams over

domain E. O is PFD-definable if there exists h, j such that: whenever S is PFD

with respect to h, O(S) has a PFD relative to j, and each Jk of O(S) depends on

a finite number of Hi’s from S. For binary operators, we consider their outputs Jk

as dependent on a co-occurrence on finite subsets of its inputs, H1
i , H

2
l , that is an

output is the product of a pair of partitions.

These operator semantics allows one to consider finite subsets, each with finite

events, as input to an operator, which produces finite subsets, each containing a

finite number of events. With punctuation, it is possible to reason incrementally

about the correctness of an implementation I for a PFD-definable operator O:

If punctuation indicates Jk is complete on the output, then we can check that

all corresponding Hi’s are complete on the input and that Jk agrees with the

definition of O. If we can further reason that punctuation guarantees that every

Jk is eventually complete, then we know that I delivers all correct output per the

definition of O. In punctuated data streams, punctuations allow analysis of any

97

prefix of an unbounded stream to determine which input and output subsets have

been closed.

It is not sufficient to characterize an operator’s responses to events and punc-

tuations alone in order to guarantee it will not hold on to state indefinitely, or that

for a given punctuated data stream it will eventually produce all correct output.

We also want to make statements about the incremental nature of stream process-

ing, that is how operators work on incremental partitions of streams. In essence,

this partitioning is what I propose as a more complete definition of correctness.

To illustrate the intuition of partitioning, consider the SUM operator, applied to

the stream s(w,v), where it sums v’s for every w. One way to hint at the causality

intuition is to recognize SUM can only output an event for a given w once a punctu-

ation that covers said group arrives. Punctuation over w is then decomposing the

input stream in fixed pieces. Similarly on the output, punctuations delimit these

natural partitions.

Consider the SELECT operator, operating on the input stream S, and producing

an output stream O. Here, the partition function h maps each stream element

(event and punctuation) to a unique natural number, based on event arrival. Any

partition e in SELECT’s output corresponds to one partition d in its input, hence

SELECT is PFD-definable.

For the rest of this exposition we consider only PFD-definable operators when

characterizing their behavior with respect to punctuated data streams and provide

98

workable contracts for each operator.

5.3 EXECUTION GUARANTEES

The presence of punctuation alone in a stream is no guarantee that a continuous

query over that stream will execute successfully. In particular, it is no guarantee

that all operators involved in the query will eventually unblock and release state.

A continuous query plan will execute successfully if the following statements hold:

• No piece of state remains indefinitely in any operator.

• Every correct output will be delivered eventually.

For a given query, there could be no punctuation pattern that guarantees good

behavior on the query, or there may be several patterns that allow it to execute suc-

cessfully. Let us make the definition of successful execution more precise. For the

first statement, I am concerned with event-dependent state. I disregard constant-

size parts of operator data structures, such as a hash-table header or a variable

holding a selection condition. For the second statement, we need to know that for

every PFD piece of the output of an operator, all the constituent pieces have been

received in the input. And in order to account for every PFD piece of the input,

we need to know that they are covered by punctuation.

To develop this framework, I use operators that are PFD-definable relative to

some PFD of their input streams, and assume that input streams meet that PFD

99

condition. Common stream operators are all PFD-definable. Pointwise operators

such as SELECT and PROJECT are easy to show as PFD-definable: each value in the

input domain is in its own partition. A JOIN is PFD-definable if we can decompose

it into a series of joins of finite subsets of the input. Examples of this property

include a JOIN on WID where the number of messages per unit of time is finite, or

a band join where any band has a finite number of events. Aggregates depend on

the stream and the grouping. Time-based windowed aggregates are PFD-definable

under the reasonable assumption that only a finite number of events can be received

by a finite time.

Existing stream algebras support static query analysis to determine, among

other things, if a query is syntactically correct. I aim to extend this query-level

analysis to also determine query properties related to state management and output

delivery, moving from single-operator processing guarantees (determined at oper-

ator design time) toward query-level successful execution guarantees determined

at query construction. Figure 5.2 presents a high-level overview of the proposed

technique.

To perform query-level analysis, one needs mechanisms to describe the style

of punctuations being used to talk about the set of all punctuations expected in

the stream, and to represent operator activity with respect to input and output

punctuations. In the remainder of this section, I introduce a framework that

addresses these requirements.

100

Figure 5.2: From operator processing guarantees (a) to query-level execution guar-

antees (b).

5.3.1 Punctuation Templates and Schemes

The example in Section 5.1 had two possible punctuation types : Punctuating on

timestamp suggested stream progress based on advancement of time, while punc-

tuating on a process ID gave a different notion of progress based on process com-

pletion. I seek to represent the form of punctuation that is expected in a data

stream, specifying the types of input and output punctuation for operators. In the

example in Section 5.1, I observed three classes of patterns in the punctuations:

some patterns referred to “up to here” progress (<, ≤), others specified a particular

value (such as a process ID), and a third class specified all values (“*”). For “up-to”

conditions, I will use the symbol “+”. For patterns that specify values, such as

a process ID, I use the symbol “#”, and use the symbol “-” for the “everything”

101

pattern.

A Punctuation Template is a construct that restricts the syntactic form of

the punctuations in a stream, with its format given in Figure 5.3. I require all

attributes in the schema to be present in the punctuation template.

TEMPLATE := [[DESCRIPTOR

(, DESCRIPTOR)*]]

DESCRIPTOR := ATTRIBUTE:CLASS

ATTRIBUTE := Attribute name in the schema

CLASS := (+|#|-)

Figure 5.3: Punctuation template syntax.

For example, the punctuation template

[[a:+, b:#, c:-]]

allows the punctuation

[≤‘11:30 p.m.’, 26, *],

but not

102

[*, 26, *],

[‘11:30 p.m.’, <26, *], nor

[≤‘11:30 p.m.’, 26, 3].

Formally, a punctuation p conforms to a template t if each component of p

matches the corresponding description expressed by t.

To describe the set of punctuations expected in a stream, I define a Punctu-

ation Scheme as a set of one or more punctuation templates. The set describes

the styles of punctuations seen in a stream. PS1 and PS2 below are examples of

punctuation schemes:

PS1 = {[[a:+, b:#, c:-]]},

PS2 = {[[a:+, b:-, c:-]], [[a:-, b:#, c:-]]}.

A stream S obeys a punctuation scheme PS if:

Condition 1. Any punctuation p ∈ S conforms to at least one punctuation

template T ∈ PS, and

Condition 2. For any event e ∈ S, and each template T ∈ PS, ∃p ∈ S such that

p conforms to T and e matches p. In other words, every stream element must be

covered by a punctuation corresponding to each of the templates in the scheme.

The following sub-stream obeys PS1:

103

<‘9:45 p.m.’, 1, 7>

[<‘10:00 p.m.’, 1, *]

[<‘10:00 p.m.’, 2, *]

while the following does not, since it contains punctuations that do not match

any templates in PS1:

<‘9:45 p.m.’, 1, 7>

[<‘10:00 p.m.’, *, *]

[*, 2, *]

[<‘10:05 p.m.’, <1, *]

A stream S obeys Condition 1 of PS2 if all its punctuations have either “up-to”

content on attribute a or “value” content on attribute b (and “any value” content

elsewhere for both cases). For example, the following sub-stream obeys Condition

1 of PS2:

<‘10:16 p.m.’,2,23>

<‘10:17 p.m.’,1,13>

<‘10:17 p.m.’,3,31>

104

[<‘10:20 p.m.’, *, *]

<‘10:21 p.m.’,1,11>

[*, 1, *]

<‘10:21 p.m.’,2,21>

<‘10:21 p.m.’,3,31>

[<‘10:25 p.m.’, *, *]

[*, 2, *]

<‘10:27 p.m.’,3,30>

[<‘10:30 p.m.’, *, *]

but it doesn’t obey Condition 2 of PS2, since no punctuation covers the stream

elements with the value ’3’ in the second attribute. The stream would if the punc-

tuation [*,3,*] were to appear at the end, for example.

A related notion from the literature is linear punctuation [61] in which punc-

tuations are strictly increasing on a timestamp attribute. This notion corresponds

to a punctuation scheme with a single template that has one “up-to” component,

such as {[[time:+, value:-]]}, plus the condition that punctuations are non-

redundant. That is, we will not see punctuation [<‘10:15 p.m.’, *] after we

have seen punctuation [<‘10:30 p.m.’, *].

105

5.3.2 Punctuation Contracts

I have suggested that an operator can be prepared to process different punctuation

schemes. A simple example is the windowing operator, ω. One processing mode

consists of mapping punctuation in the windowing attribute (timestamp in the

motivating example) to the Window ID attribute in the output. A second pro-

cessing mode can produce windowed groups by grouping on additional attributes,

such as timestamp and sourceID, and mapping punctuation that refers to those

two attributes to a window id punctuation. To represent the capabilities of oper-

ators with respect to punctuation schemes, a Punctuation Contract is a record of

punctuation schemes corresponding to each input and output of an operator. If

an operator R is operating under contract CT and gets inputs that obey the input

punctuation schemes in CT , then the following guarantees hold:

Guarantee 1: R produces an output that obeys the output punctuation

scheme specified in CT ,

Guarantee 2: No piece of event-state remains in R’s state forever, and

Guarantee 3: R eventually produces all of its correct output, according to

the notions presented in Section 5.2.

Consider the SELECT operator. An intuitive operating mode for select consists

of outputting the punctuations seen on its input. The following contracts exemplify

this behavior on an input stream with schema s(a,b,c). I label each attribute

name in this notation to make input-output correspondences clearer:

106

CT1 = <In={[[a:+,b:-,c:-]]},

Out={[[a:+,b:-,c:-]]}>

CT2 = <In={[[a:+,b:-,c:-]], [[a:-,b:#,c:-]]},

Out={[[a:+,b:-,c:-]], [[a:-,b:#,c:-]]}>

A contract CT for operator R is realizable if a physical implementation of R

can be constructed such that the contract CT is guaranteed. For example, SELECT

may have been designed to only propagate linear punctuation, discarding hash

punctuation:

CT3 = <In={[[a:+,b:-,c:-]], [[a:-,b:#,c:-]]},

Out={[[a:+,b:-,c:-]]}>

Similarly, one could realize a stateful version of SELECT that obeys the following

contract:

CT4 = <In={[[a:+,b:-,c:-]], [[a:-,b:#,c:-]]},

Out={[[a:+,b:#,c:-]]}>.

Such an implementation of SELECT could accumulate state associated with the

107

b values from the events consumed. Once punctuation informs SELECT all events

with a specific value of b have been seen, the operator can be ready to emit punc-

tuation as long as it ensures that the emitted punctuation increases on a. Notice

that unlike linear punctuation, we do not require strictly increasing punctuation

to be emitted.

I distinguish multiple inputs in n-ary operators numerically. For example, a

contract for JOIN over streams s(a,b) and t(b,c) on b can be expressed as:

CT5 = <In1={[[a:-,b:+]]}, In2={[[b:+,c:-]]},

Out={[[a:-,b:+,c:-]]}>

Not all expressible contracts are realizable. Consider the following contract for

SELECT:

CT6 = <In={[[a:+,b:-,c:-]]},

Out={[[a:-,b:#,c:-]]}>.

CT6 is unrealizable; there is no way to infer all events for particular values of

b have been seen by only examining progress as expressed by values in attribute a.

108

A physical implementation of an operator might not include all realizable con-

tracts. Moreover, during execution, there may be different physical implementa-

tions of the same logical operator in use. A Contract Offering for logical operator

R is a set of deliverable contracts for which fulfillment is realizable by some im-

plementation of R. For example, a contract offering for SELECT might be: CO =

{CT1, CT2, CT4}, where the constituent contracts are as given above.

5.4 CONTRACTS FOR STREAM OPERATORS

In this section, I present realizable contract offerings for some stream operators.

The list is not exhaustive, but illustrates operator modeling under the contracts

framework. I also show how contract offering designs for operators can be syn-

thesized for arbitrary input schemas by examining the operator’s processing logic.

For discussion, I will use the schemas s(a,b) and t(b,c).

Since one is concerned with latency and state management, one needs to keep

track of the attributes on which blocking and state accumulation occur. I call

these Interesting Attributes. Examples include the joining attributes for JOIN and

the grouping attributes in an aggregate.

5.4.1 SELECT

I used SELECT to guide our exposition of contracts in Section 5.3.2. Let us say

that one is interested in modeling SELECT’s contract offerings as the identity on

109

punctuation schemes. For schema s, one would need nine different contracts for

each possible singleton punctuation scheme, one of which is CT7 below. One would

need to enumerate the powerset for all possible n-ary schemes.

CT7 = <In ={[[a:-,b:+]]}, Out = {[[a:-,b:+]]}>

Moreover, one needs a way to describe contracts independent of a specific schema.

A General Contract Form (GCF) describes contracts for an arbitrary schema for

an operator. In a GCF, I represent punctuation schemes or groups of attributes

with variables. The general contract form GCF1 below synthetizes the “identity”

behavior of SELECT. In it, the variable PS is any punctuation scheme defined over

SELECT’s input schema.

GCF1 = <In=PS, Out=PS>.

A GCF provides a blueprint to generate specific contract offerings. For exam-

ple, if a physical instance of SELECT is presented with an input punctuation scheme

[[b:+, c:-]], the contract CT8 can be derived from GCF1:

CT8 = <In={[[b:+,c:-]]}, Out={[[b:+,c:-]]}>}.

110

5.4.2 PROJECT

GCFs for an operator are implementation-specific. A straightforward implementa-

tion of PROJECT does not accumulate state or block output, and propagates punc-

tuation when values in the punctuation appear only in the projected attributes.

Let I be the input schema, X be the set of projected attributes and Y be the set

of attributes projected out, hence X ∪ Y = I. Let PSI be a punctuation scheme

whose templates PSIi only refer to attributes in X. Let PSO be a punctuation

scheme in which each template PSOi ∈ PSO corresponds to exactly one template

PSIi ∈ PSI, with attributes in Y removed. The general contract form GCF2 rep-

resents the described PROJECT behavior:

GCF2 = <In=PSI, Out=PSO>.

Consider an instance of PROJECT that takes a schema s(a,b) as input and projects

out the b attribute. Suppose the input punctuation scheme is [[a:+, b:-]]. The

following contract can be derived from GCF2:

CT9 = <In={[[a:+, b:-]]}, Out={[[a:+]]}>}.

111

5.4.3 JOIN

Consider a symmetric hash-join implementation of equi-join. From the sample

streams s and t, one can derive the following realizable contracts:

CT10 = <In1={[[a:-,b:+]]}, In2={[[b:+,c:-]]},

Out={[[a:-,b:+,c:-]]}>, and

CT11 = <In1={[[a:-,b:#]]}, In2={[[b:#,c:-]]},

Out={[[a:-,b:#,c:-]]}>.

Both CT10 and CT11 are realizable since punctuation arrives on both inputs and in

the join attribute only, which guarantees removal of the associated entries in each

side’s state. Contrast this behavior with CT12, another expressible contract:

CT12 = <In1={[[a:#,b:-]]}, In2={[[b:-,c:#]]},

Out={[[a:#,b:-,c:#]]}>,

CT12 is not realizable, as it fails to provide Guarantee 2 (but it does meet Guaran-

tees 1 and 3) from Section 5.3.2 – there is no mechanism to clear state associated

with the join attribute by looking only at punctuation values on the other at-

tributes. The set of interesting attributes for JOIN contains all attributes named

in the join condition. One can synthesize a generalized contract as follows: Let I1

112

and I2 be the input schemas to the operator. Let J be the set of joining attributes

(J ⊆ I1, J ⊆ I2). Let L and R be the sets of attributes exclusive to inputs 1 and

2 respectively: L = I1−J,R = I2−J . One can synthesize the described behavior

of JOIN with the following GCFs:

GCF3 = <In1={[[L:-,J:+]]}, In2={[[J:+,R:-]]},

Out={[[L:-,J:+,R:-]]}>

GCF4 = <In1={[[L:-,J:#]]}, In2={[[J:#,R:-]]},

Out={[[L:-,J:#,R:-]]}>.

Consider the streams l(a,b) and r(b,c). Consider l ./ r. Out of GCF3 and

GCF4 we can derive a specific contract offering for JOIN:

CT13 = <In1={[[a:-, b:+]]}, In2={[[b:+, c:-]]},

Out={[[a:-, b:+, c:-]]}>

CT14 = <In1={[[a:-, b:#]]}, In2={[[b:#, c:-]]},

Out={[[a:-,b:#,c:-]]}>.

These are not the only possible GCFs for JOIN, nor is it required for all of the

join attributes to be punctuated in the same way for an implementation of join to

offer realizable contracts. Consider the following contract for schemas l(a,b,c)

and r(b,c,d):

113

CT15 = <In1={[[a:-, b:+, c:-]]}, In2={[[b:-, c:+, d:-]]},

Out={[[a:-, b:+, c:+, d:-]]}>.

CT15 is realizable since the left input’s punctuation on b is sufficient to clear the

right input’s state, similarly for the other sides on c. The additional operational

requirement is to hold punctuation production until there is progress from both

sides. Notice one attribute can progress more frequently than the other (both

attributes are increasingly progressing).

5.4.4 WINDOW

In NiagaraST, the windowing operator applies a windowing function f to incoming

events. The windowing function maps values from a subset of the input schema’s

attributes to a new attribute, called the window ID (WID). This functional appli-

cation may block or accumulate state, as discussed by Li [38]. As a simplifying

assumption, I consider simple functional application with no state accumulation

or blocking. For example, for the stream with schema s, a windowing function

f(b) = db/10e would operate on this stream:

<a:1, b:19>

<a:2, b:21>

114

and produce the following output:

<WID:2, a:1, b:19>

<WID:3, a:2, b:21>

For punctuation, WINDOW typically maps linear punctuation on its windowing

attribute to the WID attribute. This map applies the windowing function f ′(b) =

db/10e − 1 to the punctuation value in b. The use of f ′ guarantees we are punctu-

ating only on clearly closed windows, and not windows in flight. For example, for

the input punctuation [a:*,b:22], WINDOW would output [WID:2,a:*,b:*]. Let

us say that W is the set of windowing attributes in its input schema, and X all

other attributes. A generalized contract for WINDOW is

GCF5 = <In={W:+, X:-},

Out={WID:+, W:-, X:-}>, from which one can derive a contract for

s(a,b) where b is the windowing attribute:

CT16 = <In={a:-, b:+},

Out={WID:+, a:-, b:-}>.

115

5.4.5 COUNT

As a representative of aggregate operators, consider the grouped COUNT operator.

COUNT accumulates state organized by its grouping attributes, one of which can be

a WID. For example, if one counts the b’s per a’s seen in stream s, one cannot cor-

rectly emit a count until one knows all events for a value of a are seen. The output

of the operator is the grouping attributes plus the result of the calculation. Let I

be the input schema, G ∈ I be the set of grouping attributes, and R = I − G be

the rest of the attributes. The following GCFs can be used to generate realizable

offerings, since in all cases punctuation can be used to clear the associated state

and emit output:

GCF6 = <In={[[G:+, R:-]],},

Out={[[G:#, COUNT(R):-]]}>

GCF7 = <In={[[G:#, R:-]]},

Out={[[G:#, COUNT(R):-]]}>

GCF8 = <In={[[G:+, R:-]], [[G:#, R:-]]},

Out={[[G:#, COUNT(R):-]]}>.

The following contracts are specific examples of the three aforementioned GCFs:

CT17 = <In={[[a:+, b:-]],},

Out={a:#, COUNT(R):-}>

CT18 = <In={[[a:#, b:-]]},

116

Out={a:#, COUNT(R):-}>

CT19 = <In={[[a:+, b:-]], [[G:#, R:-]]},

Out={a:#, COUNT(R):-}>.

Recall the proposed list of GCFs is not exhaustive; as it is the case for join, con-

tracts in which only a subset of the grouping attributes are punctuated are also

realizable. Also note that GCF6 can in fact describe contracts that are unlikely to

be found in practice, for example, when there are two attributes in the grouping

key. The following is more precise generalized contract form in which g ∈ I and g

is the grouping key:

GCF9 = <In={[[g:+, R:-]],},

Out={[[g:+, COUNT(R):-]]}>.

5.5 FULL-QUERY ANALYSIS

Once a query plan is registered to the DSMS, I wish to verify that its execution will

uphold the three guarantees posed in Section 5.3.2. I assume operator instances

in the plan first instantiate their contract offerings and bind them to their specific

input and output schema. A contract accordance is a selection of one contract

offering per operator. A consistent contract accordance is an accordance where

117

each antecedent operator’s output punctuation scheme matches its subsequent op-

erator’s input punctuation scheme. A query can execute successfully if it has at

least one consistent contract accordance.

Testing a single specific contract accordance for consistency is easy. Consider

a query with two operators, A and B, with contract offerings COA and COB respec-

tively. Assume B is the subsequent operator of A. Consider the following offerings:

COA={ <In={[[a:+, b:-]]}, Out={[[a:+, b:-]]}>,

<In={[[a:#, b:-]]}, Out={[[a:#, b:-]]}>}

COB={ <In={[[a:+, b:-]]}, Out={[[a:+, b:-]]}>}.

In this case, two possible accordances exist. I represent them as pairs (α,β)

where α is a contract from A and β is a contract from B:

(<In={[[a:+, b:-]]}, Out={[[a:+,b:-]]}>,

<In={[[a:+, b:-]]}, Out={[[a:+,b:-]]}>),

(<In={[[a:#, b:-]]}, Out={[[a:#,b:-]]}>,

<In={[[a:+, b:-]]}, Out={[[a:+,b:-]]}>).

Of these accordances, the first one is a consistent contract accordance, as the

118

antecedent’s output punctuation scheme matches the subsequent’s input punctu-

ation scheme.

Finding a consistent contract accordance for a query given a set of offerings

requires more work. A simple approach consists of computing all possible accor-

dances and testing them individually – a task that entails analyzing the cross-

product space of contract offerings. Notice that finding a consistent accordance

between two consecutive operators is equivalent to computing an equijoin of con-

tract offerings on the antecedent’s output punctuation scheme and the subsequent’s

input punctuation scheme. One can see contract offerings as tables, with each con-

tract offered as a row. I illustrate this representation in Figure 5.4, with a new

contract offering COC for operator C.

Consider a query plan with C as the antecedent of A, and A as the antecedent

of B. The expression COC ./COC.Out=COA.In COA ./COA.Out=COB.In COB will be

empty if no consistent accordances are found, or will return a consistent accordance

per row if not empty. If one assumes queries are trees, an efficient evaluation of

this expression is achievable via full reducers [44].

Bernstein et al. showed that a class of queries, specifically tree queries, are

efficiently solvable by full reducers [10]. By using semi-joins, one can reduce the

number of tuples that are involved in the evaluation of a query. A full reduction

of a database is then the smallest possible reduction of a database for a given

query. A full reducer is a semi-join program that is guaranteed to produce a full

119

COA In Out

{[[a:+, b:-]]} {[[a:+,b:-]]}

{[[a:#, b:-]]} {[[a:#,b:-]]}

COB In Out

{[[a:+, b:-]]} {[[a:+,b:-]]}

COC In Out

{[[a:+, b:-]],[[a:#, b:-]]} {[[a:+,b:-]],[[a:#, b:-]]}

{[[a:+, b:-]]} {[[a:+,b:-]]}

{[[a:#, b:-]]} {[[a:#,b:-]]}

Figure 5.4: Database representation of operator offerings COA, COB, and COC

for operators A, B, and C, respectively.

reduction. A full reduction is non-empty if and only if the join is non-empty. For

this example, the full reductions are shown in Figure 5.5, and the result of the join,

a consistent accordance for the query, is shown in Figure 5.6.

For a tree with n nodes, If we were to simply perform joins to find consistent

accordances, assuming the largest cardinality of offerings is k, we would expect

to do O(kn) work. By reducing the space of offerings to only those that would

participate in a join, i.e., by finding a full reduction, we can reduce the cost to

find one accordance to linear time in the number of nodes. The cost of using the

full reducers is O(nk2), since the cardinalities in each step are guaranteed to only

120

COA-R In Out

{[[a:+, b:-]]} {[[a:+,b:-]]}

COB-R In Out

{[[a:+, b:-]]} {[[a:+,b:-]]}

COC-R In Out

{[[a:+, b:-]]} {[[a:+,b:-]]}

Figure 5.5: Full Reduction of operator offerings COA, COB, and COC for operators

A, B, and C, respectively.

reduce in size in each step, and we need only 2n−2 semijoins on a tree of n nodes.

5.6 EXTENDING THE CONTRACT FRAMEWORK TO SUPPORT

FEEDBACK

I have presented a framework that allows us to check for expected behavior of a

continuous query before it is executed, aimed towards providing the three guaran-

tees discussed in Section 5.3.

As I mentioned before, we started investigating this problem motivated by the

need to remove feedback-related state from the operators, such as a guard an oper-

ator may mount as a response to feedback. In this section, I extend the framework

for use with assumed feedback punctuation as follows: (1) Inclusion of feedback-

related state elimination in the execution guarantees, (2) addition of a definition

121

Consistent

Accordance COC.In COC.Out COA.In

{[[a:+,b:-]]} {[[a:+,b:-]]} {[[a:+,b:-]]}

COA.Out COB.In COB.Out

{[[a:+,b:-]]} {[[a:+,b:-]]} {[[a:+,b:-]]}

Figure 5.6: Consistent Accordance for the “C,A,B” query.

of coverage of feedback punctuations by regular punctuation, (3) extension to the

syntax and semantics of the contract framework to describe feedback, and (4) an

extension to the query-analysis technique to account for feedback.

5.6.1 Revised Guarantees

In the revised contract framework, one needs to account for a new guarantee. If

an operator R is operating under contract CT , the following guarantees hold:

Guarantee 1: R produces an output that obeys the output punctuation

scheme specified in CT ,

Guarantee 2A: No piece of event-state remains in R’s state forever, and

Guarantee 2B: No piece of feedback-state remains in R’s state forever, and

Guarantee 4: R eventually produces all of its correct output, according to

the notions presented in Section 5.2.

While Guarantee 3 is stated as in the original framework, correct output now

122

refers to the definition of correctness when exploiting feedback, i.e., some portion

of the output may be dropped.

5.6.2 Extended Syntax of Punctuation Schemes

To represent feedback punctuation schemes I will extend the punctuation template

syntax used for the contract framework by a new symbol: 	. When this symbol

substitutes for a template, it means that an operator is able to accept any incoming

feedback. This symbol is introduced to distinguish the case where an operator

cannot accept any feedback, in which case we use ∅.

TEMPLATE := 	 | [[DESCRIPTOR

(, DESCRIPTOR)*]]

DESCRIPTOR := ATTRIBUTE:CLASS

ATTRIBUTE := Attribute name in the schema

CLASS := (+|#|-)

Figure 5.7: Revised punctuation template syntax.

5.6.3 Extended Contract Representation

In addition to enumerating input and output punctuation schemes, contracts will

now mention the type of feedback they can receive and emit. For example, consider

the following contract for the PROJECT operator:

123

CT20 = <In ={[[a:-, b:+, c:-]] Out = {[[a:-, b:+]]},

Feedback.In = {[[a:-,b:+]]}, Feedback.Out = {[[a:-, b:+, c:-]]}>

Contract CT20 describes the input and output punctuation schemes as well as

the incoming and outgoing feedback schemes supported. Contract CT21 below

describes the case where any feedback punctuation is accepted, but no feedback is

propagated:

CT21 = <In ={[[a:-,b:+]] Out = {[[a:-,b:+]]},

Feedback.In = 	, Feedback.Out = ∅>

5.6.4 Consistent Accordances with Feedback

A further refinement to the contract framework consists in working out how ac-

cordances are formed. First, let us remember that by construction in the original

framework we are guaranteed domain coverage for attributes that progress linearly

or are punctuated with a specific value (“+” and “#”, respectively). This observa-

tion enables us to introduce a notion of feedback coverage. A feedback punctuation

f is covered by the punctuations described by a template p if each attribute tagged

with “+” or “#” in f is also marked with the same tag in a punctuation in p. For

example, the feedback punctuation ¬[a:≤ ‘2:00 a.m.’, b:*] is covered by the

124

template [[a:+, b:-]].

Recall that feedback-related state is directly linked to the feedback punctuation

that created it. If an input punctuation covers the state created by a feedback

punctuation, said state can be purged. For example, if an operator’s input guard

has a record for WID < 2, and it receives forward punctuation with WID < 3,

the guard record for WID < 2 can be removed.

Contract offerings with feedback are well-formed if the feedback they receive

as input (Feedback.In) is covered by punctuations in its data input (In).

A second refinement requires changing the notion of equality to account for

the symbol 	, which now matches “any”, including an empty scheme. The match

operator � compares punctuation schemes, including the empty set and the “any”

scheme, as defined in Table 5.1. Notice the � operator does not commute –

R.scheme � S.scheme does not necessarily imply S.scheme � R.scheme.

A consistent accordance using feedback is now defined not only by matching

output schemas with input schemas among operators, but also by examining the

Feedback.Out and Feedback.In schemas in the offerings. I call this requirement the

match condition. For example, consistent accordances for unary antecedent opera-

tor S and unary subsequent operator R exist if S.Out = R.In ∧ S.Feedback.In �

R.Feedback.Out. N-ary operators need to expand this match condition for each

input-output relation.

125

Antecedent Subsequent Result

∅ ∅ True

∅ 	 False

∅ s False

	 ∅ True

	 	 True

	 s True

s ∅ True

s 	 False

s s′ True if s = s′, False otherwise.

Table 5.1: Definition of the match (�) operator, applied as antecedent � subse-

quent. The letter s denotes a punctuation scheme.

126

Figure 5.8: PACE communicates downstream context information to IMPUTE.

To illustrate accordance usage under the proposed feedback-augmented con-

tract framework, consider the query plan shown in Figure 5.8, which we saw before

in Chapter 1. The schema sensor(time:timestamp, id:integer, speed:float)

and the contract offerings shown in Figure 5.9.

The aforementioned contract offerings form a consistent accordance for the

query plan in Figure 5.8. Notice how all operators in the query plan have offerings

that both (a) have Feedback.In covered by the punctuations present in their input,

and (b) all operator pairs have contracts that satisfy the match condition.

5.7 FINDING CONSISTENT ACCORDANCES

Since I have modified the notion of equality of schemes by introducing the � op-

erator, one cannot directly cast the accordance-finding problem to a join program,

as done in 5.5. The structure of the search however remains quite similar, since

127

DUPLICATE = {<In = {[[time:+, id:-, speed:-]]},

Out1 = {[[time:+, id:-, speed:-]]},

Out2 = {[[time:+, id:-, speed:-]]},

Feedback.In1 = 	, Feedback.In2 = 	,

Feedback.Out = ∅>}

SELECT1 = {<In = {[[time:+, id:-, speed:-]]},

Out = {[[time:+, id:-, speed:-]]},

Feedback.In = 	, Feedback.Out = ∅>}

SELECT2 = {<In = {[[time:+, id:-, speed:-]]},

Out = {[[time:+, id:-, speed:-]]},

Feedback.In = 	, Feedback.Out = ∅>}

IMPUTE = {<In = {[[time:+, id:-, speed:-]]},

Out = {[[time:+, id:-, speed:-]]},

Feedback.In = {[[time:+, id:-, speed:-]]},

Feedback.Out = ∅>}

PACE = {<In1 = {[[time:+, id:-, speed:-]]},

In2 = {[[time:+, id:-, speed:-]]},

Out = {[[time:+, id:-, speed:-]]},

Feedback.In = ∅,

Feedback.Out = [[time:+, id:-, speed:-]]>}

Figure 5.9: Contract offerings for the query in Figure 5.8.

128

one still performs it over a query tree. The match condition has more predicate

elements than the original equality condition, which only tested schemes on output

and input.

Algorithm 1 returns true if consistent accordances exist for a query plan where

operators have multiple offerings. The general intuition is to begin the search at

the top of the query plan, prune the offerings with each operator’s antecedent

(children) operators using Algorithm 2, recurse on each child, and reduce the set

of offerings again. This procedure preserves the spirit of a Full Reducers ap-

proach, by traversing the tree downward and reducing the number of candidate

tuples, shipping the results upward. The implementation of these procedures was

straightforward in C]. A reference implementation and examples are available at

http://www.cs.pdx.edu/~rfernand/dissertation.html.

The proposed approach to find consistent accordances over query trees could be

extended to include DAGs, albeit not without issues. DAGs can occur in queries

if we use operators such as DUPLICATE. While we could turn the DAG into a

tree, there could be an exponential blow up in the number of nodes in the tree,

potentially cancelling the savings experienced by using Full Reducers.

So far, I have discussed the intuition behind the thesis, introduced both the

feedback model and the contracts framework, and defined the associated notions

of correctness. The next two chapters of the thesis look at the implementation and

evaluation of the feedback framework, specifically assumed punctuation, in the

http://www.cs.pdx.edu/~rfernand/dissertation.html

129

Algorithm 1 Consistent Accordance and Reduction
1: procedure ConsistentAccordance(root) . Traverses the query plan and

returns true if consistent accordances exist.

2: Reduce(root);

3: return (root.Contracts! = ∅);

4: end procedure

5: procedure Reduce(node) . Reduces a node’s contract offerings.

6: for all c ∈ node.Children do

7: node.Contracts← Match(node.Contracts, c.Contracts);

8: Reduce(c);

9: node.Contracts← Match(node.Contracts, c.Contracts);

10: end for

11: if node.Parents! = ∅ then

12: for all p ∈ node.Children do

13: p.Contracts←Match(p.Contracts, n.Contracts);

14: end for

15: end if

16: end procedure

130

Algorithm 2 Scheme matching
1: procedure Match(a, b) . Returns the set of contracts in a that have

matches in s

2: result← ∅

3: for all c ∈ a.Contracts do

4: for all d ∈ s.Contracts do

5: if c.Out = d.In ∧ c.Feedback.In � d.Feedback.Out then

6: result← result
⋃
c

7: end if

8: end for

9: end for

10: return result

11: end procedure

131

NiagaraST DSMS. In Chapter 6 I discuss concepts and architecture of NiagaraST,

and detail the changes made to implement the feedback framework. Chapter 7

describes an experimental evaluation of these ideas.

132

Chapter 6

SYSTEM DESIGN AND ARCHITECTURE

NiagaraST is a stream-processing system in active development at Portland State

University1. The system is a derivative of the Niagara project at the Univer-

sity of Wisconsin–Madison and the Oregon Graduate Institute [47]. NiagaraST

specialized in punctuated data stream processing [62], advanced windowed-query

processing techniques [39, 40, 41], stream and archive queries [64], and out-of-order

stream processing [42]. The system is written in Java.

This research extends the NiagaraST system in two ways: First, it enables

the creation of operators to support assumed feedback punctuation, and second,

it enables operators to be instrumented to measure relevant statistics. In this

chapter, I describe the general architecture of NiagaraST, focusing on the features

that made it a good vehicle for the implementation of feedback (such as existing

support for punctuation processing). I also detail the changes that went into the

system, and describe design decisions around the feedback-punctuation mechanism.

1http://datalab.cs.pdx.edu/niagaraST/

http://datalab.cs.pdx.edu/niagaraST/

133

6.1 NIAGARAST SYSTEM PRIMER

The NiagaraST system is a derivative of the Niagara Internet Query System from

the University of Wisconsin–Madison [47]. The Niagara Internet Query System

set out to find XML files in the Internet relevant to an issued query, recognizing

that various sources may be unreliable, that different sources provide information

at varying rates, and that the stream of inputs has no a priori bound. Specifi-

cally, the system works on streams of tuples of XML structures. The architecture

accounted these difficulties, which are similar to the difficulties encountered in

stream processing. NiagaraCQ [18] set out to provide a more complete support for

continuous queries by leveraging a trigger system. NiagaraST evolved from these

architectures, and was specialized for stream processing. Architectural changes ad-

dressed stream-specific issues, such as punctuated data stream processing, window

operations, and various performance enhancements.

Queries are expressed in an XML-based query language called XML-QL. In

XML-QL, a query is written as a tree of operators. This specification includes

the source of the data stream and its internalization into the system. Let us

examine the query file in Figure 6.1, also represented as a tree in Figure 6.2. First,

notice how a stream is internalized from a text file data source. The FILESCAN

operator reads input from an XML file. This input is then unnested by a series

of instantiations of the UNNEST operator, which extracts an XML element and

expresses it as one of the supported types in NiagaraST. In this example, in order

134

to parse the selected stream, seven physical operators are instantiated. I bring this

overhead to the reader’s attention, as the current implementation of the NiagaraST

system suffers from parsing costs, in particular due to the number of operators

required to unnest XML data, and the cost of parsing XML. Nicola et al. report

on the negative effect of XML parsing in data processing systems [50]. For clarity,

an equivalent query in LINQ to XML is shown in Figure 6.1

The next part of the query plan in Figure 6.1 is a SELECT operator with a simple

predicate. Its input is the last node in the unnesting hierarchy, and its output is

consumed by the CONSTRUCT operator, which defines the output event elements.

There are logical and physical operators in NiagaraST. Logical operators de-

scribe, in general, what the operator does. A physical operator is a specific way of

achieving the computation intended by some logical operator. A query plan is a

tree built out of physical operators. Each operator runs in its own thread. There

is no explicit scheduler in NiagaraST, rather, the system relies on the OS thread

scheduler to switch control to the various active operators. An operator’s main

loop occurs in the run method of the thread. In general, all operators implement

the following main execution loop shown in Algorithm 3.

The query processing architecture in NiagaraST interconnects query operators

in two ways: via a data queue, where events and punctuations are placed, and via

a control channel, through which operational messages are sent. The data queue

is divided in pages. Each page contains a number of events and punctuations up

135

<?xml version="1.0"?>

<!DOCTYPE plan SYSTEM "queryplan.dtd">

<plan top="cons">

<filescan id ="data" isstream="yes"

delay="0" filename="C:\data.xml"/>

<unnest id="detectors" regexp="detectors"

datatype="XML" input="data"/>

<unnest id="time_t" regexp="time_t"

datatype="TS" input="detectors"/>

<unnest id="detector" regexp="detector"

root="$detectors" datatype="XML" input="time_t"/>

<unnest id="speed" regexp="speed"

root="$detector" datatype="Integer" input="detector"/>

<select id="se" input="speed">

<pred op="gt">

<var value="$speed" /><number value ="10" />

</pred></select>

<construct id="cons" input="se">

<![CDATA[<result> $detector_id $time_t</result>

]]> </construct></plan>

Figure 6.1: Simple SELECT query plan in XML-QL.

136

Figure 6.2: Detailed Representation of the XML query plan. For simplicity and

to focus on the algebraic operators, FILESCAN, UNNEST, and CONSTRUCT have been

shorthanded in all other query plans in this thesis.

var xml = XDocument.Load(@"C:\data.xml");

var query = from d in xml.Descendants("detector")

where (int)d.Element("speed") > 10

select new

{

time_t = (string)d.Parent.Element("time_t"),

detector_id = d.Element("detector_id")

};

Figure 6.3: Simple SELECT query plan in LINQ to XML.

137

Algorithm 3 OperatorRun method
1: procedure Run . Main execution loop of physical operators

2: Initialize; . Bindings, stream registration.

3: while sources are not closed do

4: t← getInput;

5: process(t); . Processing differs if input is a tuple or a punctuation.

6: cS ← getControlMessageFromSubsequentOperator;

7: processCtrl(cS);

8: cA← getControlMessageFromAntecedentOperator;

9: processCtrl(cA);

10: end while

11: end procedure

138

Figure 6.4: Inter-operator communication in the NiagaraST system. Operators

are interconnected by a data queue and a control channel. A data queue contains

a fixed number of pages. A page contains a maximum number of events and

punctuations. The control channel carries control messages such as “end of stream”.

to a fixed maximum. In NiagaraST, an event is the minimum data transfer unit

between operators, and punctuations are expressed as specializations of events.

Control messages in the NiagaraST system are inherited from the original Niagara

architecture. Control messages (such as “get partial” or “end of stream”) are used

to trigger special system functions, such as emitting partial aggregates or shutting

down a query. Events and punctuations flow unidirectionally from antecedent to

subsequent operator (i.e., “stream direction”), while the control messages channel

is bi-directional. For example, the “end of stream” control message always flows

downstream, while the “get partial” message always flows upstream. An illustration

of this architecture is shown in Figure 6.4.

139

As mentioned before, the control messages received are used to initiate system-

related activities, such as shutting down the operator and closing its output stream.

Shanmugasundaram et al. extended this basic functionality to also trigger produc-

tion of partial results in the context of querying data sources over the Internet [36].

Tufte et al. exploited this mechanism to make data requests to an operator that

performed adaptive queries over archived data [64].

6.2 INTER-OPERATOR COMMUNICATION

In an earlier class project, I looked at ways in which stream systems could support

Intelligent Transportation System needs. One such need is imputation of missing

or dubious values. I built an operator that leveraged archived data to provide on-

line estimates to impute replacements for missing values. It was here where I first

observed that such an operator was very expensive and delayed tuples considerably,

sometimes to the point where the output was not useful if such a system were to

support a live application. This is the scenario I described in Chapter 1. While

trying to improve that particular query, I decided to simply send a new type

of control message to the imputation operator, similar to the messages used for

the archival query by Tufte et al. [64]. I later decided to make the signal more

expressive, and refer to the timestamp of earliest interest to the query output. I

realized at this moment we could communicte richer messages if we thought of

them as types of punctuation.

140

I built an early prototype of the feedback machinery to demonstrate the ideas

presented in Fernández-Moctezuma et al. [24]. In that prototype, feedback punc-

tuations were a new type of message, with the control message string containing a

flattened text-representation of the feedback punctuation. For example, we would

send the string #5#*#*# to denote that events under a 3-attribute schema with a

value less or equal than 5 in the first attribute were not being processed by the

subsequent operator. With this simplification, we could demonstrate the benefit

of sending contextual information upstream in some scenarios.

Conceptually, I extended the NiagaraST architecture to support a new type of

contextual description that flows between operators. This revised architecture is

shown in Fig 6.5. My approach consists in sending an object, rather than a flat-

tened message, as feedback punctuation. This class does not specialize the Punc-

tuation class in NiagaraST, because it must support additional comparators. The

current implementation of punctuation in NiagaraST always checks for equality.

My use cases required support for comparators such as greater or equal. Creating

a new class and localizing these changes minimized the surface area and effect in

the rest of the code base. A class diagram is shown in Figure 6.6.

A second extension to NiagaraST required by the proposed research is extending

operators to summarize context and propagate it as feedback, as well as receiving

feedback and exploiting it. While discovery is heavily dependent on the operator’s

main function (as discussed in Chapter 3), the repertoire of actions to exploit

141

Figure 6.5: Feedback-augmented architecture. Operators are now able to send and

receive Feedback Punctuations.

FeedbackPunctuation
Comparator : enum
_comparators : ArrayList<Comparator>
_type : FeedbackType
_values : ArrayList<String>
_variables : ArrayList<String>
<<create>>FeedbackPunctuation()
<<create>>FeedbackPunctuation(FeedbackType,ArrayList<String>,ArrayList<Comparator>,ArrayList<String>)
comparatorRepresentation(Comparator) : String
Comparators() : ArrayList<Comparator>
compare(String, String) : Boolean
equals(FeedbackPunctuation) : Boolean
match(int[], Object[]) : Boolean
remove(int) : void
setName(int, String) : void
setValue(int, String) : void
toString() : void
Type() : FeedbackType
Values() : ArrayList<String>
Variables() : ArrayList<String>

<<enumeration>>

FeedbackType
ASSUMED
DEMANDED
DESIRED
_type : String
<<create>> FeedbackType(type : String)
Type() : String

Figure 6.6: Feedback Punctuation UML.

142

Figure 6.7: Feedback-compatible operators are capable of mounting guards (on in-

put or output) to implement feedback processing strategies. Additionally, stateful

operators can purge portions of their event-related state. Punctuation propagation

is unchanged.

feedback can be generalized. For example, one common piece of exploitation is the

mounting of guards. This revised operator model is illustrated in Figure 6.7.

Correct responses may entail mounting input or output guards to avoid out-

putting or processing events. In NiagaraST, events are objects of class Tuple.

While in some operators (such as SELECT) the guard could be set up by modify-

ing operator parameters, in others, such as WINDOW-AVERAGE, it must be mounted

separately from the operational mechanics. To encapsulate guard mounting and

processing, I created a “Guard” class, which can be instantiated by an operator

143

that needs this capability. This class encapsulates guard-related activity, such as

maintaining the current list of predicates and purging.

Feedback punctuations arrive as part of a control signal, which enabled main-

taining the original execution sequence of an operator (see Algorithm 3 in Section

6.1), by localizing changes in the process function.

In the NiagaraST codebase we use inheritance to avoid duplication of com-

monly used codepaths. For example, the WINDOWED-AVERAGE physical operator

derives from aggregate operators, which derive from grouping operators, which de-

rive in turn from the common operator base class. For this work, you will notice

how feedback responses are closely related to an operator’s specialized class, which

is where I implement them, but also some generic machinery (such as guard man-

agement), which is not as operator-specific as a response strategy, is implemented

higher in the hierarchy. In Figure 6.8 I illustrate the architectural implications of

guards and feedback processing localizations. The design choices try to minimize

overall system design changes, but still provide accessibility and extensibility to

the feedback machinery. The proposed design can be evaluated by observing the

ease with which alternative feedback-handling mechanisms can be implemented –

for example, the design allows multiple implementations of logical operators that

have different physical responses, a characteristic amicable to supporting different

contracts.

I have posited that there may be more than one correct response to assumed

144

niagara.utils

Guard
_guards : ArrayList<FeedbackPunctuation>
<<create>> Guard()
add(FeedbackPunctuation) : void
Copy() : Guard
elements() : ArrayList<FeedbackPunctuation>
remove(FeedbackPunctuation) : void

niagara.physical

PhysicalOperator PhysicalWindowGroup
_guard: Guard

PhysicalWindowAggregate

PhysicalWindowAverage
processFeedback() : void

PhysicalWindowCount
processFeedback() : void

Figure 6.8: Architectural implications of adding guard support. A new “Guard”

class is added to the niagara.utils package, and is used by various operators. Dis-

covery occurs in specialized classes (such as “PhysicalWindowAverage”), while gen-

eral guard management is localized higher in the hierarchy. Yellow-colored classes

are where feedback-related changes have been placed.

145

<select id="se" input="speed" exploit="yes" propagate="no">

<pred op="gt">

<var value="$speed" /><number value ="10" />

[...]

Figure 6.9: Simple SELECT operator in XML-QL illustrating configurability of feed-

back processing.

punctuation. To facilitate experimentation, I gave operators the ability to be pa-

rameterized with respect to feedback, primarily in two ways: whether exploitation

should occur or not, and whether propagation should occur or not. This parame-

ters are adjustable in the query plan, as exemplified in Figure 6.2. Notice the two

parameters, exploit and propagate. Keeping the two knobs separate is merely a

code-reuse convenience. In practice, some operators (such as an aggregate) should

not propagate without exploiting. In this example, SELECT would incorporate as-

sumed punctuation to its selection condition, and would not propagate feedback.

In summary, the design cost of adding support for feedback to NiagaraST en-

tailed: (1) adding feedback punctuation class and associated methods, (2) spe-

cializing how control signals are processed for cases where the signal is a feedback

punctuation, (3) adding a guard class that can be instantiated as input or output

guard by a feedback-enabled operator.

146

niagara.utils

Log
_log : Hashtable<String, String>
_operatorName : String
<<create>>Log(String)
Copy() : Log
ToString() : String
Update(String, String) : void

Figure 6.10: The Log class.

6.3 INSTRUMENTATION

To execute my evaluation strategy (see Chapter 7), I needed a reliable set of metrics

that would allow me to demonstrate several aspects of the proposed techniques.

Assessing memory usage accurately is tricky, since the Java VM’s garbage collector

is non-deterministic. I also needed a way to track when feedback was sent, and

how effective the guards were at pruning off work. I designed a simple extension

to the NiagaraST system to enable operator-lever logging.

First, the log structure is intended to be maintained in main memory, to min-

imize disk-access effects. Second, an operator’s individual log is only reported to

standard output during shutdown – this means operators do not constantly report

their log contents, nor can the contents of the logs be pulled during execution.

Third, the log is a very generic key-value-pair collection, meant to be extensible

and customizable depending on the operator I was studying. Last, logging can be

turned on or off on a per-operator basis. The class diagram for the log structure

is shown in Figure 6.10.

147

To illustrate the use of logging in the system, consider the SELECT operator

Suppose we are interested in tracking the number of tuples it reads in, the number

of tuples it produces, and how many tuples it drops. The API to manipulate the

log is fairly simple. The following code updates the value under the key "Tuple-

Drop" with a new string (in this case, the representation of the integer variable

tupleDrop):

log.Update("TupleDrop", String.valueOf(tupleDrop));

The operator “se” (an instance of select) in Figure 6.10 produces output similar

to the one shown in Figure 6.11 after the query shuts down. Having this logging

ability enabled me to collect relevant statistics for the performance evaluation.

In the next chapter, we will evaluate assumed feedback punctuation using Ni-

agaraST with the modifications and extensions described so far.

148

<PhysicalSelect(se)>

<record>

<key>TuplesIn</key>

<value>362</value>

</record>

<record>

<key>TupleDrop</key>

<value>65</value>

</record>

<record>

<key>TupleOut</key>

<value>297</value>

</record>

</PhysicalSelect(se)>

Figure 6.11: Sample log output.

149

<select id="se" input="occupancy" log="yes">

<pred op="gt">

<var value="$speed"></var><number value ="10"></number>

</pred>

Figure 6.12: Simple SELECT query plan in XML-QL showing logging. By simply

setting log="yes" the operator will print out an XML-formatted summary of its

logged contents.

150

Chapter 7

EXPERIMENTAL EVALUATION

In this chapter I present an experimental evaluation of the feedback framework as

implemented and tested in the NiagaraST DSMS. In particular, I have focused on

testing both the efficacy of the approach, the effect of system design, and its cost-

to-benefit ratio. I present and discuss this evaluation as a series of experiments

designed to answer the following questions:

1. What is the overhead associated with checking for and communicating feed-

back punctuations apart from any actions taken in response to feedback?

I think understanding this cost is of interest, especially since there will be

times when feedback does not alter data processing, for example, when no

events match feedback.

2. Does using assumed punctuations increase the utility of events in the output?

(Utility as defined by the client; examples include timeliness and relevance.)

One expected benefit of avoiding unnecessary work is to use those resources

to address work that is relevant. In doing so, it is possible that more events

in a query’s output are useful. This scenario is inspired by the discussion

151

from Section 1.2.

3. Does increased aggressiveness in feedback propagation translate into increased

performance? An aggressive propagation strategy involves propagating feed-

back as far upstream as possible. Since an operator can simply exploit feed-

back and not propagate it any further, it is interesting to examine scenarios

in which seeking to propagate as far upstream as possible positively effects

performance.

In addition, we wish to observe the effect of using and exploiting assumed

feedback punctuation in queries involving various operators from NiagaraST.

In the following sections I discuss the data sources, experiments, and observed

results. My experiments exercise NiagaraST with the following system parameters:

Java Virtual Machine Settings. The Java Virtual Machine is allotted 2048

Mb. of heap size. I chose this size since the host machine can fit that in

main memory and avoid paging.

Parser Pages. The SAXDOM parser in NiagaraST can request up to 50000 mem-

ory pages. I found this setting to be sufficient to parse the various input files.

Inter-operator Buffers. Operators in NiagaraST are connected by paged buffers.

The NiagaraST team’s experience with the system shows that 30 tuples per

page and 5 pages per buffer are reasonable parameters for the system in terms

152

of performance. Less buffering results in better latency between operators,

but is offset by process-switching overhead.

7.1 DATASETS

I created synthetic datasets inspired by the data archived in the Portland Oregon

Regional Transportation Archive Listing (PORTAL), which is a data archive of

traffic-sensor data from the Portland metropolitan area freeway system.1 The op-

erating scenario of this environment influenced my choice of scenarios and queries:

Each traffic sensor in the freeway reports the number of vehicles, average speed,

and percentage of time there was a vehicle present on top of the sensor at 20-second

intervals. There is one sensor per lane at a sensing station, and sensing stations

are spaced about 1 miles apart.

Probe vehicles are another common data source in traffic-analysis scenarios.

Probes can both provide insight into areas where sensor coverage is sparse and

validate sensor estimates. They also give higher-granularity profiles. I also created

data that simulates probe vehicles traveling through the freeway system. Probes

are common data sources in the transportation domain, where, for example, bus

data is used to get a sense of an arterial road’s performance.

This data is amenable for writing a series of representative streaming queries.

While there is still no consensus as to what the typical streaming query looks like,

1The archive, as well as various visualization applications, can be accessed at
http://portal.its.pdx.edu/

153

many queries over punctuated data streams have the following characteristics:

• They are expressed in windowed semantics.

• They leverage temporal operations, such as window-join.

• They involve a stored relation (persistent data).

7.1.1 Schemata and Examples

In general, I will consider two streams: the sensor stream and the probe stream,

plus the stored relation location. The schemata for these streams and relation

are given in Tables 7.1 - 7.3. The data received by the PORTAL project from the

Oregon DOT’s sensors is rounded to integers. The three quantities reported by

these sensors – volume, speed, and occupancy – are used to analyze traffic according

to the fundamental relationship of traffic flow theory: Flow is the product of density

and speed. Occupancy in this scenario serves as a surrogate for density. For an

overview and discussion of this fundamental relation, I encourage the reader to

review Chapter 7 in May [45]. Example tuples and punctuation from this schemata

are shown in Figures 7.1 – 7.3, in XML format for consumption by the NiagaraST

system.

7.1.2 Properties

I conducted the experiments described in this section over three datasets, each

corresponding to one of the aforementioned streams (probe, sensor, and location).

154

Attribute Type Description

sensor_id integer Sensor identifier.

timestamp timestamp Time of reading in ticks. 1 tick is one ten-millionth

of a second. Semantically, a tuple summarizes the

previous 20 seconds.

timestamp_text string Date and time of reading in English.

volume integer Number of vehicles detected by the sensor.

speed integer Average speed (in miles per hour) of vehicles de-

tected by the sensor.

occupancy integer Percentage of time a vehicle was on top of the

sensor.

Table 7.1: Schema for the sensor stream

Attribute Type Description

probe_id integer Probe vehicle identifier.

timestamp timestamp Time of reading in ticks. Semantically, a tuple

summarizes the previous 5 minutes.

timestamp_text string Date and time of reading in English.

freeway_id integer Freeway identifier.

milepost integer Freeway milepost.

speed integer Average speed (in miles per hour) of probe vehicle.

Table 7.2: Schema for the probe stream

155

Attribute Type Description

sensor_id integer Sensor identifier.

freeway_id integer Freeway identifier

milepost integer Freeway milepost where this sensor is placed.

Table 7.3: Schema for the locations relation

<?xml version="1.0" encoding="ISO-8859-1" ?>

<niagara:stream xmlns:niagara="http://datalab.cs.pdx.edu/niagaraST"

xmlns:punct="http://datalab.cs.pdx.edu/niagaraST/punct">

<sensor>

<timestamp>634018212000000000</timestamp>

<timestamp_text>

Monday, February 15, 2010 9:00:00 AM

</timestamp_text>

<sensor_id>1001</sensor_id>

<volume>20</volume>

<speed>50</speed>

<occupancy>50</occupancy>

</sensor>

</niagara:stream>

Figure 7.1: A tuple from the sensors stream.

156

<?xml version="1.0" encoding="ISO-8859-1" ?>

<niagara:stream xmlns:niagara="http://datalab.cs.pdx.edu/niagaraST/"

xmlns:punct="http://datalab.cs.pdx.edu/niagaraST/punct">

<punct:probe>

<timestamp>634018212000000000</timestamp>

<timestamp_text>*</timestamp_text>

<probe_id>1</probe_id>

<freeway_id>*</freeway_id>

<milepost>*</milepost>

<speed>*</speed>

</punct:probe>

</niagara:stream>

Figure 7.2: A punctuation from the probes stream.

157

<?xml version="1.0" encoding="ISO-8859-1" ?>

<niagara:stream xmlns:niagara="http://datalab.cs.pdx.edu/niagaraST"

xmlns:punct="http://datalab.cs.pdx.edu/niagaraST/punct">

<location>

<freeway_id>1</freeway_id>

<sensor_id>2002</sensor_id>

<milepost>102</milepost>

</location>

</niagara:stream>

Figure 7.3: A tuple from the location relation.

The location file contains 150 tuples, representing 5 freeways. Each freeway

has 10 sensor stations, and each station has 3 sensors. This dataset’s size is 15

KB.

The probe dataset contains 14,400 tuples and 14,400 punctuations, with a tuple

reporting a probe’s data appearing every five minutes. The dataset covers a 24

hour period. This dataset’s size is ˜5 MB.

The sensor dataset contains 648,000 tuples and 1,440 punctuations. It covers a

24 hour simulation period, with punctuation appearing every minute, and a tuple

representing a sensor’s data every 20 seconds. This dataset’s size is ˜140 MB.

158

7.2 EXPERIMENTAL SETUP

I conducted all experiments on a desktop computer equipped with an Intel Core 2

Duo CPU (E8600 @ 3.33 GHz) and 4 GB of RAM. The operating system, Windows

Server 2008 R2 Standard, is 64-bit capable.

NiagaraST is written in Java. I exercised bytecode compiled using Oracle’s

Java SE version 6, Update 20. The runtime provided with this version is 64-bit.

All data was consumed from files in a local disk. The FILESCAN operator

in NiagaraST consumes XML data files and internalizes tuples into the system.

Having static datafiles consumed at the maximum rate minimizes network effects

and contributes to easier set ups for experiment reproducibility. Note part of the

processing cost in NiagaraST comes from parsing XML, therefore, there is a fixed

cost to internalizing every tuple. Nicola et al. reported on the negative effects of

parsing XML and overall system degradation performance [50]. In the case of my

experiments, feedback does not propagate through the query tree to prevent this

parsing, in order to concentrate on the effect of avoiding tuple-processing work.

When evaluating result correctness, query output is output to disk via cap-

ture of standard console output. This activity dominates in-memory processing,

therefore, unless otherwise noticed, performance metrics are reported on queries

that emit results to main memory but not to disk. When timing queries, the clock

starts once the query is issued to the server, and is stopped once the EOS (end of

stream) signal is processed by the last operator.

159

I claim that CPU usage and execution time are intimately related. If we run

a program at the maximum rate FILESCAN can deliver, we expect to be CPU-

bound. Hence, if a program executes in 10 seconds, and an optimized version of

the program executes in 8 seconds, were the input stream actually arrive over 40

seconds, we would expect to see 35% CPU usage in the first case and 20% usage

in the second case. I propose to measure the total execution time of a query as a

representative of the CPU usage it incurred in.

I claim that memory allocation in the context of query execution is directly

related to the number of tuples that are processed by the query, hence, a query

that avoids allocating a tuple utilizes less memory. Counting tuples processed

per operator does not account for state, but we know there is a relation between

tuples input to an operator, tuples output, and state sizes. For this purpose, I

instrumented operators to keep internal counters for these quantities, as a surrogate

for memory utilization.

Collecting both CPU-usage estimates and memory-usage estimates allows us

to test our resource utilization hypothesis in the following experiments.

7.3 ASSESSMENT OF FEEDBACK OVERHEAD (QUESTION 1)

I introduced two changes into NiagaraST to incorporate feedback support (as de-

scribed in Chapter 6). First, I changed the main execution loop of the base class

from which operators derive. This change causes an operator to check the control

160

queue for feedback messages on each iteration of the loop. Second, when a feed-

back message is sent upstream, the system performs work to encode and enqueue

the message.

We expect to see some overhead in the system due to the steps added to an

operator’s lifetime. We also expect more work to be performed when sending feed-

back. The intuition, however, is that these two changes add negligible overhead,

that is, perceivable differences will be at the level of run-to-run variance. Sources

of run-to-run variation in NiagaraST include garbage collection and scheduling

choices made by the Java VM.

To test this hypothesis, I use two sets of experiments: the first set to test the

behavior of the system before and after the implementation of feedback support,

and the second set to test the overhead introduced by actually producing feedback.

7.3.1 Experimental Suite #1

Consider the query plans shown in Figure 7.4. These query plans exercise a repre-

sentative set of operators from the NiagaraST algebra: BUCKET, JOIN, MAX, SELECT,

and UNION. Each query plan was executed in two different version of NiagaraST:

NiagaraST-Prime, compiled against sources before I introduced any support for

feedback, and NiagaraST, compiled after the introduced changes.

161

(a)

(b)

(c)

Figure 7.4: Experimental Suite #1: Three query plans used to test the overhead

of feedback-awareness changes to the operator base class’ execution loop in Nia-

garaST.

162

Prime µ Prime σ NiagaraST µ NiagaraST σ Diff. % increase

Query (a) 9.26 1.04 9.43 0.86 0.17 1.8%

Query (b) 6.18 0.43 6.43 0.63 0.25 4%

Query (c) 11.76 0.54 11.92 0.42 0.16 1.4%

Table 7.4: Experimental Suite #1 results. Prime is the system before feedback

was introduced. NiagaraST is the system with the feedback machinery in place.

Table contains the mean execution time (µ) in seconds, and the standard deviation

(σ), across 20 runs. Also included is the absolute and percentage increase in mean

execution time.

Results

The execution times and variances reported confirm the expected result: overhead

on the order of run-to-run variance. For example, look at the mean execution times

for Query (a). The difference is 0.17 seconds (a 1.8% increase). Notice in all cases

the run-time difference is within run-to-run variance.

We note that while modifying the system, we addressed some minor imple-

mentation defects. One defect caused Prime to stop processing input data when

the End-Of-Stream (EOS) signal arrives at an operator, regardless of whether the

operator’s input queues were full. This defect caused early termination of process-

ing, potentially neglecting small percentages of work remaining. The semantics of

EOS in NiagaraST are modified to account for all work, that is, the EOS signal

is not propagated until the input buffers are empty. The minutia of this defect

163

<instrument id="instrument" input="select1"

interval="1"

log="no"

propagate="yes"

fattrs="timestamp sensor_id"/>

Figure 7.5: An instance of the instrument operator.

is not interesting, but the effects contribute to the small increase in work rof the

feedback-enabled version, which is why I disclose this detail.

7.3.2 Experimental Suite #2

In the rest of the thesis, I will be using an operator to send feedback into a query

tree. The INSTRUMENT operator has simple semantics: It sends a feedback punc-

tuation after receiving n tuples, and then starts counting again. Operationally,

I control which attributes it punctuates on, which values are used, and other ac-

tivities such as logging memory usage. In Figure 7.5 I show how to express it

in XML-QL. Notice that just like any other operator in the tree, it has a unique

identity. The feedback periodicity is controled by the interval attribute, and the

attributes to send feedback on are specified in the fattrs attribute.

To evaluate the effect of feedback, consider the query in 7.6 (a). In this query,

the operator INSTRUMENT, parameterized as shown in Figure 7.5, issues a feedback

164

(a)

(b)

Figure 7.6: Experimental Suite #2: Testing overhead of feedback communication

in NiagaraST. (a) A simple query plan with the INSTRUMENT operator. (b) An

extended query plan with more inner operators.

punctuation after having consumed 1 event. I use the value 1 to maximize feedback

volume for this experiment. The SELECT operator is feedback-aware, but does not

exploit it. A way to compare whether messages flowing have an effect larger than

run-to-run variance in execution time, we can execute two instances of this query

plan: one in which INSTRUMENT sends feedback punctuation and one where it does

not. Moreover, we can run a series of queries with more than one SELECT operator

in the chain. For each configuration (as shown in Figure 7.6 (b)), one run will

have both INSTRUMENT and the inner SELECT operators propagating the feedback

punctuation but not exploiting the feedback.

I ran experiments with query plans using 1, 5, 10, and 15 distinct SELECT

operators. For each plan, I executed two versions: one with feedback propagation

165

Off µ On µ Off σ On σ Diff.

1 5.77 5.76 0.16 0.11 -0.01

5 6.29 6.30 0.10 0.12 0.01

10 7.18 7.21 0.10 0.10 0.03

15 7.94 7.97 0.11 0.16 0.03

Table 7.5: Experimental Suite #2 results. Each row represents how many SELECT

operators are instantiated in the executed query plan. Off and On indicate whether

propagation was turned off or on, respectively. The Diff. column reports the

difference in mean execution times. Execution time is in seconds.

turned on and one with feedback propagation turned off. An example query plan

with two SELECT operators and propagation turned on is shown in Figure 7.7.

In Table 7.5 I report mean execution time and variance over 20 runs over the

large sensors dataset for each configuration. The experimental results confirm our

hypothesis: the overhead in execution time is within run-to-run variance. Notice

in this set of experiments, as opposed to Experimental Suite #1, we ran on the

same codebase, therefore there are no effects of defect fixes.

7.4 EFFECT OF ASSUMED FEEDBACK IN OUTPUT UTILITY

(QUESTION 2)

In Section 1.2, I gave a brief overview of some of the early work that motivated

this thesis. The original work was motivated by the speedmap example I have

166

<?xml version="1.0"?>

<!DOCTYPE plan SYSTEM "queryplan.dtd">

<plan top="cons">

<!-- unnests ending in node occupancy -->

<select id="select1" input="occupancy" propagate="no">

<pred op="gt"><var value="$volume"/><string value="-1"/></pred>

</select>

<select id="select2" input="select1" propagate="yes">

<pred op="gt"><var value="$volume"/><string value="-1"/></pred>

</select>

<instrument id="instrument" input="select2" interval="1" log="no"

propagate="yes" fattrs="timestamp sensor_id"/>

<construct id="cons" input="instrument">

<!-- rest of construct with full sensor schema -->

</plan>

Figure 7.7: Sample query plan instance from Experimental Suite #2.

167

used to motivate the discussion in this thesis, which we documented in Fernández-

Moctezuma et al. [24]. In this section I revisit the problem space and reevaluate an

equivalent workflow with the feedback machinery as implemented in NiagaraST.

I previously discussed a notion of the utility of an event in the output of a

continuous query in the context of the speedmap example from Chapter 1. One

of the observations we made for that workflow was that expensive processing over

some events lead to output in which some events were “too late to be of use for

updating a speedmap. Let us adopt the following definition of utility for this

example:

Utility. An event e in the output of a query is useful if its timestamp ts is

within an application-specific period λ of the timestamp high watermark observed

in the output at the time e is observed.

In the motivating example, relative disorder was induced by a very expensive

disk-accessing operator in one of two branches. In order to avoid tuples that are not

useful, I introduced a binary operator called PACE, which enforces a simple notion

of utility: either an event is useful or it is not. PACE is a type of conditional union,

in which an event e is output only if its timestamp is within λ of the highest-

watermark timestamp seen by the operator. The operator is parameterized by

stating its inputs, the name of the progressing attribute, and the maximum disorder

threshold λ. As the inputs to PACE progress, the operator checks and updates the

high watermark accordingly. Note that the semantics of PACE are not sensitive to

168

which input is lagging behind.

By having PACE simply discard late work, we only avoid having events with no

utility in the output. My hypothesis is that by propagating feedback that com-

municates the current timestamp of tuples being dropped by PACE, an antecedent

operator can exploit this information to avoid useless work and catch up with

relevant events. The following experiments seek to evaluate this hypothesis in

practice.

7.4.1 Experimental Suite #3

Consider the three query plans shown in Figure 7.8. In these plans, we route

an event to the expensive operator if its speed value is −1, and route it directly

downstream otherwise. The EXPENSIVE operator is meant to represent the behavior

of an imputation process for missing values that might, for example, need to consult

archived data, or perform a statistical computation, as we reported previously [24].

I executed these three query plans with a modified version of the sensors

dataset described in Table 7.1.1. While the schemata is the same, the file has

only 324,000 tuples, simulates 12 hours of execution, has 5 freeways, 3 sensors per

milepost, and 10 mileposts per freeway. In addition, every other event in it has a

speed value of −1.

The EXPENSIVE operator is parameterized by an integer, which simply sets the

upper limit of an internal for-loop. When an event enters the operator, it is placed

169

Figure 7.8: Experimental Suite #3. Plan (a) uses UNION to produce the final

output. Plan (b) uses PACE to enforce the utility restriction. Plan (c) has PACE

sending feedback to EXPENSIVE, with the latter exploiting it to resume work on

potentially more useful events.

170

in an array of pending work in arrival order. The operator performs the expensive

loop for each element in the array. Once the expensive work finishes, the event

is output, and the operation repeats. When a feedback punctuation is received,

the list of pending work is pruned of events covered by the assumed punctuation.

EXPENSIVE does not mount guards, and does not propagate this feedback farther

upstream.

7.4.2 Results discussion

Plan (a) establishes the baseline for comparison. The EXPENSIVE operator receives

and outputs exactly 162,000 events, in addition to 720 punctuations. The UNION

operator receives 324,000 events over both of its inputs, 1440 punctuations over

both of its inputs, and emits 162,000 events and 720 punctuations. It should be

noted that in these runs I wrote the output of the queries to disk in order to

measure utility.

An execution of Plan (b) illustrates the effect of having PACE set up to uphold a

maximum threshold of 5 minutes of tolerance for late events. Here, PACE dropped

160,171 events, emitting only 163,829 events, essentially losing almost all of the

events that came from the EXPENSIVE branch.

For single runs, I calculated the utility on the output of Plan (a) by tagging

events whose timestamp was beyond five minutes of a rolling-high watermark as

not useful. In Plan (a), only 50.5% of the tuples meet the utility criterion. In Plan

171

(b), 100% of them met the utility criterion.

Executing Plan (c) shows an encouraging increase in the number of useful tuples

output. EXPENSIVE only outputs 30,931 tuples, and PACE only drops 17,712 of

those, for a total number of tuples output of 175,219. In this extreme case with

50% of the events requiring an expensive intervention, the query is able to output

an additional 13,219 useful events, in which all of them meet the utility criterion.

These experiments have focused solely on the utility of tuples in the output, and

validate the hypothesis that by propagating feedback upstream and acting on it, a

query’s output utility improves. Utility itself is a query-dependent notion. In these

experiments, I had a scenario-driven definition of utility and an operator to enforce

the utility function. For other queries, the utility function can be much simpler.

For example, an event in the output is not useful if it matches feedback sent to the

query directly. I do not think such a generic utility function is interesting to explore

in extenso. In the following sections, I will introduce queries with feedback-enabled

versions of the Niagara operators, and focus not on a semantic notion of utility, but

on measuring processing-time and memory reductions achieved by using feedback.

7.5 EFFECT OF PROPAGATION AGGRESSIVENESS IN QUERY

OUTPUT UTILITY (QUESTION 3)

While evaluating Experimental Suite #3, one can observe that propagating feed-

back farther upstream proved beneficial when the goal was to make the query

172

produce more useful output. I have stated another hypothesis, in which I expect

work avoided to have a direct effect in resource utilization, and I expect the ef-

fect to increase as feedback is acted on and propagated farther upstream a query

plan. To test this hypothesis, I propose the following experimental suite, in which

I gradually change how far upstream feedback is propagated. I call this change

aggressiveness, in which propagation is most aggressive when it is propagated as

far upstream as possible.

7.5.1 Experimental Suite #4

Consider the query plan shown in Figure 7.9 (a). In it, the output of a temporal join

of two streams with the same schema and data (sensor data) is window-averaged

on the speed attribute. The instrument operator sends an assumed punctuation as

soon as it is scheduled indicating tuples with a WID less than 100 are not desired in

the output. If feedback is both acted on and propagated upstream, I expect to see

the number of tuples worked on reduced as the level of feedback increases, from

(b), in which the average operator exploits locally, to (d), in which the feedback

reaches the join and is exploited there.

To test this hypothesis, I used the logging infrastructure I added to NiagaraST

to simply account for the number of tuples that enter and leave an operator. I

am using event count as a surrogate for memory utilization, in particular when

a stateful operator adds an event to its state or when inter-operator output is

173

Operator Events output (a) Events output (b) Events output (c) Events output (d)

Join 648,000 648,000 648,000 603,019

Bucket 648,000 648,000 603,010 603,012

Average 1,440 1,340 1,340 1,340

Table 7.6: Experimental Suite #4 results. Events output for plans (a) - (d) for

operators considered in the backpropagation. Counts for single representative runs.

materialized.

7.5.2 Results discussion

In Table 7.6, I summarize the change in event out count for the JOIN operator and

the subsequent BUCKET and AVERAGE operators.

The effect of exploiting feedback in total events output by join and bucket

on the query is not changed from (a) to (b), although there is a small change in

the events output by average. For the run profiled here, we see a 44,900 event

reduction in the output of bucket when the feedback is propagated in (c). The

output of the query at this point does not change, but the cost of delivering this

output in terms of resource utilization, i.e. the number of tuples materialized for

output by bucket, is perceivable. A fourth run propagating feedback all the way

down to the join shows savings of 44,981 events in the join, which means bucket

processes fewer tuples on its input. Since join is also guarding its output, we see a

reduction of 44,988 events in its output when compared to the baseline (a). There

174

Figure 7.9: Self-join and average with varying levels of feedback propagation. The

query in (a) without feedback, progressing until (d) with the farthest upstream

operators receiving and exploiting feedback.

175

is run-to-run variance on the number of tuples saved, due to scheduling changes

and when the feedback is received.

In these experiments, we have confirmed our hypothesis that propagating feed-

back farther upstream leads to observable decreases in resource utilization. In the

next Section, I will take a look at the effect of aggressive propagation of feedback

in a few queries.

7.6 EFFECT OF ASSUMED FEEDBACK IN RESOURCE UTILIZA-

TION

At this point, I have shown that the overhead of sending feedback messages seems

to be within run-to-run noise, and that feedback can have perceivable advantages

in improving a query’s output utility and also avoiding work the farther upstream

it is propagated and acted upon. Motivated by these observations, I want to show

how feedback affects resource utilization in queries when it both describes a large

number of tuples in flight and is enacted as early (and as far upstream) as possible.

7.6.1 Experimental Suite #5

I used the INSTRUMENT operator to send feedback that covers most tuples in the

stream. In each query, I propagate and exploit the feedback as far upstream as

possible. The goal is to observe dramatic reductions both in the number of tuples

sent by each operator and the overall execution time, as we hypothesize large

176

Figure 7.10: Two filters and a union. The query in (a) without feedback, the query

in (b) with feedback.

numbers of tuples avoided equate large savings in resource consumption. I test for

each query with and without feedback to compare.

I tried three queries that exercise operators in NiagaraST that I have modified

to support feedback processing and exploitation. Queries are shown in Figures

7.10, 7.11, and 7.12. The first query has two streams with identical schema and

data being united after a selection predicate is applied to each. The second query

is a window max over a sensor and location join. The third query joins windowed

averages from the sensor and probe streams.

177

Figure 7.11: Windowed max. The query in (a) without feedback, the query in (b)

with feedback.

178

Figure 7.12: Join of windowed-averages. The query in (a) without feedback, the

query in (b) with feedback.

179

Operator Events output (a) Events output (b)

Select (occupancy) 514,421 287

Select (speed) 505,481 0

Union 1,019,902 150

Table 7.7: Experimental Suite #5, Query 1 results. Baseline counts in column (a),

feedback-enabled counts in column(b).

7.6.2 Results discussion

Over 20 runs, Query 1 executed on average in 12.22 seconds, with a standard

deviation of 0.18, as a baseline. When maximally exploiting the very restrictive

feedback, average execution time went down to 9.66 seconds and a standard devi-

ation of 0.16. Table 7.7 shows the extensive reduction in inter-operator event flow

and final output. Recall that in NiagaraST we pay a high cost of parsing XML

input, which is probably where most of the time is being spent in these runs. Still,

on this simple workload, we can see a clear effect of exploiting feedback.

I observed similar results in Query 2, which had an average execution time of

7.34 seconds and a standard deviation of 0.23, going down to an average execution

time of 5.54 seconds and a standard deviation of 0.25. These dramatic reductions

accompany the observations of a profile run in which I count operator output,

shown in Table 7.8.

180

Operator Baseline count (a) Feedback-enabled count (b)

Join 648,000 464

Bucket 648,000 457

Average 72,000 7

Table 7.8: Experimental Suite #5, Query 2 results. Baseline count of events output

in column (a), feedback-enabled count of events output in column (b).

Operator Baseline count (a) Feedback-enabled count (b)

Bucket (sensor) 648,000 1,800

Average (sensor) 1,440 3

Bucket (probe) 14,400 20

Average (probe) 1,445 2

Join 1,440 2

Table 7.9: Experimental Suite #5, Query 3 results. Baseline count of events output

in column (a), feedback-enabled count of events output in column (b).

Last, Query 3 shows results consistent with the other two, where average ex-

ecution time drops from 7.19 seconds to 6.31 seconds (with standard deviations

of 0.13 and 0.22, respectively) over 20 runs. Dramatic savings in state reduction

as well, as operators produce very few events in the output due to receiving very

restrictive feedback very early in query processing, as shown in Table 7.9.

In this Chapter I have both observed the feasibility of implementing feedback

support as designed and discussed in Chapter 6. The set of NiagaraST operators

181

I modified are representative of the NiagaraST algebra. One of the main concerns

I had in the design was not to negatively effect the system so that feedback mes-

saging and handling would eventually dominate any substantial gains. The second

intention was to validate the intuition that shedding work in the system, even when

only accounting for processing and not transmission outside of the query, leads to

observable resource conservation.

The use of feedback is likely to deliver the biggest gains when it is acted upon

the earliest and there is a maximum range of tuples effected. I discuss these

observations and offer other final remarks in Chapter 8.

182

Chapter 8

CONCLUSIONS AND OPPORTUNITIES FOR FUTURE WORK

In this thesis, I have introduced two tools that address several challenges in Stream

Processing: The Feedback Framework, which consists in synthesizing downstream

context as a data description and intent for upstream operators to exploit, and

The Contracts Framework, a methodology to characterize queries and streams to

perform static analysis of its probable runtime characteristics. In this thesis, I

have formalized both frameworks, discussed and evaluated an implementation of

the Feedback Framework in NiagaraST, and provided a reference implementation

of the algorithms detailed in the consistent-accordance phase of the Contracts

Framework.1 In this chapter, I will look at what I learned from this work and

speculate on possible future directions and applications.

A key insight for me was to interpret traditional punctuation (as defined by

Tucker [62]) as a mechanism to communicate upstream context. In a sense, an

operator receiving a punctuation as input knows that antecedent operators (if

any) have finished processing the stream up to a certain point. A punctuation has

an implicit action suggested that goes along the context it is communicating: It is

1See http://web.cecs.pdx.edu/~rfernand/dissertation.html

http://web.cecs.pdx.edu/~rfernand/dissertation.html

183

safe for the receiving operator to clear up internal state covered by the punctuation

and stimulate output production. This interpretation holds for punctuation in

general in NiagaraST, and for CTIs (a temporal-only, monotonically increasing

punctuation) in CEDR [27] and StreamInsight [46].

The way NiagaraST has exploited this contextual information is to act immedi-

ately upon punctuation arrival. I argue that the time of action on the punctuation

need not be immediate: For example, consider the following input to the SUM op-

erator, which is grouping by wid over the schema s(gid,value):

<1,2>

<1,3>

[≤1,*]

<2,1>

<2,2>

[≤2,*]

Operationally, a physical implementation of the SUM operator could act on

each input element upon arrival. The first tuple in the above sequence causes a

new partial aggregate group to be created and updates its current sum (2). The

second tuple updates that partial aggregate. The third tuple causes a sweep of the

internal state, identifies groups covered, outputs and cleanses. Processing continues

184

in this manner. This description is reasonable if we are willing to perform more

than one sweep of the internal state per scheduled time of the operator. Another

reasonable implementation would minimize this action by remembering the last

seen punctuation and acting on it when the scheduler signals it is time to surrender

control. In this example, assuming the SUM operator is scheduled long enough to

process the example input, it would sweep and clean its internal state only once.

I want to bring attention to two points here: (1) Immediate action on a punctu-

ation may not necessarily be the most efficient processing choice, and (2) operator

scheduling may influence the choice of when to act on a punctuation. The exam-

ple above works only if we know that any non-final punctuation is covered by a

later punctuation, e.g., SUM is operating on an contract with an input scheme of

[[gid:+,value:-]]. I think affecting what an operator does when scheduled is a

potential application of the Contracts Framework, in which these type of guaran-

tees can unlock processing optimizations.

Another optimization opportunity that the Contracts Framework offers is find-

ing a physical query plan for which a consistent accordance exists. Consider the

following streams:

• r(a,b), with punctuation scheme [[a:-, b:+]]

• s(b,c,d), with punctuation scheme [b:+, c:-, d:-]

• t(c,d), with punctuation scheme [c:+,d:-]

185

Now consider the query r ./ s ./ t. There are two ways to group the joins

in order to construct a query plan that computes the result: (r ./ s) ./ t and

r ./ (s ./ t).2 Unlike scenarios in DBMSs, where the choice of physical join and

known statistics would assist in choosing an optimal query plan, but either one

is correct, in a DSMS one of these two equivalent query plans does not execute

succesfully as it is unable to free its state. In the first option, the r ./ s join

cleanses state because the attribute named in the join condition is punctuated on

both sides, and enables it to offer the punctuation scheme [[a:-,b:+,c:-]] in

the output part of its contract. This punctuation scheme enables cleansing state in

the (r ./ s) ./ t plan (from the t input), and the contract of t cleanses state on the

(r ./ s) input. It so happens that the cleanse works because we have full coverage

of all b and c values. The alternate plan, r ./ (s ./ t), does not work. The s ./ t

join can only offer [[b:+,c:+,d:-]] or [[b:-,c:-,d:-]] in its output contract,

neither of which enable cleansing state from the r side of the r ./ (s ./ t). I suspect

there are similar cases when a query parser needs to consider alternate physical

query plans, where not all of them have a consistent accordance. Identifying a

feasible reordering in a query plan can be yet another application of the Contracts

Framework to query optimization.

A third application of the Contracts Framework that may be an interesting op-

portunity for future work is in providing guidance as to how input streams may be

2Notice that (r ./ t) ./ s would not work since r and t have no attributes in common

186

punctuated. The treatment of the framework I presented in Chapter 5 was driven

from the point of view of streams coming in with defined punctuation schemes,

and having a menu of physical operators with various available contracts proven

to be correct for each operator. Turn the problem around, and say we compute

the consistent accordances leaving the input schemes open – thus providing an

answer to the question: “which punctuation schemes are adequate for this physical

query?” While in practice one is more likely to query data streams with known,

fixed properties, it is not unreasonable to believe one may be designing the punctu-

ation scheme of several streams in order to guarantee successful execution of plans

of interest.

Incorporating information about punctuation periods to the Contracts Frame-

work strikes me as an interesting fourth opportunity for future work, specifically

when it comes to capacity planning. I think it is possible to estimate bounds on

resource usage for a given operator, as a function of event type. This bound can

be used to statically compute how many resources a given query would hold for

a given punctuation period – say we punctuate on time every 5 seconds, and we

know we see at most 1,000 tuples for that range. If we can annotate a punctuation

scheme not only with the information about which attributes are punctuated, but

also how often, it may be possible to establish resource utilization and latency

bounds. This type of analysis could prove useful and help determine whether a

continuous computation can be hosted with the existing resources. Potentially, one

187

could even simulate changes and find inflection points when horizontal scale-out

may need to be considered. I am optimistic that this type of analysis can be done

statically instead of experimentally.

In Chapter 3 I already hinted at various uses of the feedback framework be-

yond avoiding work, which was the application I studied in this thesis. The two

intentions for the downstream context I have hinted at are priorization and pro-

duction of partial results. I think the power of expressing a subset of interest and

describing the intended action on said subset is generic enough and may enable

uses beyond the ones I described. However, the two areas I described deserve

some study. Bhat [11] introduced the concept of prodding a continuous query to

enable the production of partial results. His prodding occurs from the input side,

but could theoretically be triggered from the output side and communicated as

inter-operator feedback. The scenarios where prodding would prove interesting

will probably come from time-sensitive speculation, such as a quick reaction to

a market event that requires a best-estimate performance indicator to trigger a

market alert. Interestingly, streaming technology excels in that domain, but going

further down the latency chain to speculate faster than the processing of the query

may be advantageous.

Priorization may find a niche use in distributed monitoring, where dynamic

shifts in subsets of interest ma be discovered during execution. One scenario that

comes to mind is focusing on freeway segments that are exhibiting behavior likely

188

to lead to congestion, as this detection may enable a quicker reaction time to alter

ramp metering (or dynamic speed limit adjustment) strategies and delay congestion

formation as long as possible. This priorization would assume willingness to delay

free-flowing segment analysis, but without avoiding processing those segments.

The work realized by recommendation engines, such as the collaborative-filtering

work described by Amazon.com [43], tends to contain a continuous-event process-

ing workload. These type of systems are now running in near-real time on top of

distributed systems, which often requires coordination amongst nodes. Twitter’s

STORM3 itself is already designed for distributed scale-out. One scenario that

I can imagine useful in this type of systems is minimizing the amount of inter-

mediate state processing from one node to the next when the runtime-analysis

catches a new feature set. For example, imagine the task of harvesting all URLs

containing the current set of top-ten twitter words. As soon as the top-ten set

changes (which could be computed by another query), one would probably like to

adjust the ongoing computation without restarting it or even restating it. I can

imagine sending a form of demanded computation to trigger the updated harvest

and a form of assumed computation that stops the harvesting that is no longer

interesting. I think this idea of sending description and intent to an in-progress

continuous computation can prove very advantageous in distributed systems with

stringent latency requirements.

3https://github.com/nathanmarz/storm/wiki

https://github.com/nathanmarz/storm/wiki

189

In the specific case of assumed punctuation, I think there is still room for

more work. One thing I observed while executing workloads for the experimental

evaluation in Chapter 7 is that the amount of savings in a query are clearly linked

to when the feedback is received and how much of the remaining work is avoided.

I think it is also possible for feedback punctuations to have no visible effect in

stream processing, since they may describe events that are not present in the

stream. To me, this suggests there is room for optimization on when (and if)

assumed punctuation is sent.

There seems to be a range of effectiveness for any given assumed punctuation.

For a fixed number of avoidable events N in a stream, an assumed punctuation is

maximally effective if it is received and exploited by an antecedent operator before

work on thoseN events has started. An assumed punctuation is minimally effective

if it is received and exploited after those N events have been processed. To me, this

range suggests a series of interesting observations one could conduct on a feedback-

aware system and a well-characterized workload. While I have presented how to

implement such a system, and observed some of the runtime characteristics of these

concepts put in practice, I have not conducted a study for a continuous workload

in order to optimize feedback messaging. I think some of my observations, such as

the effect of processing feedback as far upstream as possible, in combination with

this notion of a range of effectiveness, can probably motivate follow-up work that

characterizes strategies for determining an optimal feedback strategy for a given

190

query and workload.

NiagaraST has a very malleable architecture that proved to be a great testbed

for me to implement feedback. Other systems may very well make different design

choices, for example, operators may be fused with no inter-operator queue in or-

der to minimize inter-operator communication costs, or to enable operator block

scheduling in different cores (similar to the techniques described in the Aurora

system [9], or the operator fusion techniques in System S [25]). I think it would

be interesting to validate some of my observations in stream systems with very

different architectures. The premise of this line of work could generalize some of

the observations I make for inter-operator communication to inter-processing unit

communication optimization. It is possible that the feedback framework may also

lead to interesting savings in distributed systems as well.

I hope the two main contributions of my dissertation, the concept of exploiting

downstream context via inter-operator feedback, and the Contracts Framework,

find a home in stream system designs. I remain most curious about applications of

these techniques I have not foreseen (such as the feedback signals used by Chan-

dramouli et al. when merging streams [16]), and hope to read about them in the

near future.

191

REFERENCES

[1] Daniel J. Abadi, Yanif Ahmad, Magdalena Balazinska, Uǧur Çetintemel,

Mitch Cherniack, Jeong-Hyon Hwang, Wolfgang Lindner, Anurag Maskey,

Alex Rasin, Esther Ryvkina, Nesime Tatbul, Ying Xing, and Stanley B.

Zdonik. The Design of the Borealis Stream Processing Engine. In Proc.

of the 2nd Biennial Conference on Innovative Data Systems Research (CIDR

’05), pages 277–289, 2005.

[2] Daniel J. Abadi, Don Carney, Ugur Çetintemel, Mitch Cherniack, Chris-

tian Convey, Sangdon Lee, Michael Stonebraker, Nesime Tatbul, and Stan

Zdonik. Aurora: A New Model and Architecture for Data Stream Man-

agement. The VLDB Journal: The International Journal on Very Large

Databases, 12(2):120–139, 2003.

[3] A. Arasu, B. Babcock, S. Babu, J. Cieslewicz, M. Datar, K. Ito, R Mot-

wani, U. Srivastava, and J. Widom. STREAM: The Stanford Data Stream

Management System. Technical Report 2004-20, Stanford InfoLab, 2004.

[4] Arvind Arasu, Shivnath Babu, and Jennifer Widom. The CQL Continuous

Query Language: Semantic Foundations and Query Execution. The VLDB

192

Journal: The International Journal on Very Large Databases, 15(2):121–142,

2006.

[5] Ron Avnur and Joseph M. Hellerstein. Eddies: Continuously Adaptive Query

Processing. In Proc. of the 2000 ACM SIGMOD International Conference on

Management of Data (SIGMOD ’00), pages 261–272, 2000.

[6] Brian Babcock, Shivnath Babu, Mayur Datar, and Rajeev Motwani. Chain:

Operator Scheduling for Memory Minimization in Data Stream Systems. In

Proc. of the 2003 ACM SIGMOD International Conference on Management

of Data (SIGMOD ’03), pages 253–264, 2003.

[7] Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev Motwani, and Jennifer

Widom. Models and Issues in Data Stream Systems. In Proc. of the 21st ACM

SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems

(PODS ’02), pages 1–16, 2002.

[8] Shivnath Babu and Jennifer Widom. StreaMon: An Adaptive Engine for

Stream Query Processing. In Proc. of the 2004 ACM SIGMOD International

Conference on Management of Data (SIGMOD ’04), pages 931–932, 2004.

[9] Hari Balakrishnan, Magdalena Balazinska, Don Carney, Uǧur Çetintemel,

Mitch Cherniack, Christian Convey, Eddie Galvez, Jon Salz, Michael Stone-

braker, Nesime Tatbul, Richard Tibbetts, and Stan Zdonik. Retrospective

193

on Aurora. The VLDB Journal: The International Journal on Very Large

Databases, 13(4):370–383, 2004.

[10] Philip A. Bernstein and Dah-Ming W. Chiu. Using Semi-Joins to Solve Rela-

tional Queries. J. ACM, 28(1):25–40, 1981.

[11] Amit Bhat. Low-Latency Estimates for Window-Aggregate Queries over Data

Streams. Master’s thesis, Portland State University, 2011.

[12] Alain Biem, Eric Bouillet, Hanhua Feng, Anand Ranganathan, Anton Ri-

abov, Olivier Verscheure, Haris N. Koutsopoulos, and Carlos Moran. IBM

InfoSphere Streams for Scalable, Real-Time, Intelligent Transportation Ser-

vices. In Proc. of the 2010 ACM SIGMOD International Conference on Man-

agement of Data (SIGMOD ’10), pages 1093–1104. ACM, 2010.

[13] Barbara Carminati, Elena Ferrari, and Kian Lee Tan. Enforcing Access Con-

trol over Data Streams. In Proc. of the 12th ACM Symposium on Access

Control Models and Technologies (SACMAT ’07), pages 21–30, New York,

NY, USA, 2007. ACM.

[14] Don Carney, Uǧur Çetintemel, Mitch Cherniack, Christian Convey, Sangdon

Lee, Greg Seidman, Michael Stonebraker, Nesime Tatbul, and Stan Zdonik.

Monitoring Streams: A New Class of Data Management Applications. In

Proc. of the 28th International Conference on Very Large Data Bases (VLDB

’02), pages 215–226, 2002.

194

[15] Don Carney, Uǧur Çetintemel, Alex Rasin, Stan Zdonik, Mitch Cherniack,

and Mike Stonebraker. Operator Scheduling in a Data Stream Manager. In

Proc. of the 29th International Conference on Very Large Data Bases (VLDB

’03), pages 838–849, 2003.

[16] Badrish Chandramouli, David Maier, and Jonathan Goldstein. Physically

Independent Stream Merging. In Proc. of the 28th IEEE International Con-

ference on Data Engineering (ICDE ’12). IEEE, 2012.

[17] Sirish Chandrasekaran, Owen Cooper, Amol Deshpande, Michael J. Franklin,

Joseph M. Hellerstein, Wei Hong, Sailesh Krishnamurthy, Samuel Madden,

Vijayshankar Raman, Frederick Reiss, and Mehul A. Shah. TelegraphCQ:

Continuous Dataflow Processing for an Uncertain World. In Proc. of the 1st

Biennial Conference on Innovative Data Systems Research (CIDR ’03), 2003.

[18] Jianjun Chen, David J. DeWitt, Feng Tian, and Yuan Wang. NiagaraCQ:

A Scalable Continuous Query System for Internet Databases. In Proc. of

the 2000 ACM SIGMOD International Conference on Management of Data

(SIGMOD ’00), pages 379–390, New York, NY, USA, 2000. ACM.

[19] Corinna Cortes, Kathleen Fisher, Daryl Pregibon, Anne Rogers, and Frederick

Smith. Hancock: A Language for Analyzing Transactional Data Streams.

ACM Transactions on Programming Languages and Systems, 26(2):301–338,

2004.

195

[20] Chuck Cranor, Theodore Johnson, Oliver Spataschek, and Vladislav

Shkapenyuk. Gigascope: A Stream Database for Network Applications. In

Proc. of the 2003 ACM SIGMOD International Conference on Management

of Data (SIGMOD ’03), pages 647–651, 2003.

[21] Umeshwar Dayal, Barbara Blaustein, Alejandro Buchmann, Upen

Chakravarthy, Meichun Hsu, R Ledin, Denis McCarthy, Arnon Rosenthal,

Sunil Sarin, Michael John Carey, Miron Livny, and Rajiv Jauhari. The HiPAC

Project: Combining Active Databases and Timing Constraints. ACM SIG-

MOD Record, 17:51–70, March 1988.

[22] Rafael J. Fernández-Moctezuma, David Maier, and Kristin A. Tufte. Towards

Execution Guarantees for Stream Queries. In Proc. of the 3rd International

Workshop on Scalable Stream Processing Systems (SSPS ’10), 2010.

[23] Rafael J. Fernández-Moctezuma, James F. Terwilliger, Lois M. L. Delcambre,

and David Maier. Toward Formal Semantics for Data and Schema Evolution in

Data Stream Management Systems. In Proc. of the 1st International Work-

shop on Evolving Theories of Conceptual Modeling (ETheCom ’09), pages

85–94, 2009.

[24] Rafael J. Fernández-Moctezuma, Kristin Tufte, and Jin Li. Inter-Operator

Feedback in Data Stream Management Systems via Punctuation. In Proc.

196

of the 4th Biennial Conference on Innovative Data Systems Research (CIDR

’09), 2009.

[25] Buǧra Gedik, Henrique Andrade, and Kun-Lung Wu. A Code Generation Ap-

proach to Optimizing High-Performance Distributed Data Stream Processing.

In Proc. of the 18th International Conference on Information and Knowledge

Management (CIKM ’09), pages 847–856. ACM, 2009.

[26] Lukasz Golab and M. Tamer Özsu. Issues in Data Stream Management. ACM

SIGMOD Record, 32(2):5–14, June 2003.

[27] Jonathan Goldstein, Mingsheng Hong, Mohamed Ali, and Roger Barga. Con-

sistency Sensitive Operators in CEDR. Technical Report MSR-TR-2007-158,

Microsoft Research, 2007.

[28] Moustafa A. Hammad, Michael J. Franklin, Walid G. Aref, and Ahmed K.

Elmagarmid. Scheduling for Shared Window Joins over Data Streams. In

Proc. of the 29th International Conference on Very Large Data Bases (VLDB

’03), pages 297–308, 2003.

[29] Moustaffa Hammad, Walid G. Aref, Michael J. Franklin, Mohamed Mokbel,

and Ahmed K. Elmagarmid. Efficient Execution of Sliding Window Queries

over Data Streams. Technical Report CSD TR 03-035, Purdue University,

2003.

197

[30] Jeong-Hyon Hwang, Sanghoon Cha, Uǧur Çetintemel, and Stan Zdonik.

Borealis-R: A Replication-Transparent Stream Processing System for Wide-

Area Monitoring Applications. In Proc. of the 2008 ACM SIGMOD Interna-

tional Conference on Management of Data (SIGMOD ’08), pages 1303–1306,

New York, NY, USA, 2008. ACM.

[31] IBM. InfoSphere Streams. http://www-01.ibm.com/software/data/

infosphere/streams/, 2011. [Online; accessed 5-June-2011].

[32] Zachary G. Ives and Nicholas E. Taylor. Sideways Information Passing for

Push-Style Query Processing. In Proc. of the 24th IEEE International Con-

ference on Data Engineering (ICDE ’08), pages 774–783, 2008.

[33] Theodore Johnson, S. Muthukrishnan, Vladislav Shkapenyuk, and Oliver

Spatscheck. A Heartbeat Mechanism and its Application in Gigascope. In

Proc. of the 31st International Conference on Very Large Data Bases (VLDB

’05), pages 1079–1088, 2005.

[34] Jürgen Krämer. Continuous Queries over Data Streams - Semantics and

Implementation. PhD thesis, University of Marburg, 2007.

[35] Jürgen Krämer and Bernhard Seeger. Semantics and Implementation of Con-

tinuous Sliding Window Queries over Data Streams. ACM Transactions on

Database Systems, 34:4:1–4:49, April 2009.

http://www-01.ibm.com/software/data/infosphere/streams/
http://www-01.ibm.com/software/data/infosphere/streams/

198

[36] Jayavel Shanmugasundaram Kristin, Kristin Tufte, David Dewitt, Jeffrey

Naughton, and David Maier. Architecting a Network Query Engine for Pro-

ducing Partial Results. In Proc. of the 3rd International Workshop on the

Web and Databases (WebDB ’00), pages 17–20, 2000.

[37] Hua-Gang Li, Songting Chen, Junichi Tatemura, Divyakant Agrawal,

K. Selçuk Candan, and Wang-Pin Hsiung. Safety Guarantee of Continuous

Join Queries over Punctuated Data Streams. In Proc. of the 32nd Interna-

tional Conference on Very Large Data Bases (VLDB ’06), pages 19–30, 2006.

[38] Jin Li. Window Queries over Data Streams. PhD thesis, Portland State

University, 2008.

[39] Jin Li, David Maier, Kristin Tufte, Vassilis Papadimos, and Peter A. Tucker.

No Pane, No Gain: Efficient Evaluation of Sliding-Window Aggregates over

Data Streams. ACM SIGMOD Record, 34(1):39–44, March 2005.

[40] Jin Li, David Maier, Kristin Tufte, Vassilis Papadimos, and Peter A.

Tucker. Semantics and Evaluation Techniques for Window Aggregates in Data

Streams. In Proc. of the 2005 ACM SIGMOD International Conference on

Management of Data (SIGMOD ’05), pages 311–322, 2005.

[41] Jin Li, Kristin Tufte, David Maier, and Vassilis Papadimos. AdaptWID:

An Adaptive, Memory-Efficient Window Aggregation Implementation. IEEE

Internet Computing, 12(6):22–29, 2008.

199

[42] Jin Li, Kristin Tufte, Vladislav Shkapenyuk, Vassilis Papadimos, Theodore

Johnson, and David Maier. Out-of-Order Processing: a New Architecture for

High-Performance Stream Systems. Proc. VLDB Endow., 1(1):274–288, 2008.

[43] Gregory D. Linden, Jennifer A. Jacobi, and Eric A. Benson. Collabo-

rative Recommendations Using Item-to-Item Similarity Mappings. USPTO

#6,266,649, 2001.

[44] David Maier. The Theory of Relational Databases. Computer Science Press,

Inc., 1983.

[45] Adolf D. May. Traffic Flow Fundamentals. Prentice Hall, 1990.

[46] Microsoft Corp. Microsoft StreamInsight. http://www.

microsoft.com/sqlserver/en/us/solutions-technologies/

mission-critical-operations/complex-event-processing.aspx, 2011.

[Online; accessed 15-February-2011].

[47] Jeffrey Naughton, David Dewitt, David Maier, Ashraf Aboulnaga, Jianjun

Chen, Leonidas Galanis, Jaewoo Kang, Rajasekar Krishnamurthy, Qiong Luo,

Naveen Prakash, Ravishankar Ramamurthy, Jayavel Shanmugasundaram,

Feng Tian, Kristin Tufte, and Stratis Viglas. The Niagara Internet Query

System. IEEE Data Engineering Bulletin, 24:27–33, 2001.

[48] Rimma V. Nemme, Karen E. Works, and Elke A. Rundensteiner. Query Mesh:

http://www.microsoft.com/sqlserver/en/us/solutions-technologies/mission-critical-operations/complex-event-processing.aspx
http://www.microsoft.com/sqlserver/en/us/solutions-technologies/mission-critical-operations/complex-event-processing.aspx
http://www.microsoft.com/sqlserver/en/us/solutions-technologies/mission-critical-operations/complex-event-processing.aspx

200

Multi-Route Query Processing Technology. In Proc. of the 35th International

Conference on Very Large Data Bases (VLDB ’09), pages 1530–1533, 2009.

[49] Stan Zdonik Nesime Tatbul. Window-aware Load Shedding for Aggregation

Queries over Data Streams. In Proc. of the 32nd International Conference

on Very Large Data Bases (VLDB ’06), pages 799–810. VLDB Endowment,

2006.

[50] Matthias Nicola and Jasmi John. XML Parsing: A Threat to Database Per-

formance. In Proc. of the 12th International Conference on Information and

Knowledge Management (CIKM ’03), pages 175–178, 2003.

[51] Oracle Corporation. Oracle CEP. http://www.oracle.com/technetwork/

middleware/complex-event-processing/overview/index.html, 2011.

[Online; accessed 2-May-2011].

[52] V. Raghavan, E. Rundensteiner, J. Woycheese, and A. Mukherji. FireStream:

Sensor Stream Processing for Monitoring Fire Spread. In Proc. of the 23rd

IEEE International Conference on Data Engineering (ICDE ’07), pages 1507–

1508, 2007.

[53] Ulf Schreier, Hamid Pirahesh, Rakesh Agrawal, and C. Mohan. Alert: An

Architecture for Transforming a Passive DBMS into an Active DBMS. In

Proc. of the 17th International Conference on Very Large Data Bases (VLDB

’91), pages 469–478. VLDB Endowment, 1991.

http://www.oracle.com/technetwork/middleware/complex-event-processing/overview/index.html
http://www.oracle.com/technetwork/middleware/complex-event-processing/overview/index.html

201

[54] Utkarsh Srivastava and Jennifer Widom. Flexible Time Management in Data

Stream Systems. In Proc. of the 23st ACM SIGMOD-SIGACT-SIGART Sym-

posium on Principles of Database Systems (PODS ’04), pages 263–274, New

York, NY, USA, 2004. ACM.

[55] StreamBase Systems Inc. StreamBase. http://streambase.com/, 2011. [On-

line; accessed 15-February-2011].

[56] Nesime Tatbul, Uğur Çetintemel, Stan Zdonik, Mitch Cherniack, and Michael

Stonebraker. Load Shedding in a Data Stream Manager. In Proc. of the 29th

International Conference on Very Large Data Bases (VLDB ’03), pages 309–

320, 2003.

[57] James F. Terwilliger, Rafael Fernández-Moctezuma, Lois M. L. Delcambre,

and David Maier. Support for Schema Evolution in Data Stream Management

Systems. Journal of Universal Computer Science, 16(20):3073–3101, 2010.

[58] Truviso Inc. TruViso. http://www.truviso.com/, 2010. [Online; accessed

15-February-2011].

[59] Yi-Cheng Tu, Song Liu, Sunil Prabhakar, and Bin Yao. Load Shedding in

Stream Databases: A Control-Based Approach. In Proc. of the 32nd Inter-

national Conference on Very Large Data Bases (VLDB ’06), pages 787–798.

VLDB Endowment, 2006.

http://streambase.com/
http://www.truviso.com/

202

[60] Yi-Cheng Tu and Sunil Prabhakar. Control-Based Load Shedding in Data

Stream Management Systems. In Proc. of the 22nd IEEE International Con-

ference on Data Engineering Workshops (ICDEW ’06), pages 144–148. IEEE

Computer Society, 2006.

[61] P.A. Tucker, D. Maier, T. Sheard, and P. Stephens. Using Punctuation

Schemes to Characterize Strategies for Querying over Data Streams. IEEE

Transactions on Knowledge and Data Engineering, 19(9):1227–1240, Sept.

2007.

[62] Peter A. Tucker. Punctuated Data Streams. PhD thesis, OGI School of Science

& Engineering at OHSU, 2005.

[63] Peter A. Tucker, David Maier, Tim Sheard, and Leonidas Fegaras. Exploiting

Punctuation Semantics in Continuous Data Streams. IEEE Transactions on

Knowledge and Data Engineering, 15(3):555–568, 2003.

[64] Kristin Tufte, Jin Li, David Maier, Vassilis Papadimos, Robert L. Bertini,

and James Rucker. Travel Time Estimation Using NiagaraST and Latte. In

Proc. of the 2007 ACM SIGMOD International Conference on Management

of Data (SIGMOD ’07), pages 1091–1093, 2007.

[65] J. Widom and S. Finkelstein. Set-Oriented Production Rules in Relational

Database Systems. In Proc. of the 1990 ACM SIGMOD International Con-

ference on Management of Data (SIGMOD ’90), 1990.

203

[66] Karen Works and Elke A. Rundensteiner. The Proactive Promotion Engine. In

Proc. of the 29th International Conference on Very Large Data Bases (VLDB

’03), pages 838–849, 2003.

	A Data-Descriptive Feedback Framework for Data Stream Management Systems
	Let us know how access to this document benefits you.
	Recommended Citation

	Abstract
	Dedication
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Definitions
	Improving Stream Processing with More Context
	Accounting for Feedback-Related State
	Contributions
	Organization

	Background and Literature Review
	Exploiting Contextual Information
	Runtime Adaptation
	Adaptation of operators and plans
	Feedback mechanisms

	Query Property Declaration and Derivation Prior to Execution
	Multi-Facet Operator Design

	Feedback Model
	Types and Sources of Feedback
	Types of Feedback Punctuations
	Sources and Applications of Feedback

	Range of Operator Responses to Feedback
	Correct Exploitation
	Safe Issuance

	Operator Characterization
	Characterization Strategy
	Operator Characterization
	Guards
	SELECT
	PROJECT
	UNION
	JOIN
	BUCKET
	AGGREGATES

	Remarks

	Execution Guarantees
	Motivating Example
	Reasoning About Unbounded Streams
	Execution Guarantees
	Punctuation Templates and Schemes
	Punctuation Contracts

	Contracts for Stream Operators
	SELECT
	PROJECT
	JOIN
	WINDOW
	COUNT

	Full-Query Analysis
	Extending the Contract Framework to Support Feedback
	Revised Guarantees
	Extended Syntax of Punctuation Schemes
	Extended Contract Representation
	Consistent Accordances with Feedback

	Finding Consistent Accordances

	System Design and Architecture
	NiagaraST System Primer
	Inter-Operator Communication
	Instrumentation

	Experimental Evaluation
	Datasets
	Schemata and Examples
	Properties

	Experimental Setup
	Assessment of Feedback Overhead (Question 1)
	Experimental Suite #1
	Experimental Suite #2

	Effect of Assumed Feedback in Output Utility (Question 2)
	Experimental Suite #3
	Results discussion

	Effect of Propagation Aggressiveness in Query Output Utility (Question 3)
	Experimental Suite #4
	Results discussion

	Effect of Assumed Feedback in Resource Utilization
	Experimental Suite #5
	Results discussion

	Conclusions and Opportunities for Future Work
	References

