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Damage spreading in spatial and small-world random Boolean networks 

Qiming LUI ," and ChristofTeuschei',t 
1 Scientific Computing Division, Fermi National Accelerator Laboratory, Batavia, Illinois 60510-5011, USA 

'Department of Electrical and Computer Engineering IECE), Portland State University, P.O. Box 751, Portland, Oregon 97207-0751, USA 
(Received 23 September 2013; published 18 February 2014) 

The study of the response of complex dynamical social, biological, or technological networks to external 
perturbations has numerous applications. Random Boolean networks (RBNs) are commonly used as a simple 
generic model for certain dynamics of complex systems. Traditionally, RBNs are interconnected randomly 
and without considering any spatial extension and arrangement of the links and nodes. However, most real­
world networks are spatially extended and arranged with regular, power-law, small-world, or other nonrandom 
connections. Here we explore the RBN network topology between extreme local connections, random small­
world, and pure randoronetworks, and study the damage spreading with small perturbations. We find that spatially 
local connections change the scaling of the Hamming distance at very low connectivities (K « 1) and that the 
critical connectivity of stability K, changes compared to random networks. At higher it., this scaling remains 
uocbanged. We also show that the Hannning distance of spatially local networks scales with a power law as the 
system size N increases, but with a different exponent for local and small-world networks. The scaling arguments 
for small-world networks are obtained with respect to the system sizes aod strength of spatially local connections. 
We further investigate the wiring cost of the networks. From an eogineering perspective, our new findings provide 
the key design trade-offs betweeo damage spreading (robostoess), the network's wiring cost, and the network's 
communication characteristics. 

DOl: lO.l103IPhysRevE.89.022806 

L INTRODUCTION 

The robustness against failures, the wiring cost, and the 
communication characteristics are key measures of most 
complex, finite-size real-world networks. For example, the 
electrical power grid needs to be robust against a variety of 
failures, minimize the wiring cost, and minimize the transmis­
sion losses. Similarly, the neural circuitry in the human brain 
requires efficient signal transmission and robustness against 
damage while being constrained in volume. 

In this article, we use random Boolean networks (RBNs) 
as a simple model to study the (1) robustness, i.e., the damage 
spreading, (2) the wiring cost, and (3) the communication 
characteristics as a function of different network topologies 
(local, small-world, random), different connectivities K, and 
different network sizes N. More generally speaking, this 
allows us to answer the question of Iww much and what 
type of interconnectivity a complex network-in our case 
RBNs---needs in order to satisfy given restrictions on the 
robustness against certain types of failure, the (wiring) cost, 
and the (communication) efficiency. The work presented here 
extends previous work by Rohlf et al. [II to new network 
topologies, which are more biologically plausible, such as 
small-world topologies [21. 

RBNs were originally introduced by Kauffman as simpli­
fied models of gene regulation networks [3,41. In its simplest 
form, an RBN is a discrete dynamical system, also called an 
N K network (or model), composed of N automata (or nodes), 
each of which receives inputs from K (either exact or average) 
randomly chosen other automata. Each automaton is a Boolean 
variable with two possible states {O,l}, and the dynamics is 

"qlu@fnal.gov 
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such that 

(1) 

where F = (fI, ... ,f;, ... ,IN), and each f; is represented by 
a look-up table of K, inputs randomly chosen from the set of 
N automata. Initially, K, neighbors and a look-up table are 
assigned to each automaton at random. 

f; : {O,I}K, ~ {O,l}. (2) 

An automaton state "/ E {O,l} is updated using its correspond­
ing Boolean function: 

(3) 

We randomly initialize the states of the automata (initial con­
dition of the RBN). The automata are updated synchronously 
using their corresponding Boolean functions. 

,,1+1 = F(,,'). (4) 

In the thermodynamic limit, RBNs exhibit a dynamical 
order-disorder transition at a sparse critical connectivity Kc 
[51. For a finite system size N, the dynamics ofRBNs converge 
to periodic attractors after a finite number of updates. At Kc. 
the phase space structure in terms of attractor periods [61, 
the number of different attractors [71, and the distribution of 
basins of attraction [81 are complex, showing many properties 
reminiscent of biological networks [41. 

The study of the response of complex dynamical networks 
to external perturbations, also referred to as damage, has 
numerous applications, e.g., the spreading of disease through 
a population [9,101, the spreading of a computer virus on 
the intemet [111, failure propagation in power grids [121, 
the perturbation of gene expression patterns in a cell due to 
mutations [131, or the intermittent stationary state in economic 
decision networks triggered by the mutation of strategy from 
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a few individual agents [14]. Mean-field approaches, e.g., 
the annealed approximation (AA) introduced by Derrida and 
Pomeau [5], allow for an aualytical treatment of damage 
spreading and exact determination of the critical connectivity 
K, under various constraints [15,16]. However, these approx­
imations rely on the assumption that N --> 00, which, for an 
application to real-world problems, is often an irrelevant limit. 
A number of studies [17,18] have recently focused on the 
finite-size scaling of (un)frozen andlor relevant nodes in RBN 
with respect to N with the goal to go beyond the annealed 
approximation. Evolved small-world and scale-free networks 
were investigated for the density and the synchronization task 
with regard to performance and robustuess in [19]. Their work 
solely focuses on these two tasks and does not consider scaling 
arguments. Only a few studies, however, consider finite-size 
scaling of damage spreading in RBNs [1,13,20]. Of particular 
interest is the "sparse percolation (SP) limit" [20], where the 
initial perturbation size d(O) does not scale up with the network 
size N, i.e., the relative size of perturbations tends to zero for 
large N. Rohlf et al. [I] have identified a new characteristic 
connectivity K, for RBNs, at which the average number of 
damaged nodes d, after a large number of dynamical updates, 
is independent of N. This limit is particularly relevant to 
information and damage propagation in many technological 
and natural networks. The work in this article extends these 
new findings and systematically studies damage spreading 
in RBNs as a function of new network topologies, namely, 
local and small-world, different connectivities X, and different 
network sizes N. 

II. DAMAGE SPREADING 

For our purpose, we measure the expected damage d as 
the Hamming distance between two different initial system 
configurations after a large number of system updates T. The 
randomly chosen initial conditions differ by one bit, i.e., the 
damage size is 1. As introduced in [I], let N be a randomly 
sampled set (ensemble) of ZN networks with average degree 
X, I" a set of z, random initial conditions tested on network 
n, and T,. a set of z, random initial conditions differing in one 
randomly chosen bit from these initial conditions. Then we 
have 

dieT), (5) 

where dieT) is the measured Hamming distance after T 
system updates. Rohlf et al. [I] have shown that there exists a 
characteristic connectivity K" at which the average number of 
damaged nodes d, after a large number of dynamical updates, 
is independent of N. 

In a given network, the nodes can be classified according to 
their response to the network dynamics (e.g., see [17,18]). This 
classification allows one to better explain the global network 
behavior with respect to external perturbations. 

A set of nodes is said to be part of the frozen component 
(or frozen core) if each node's output is constant regardless 
of its inputs. The states of these nodes remain constant on 
every attractor, so that extemal perturbations cannot spread 
into the frozen component. The frozen core therefore does 
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not contribute to the spreading of the damage. The irrelevant 
nodes (or irrelevant component) are the nodes whose outputs 
may change, but their outputs are only connected to either 
frozen or other irrelevant nodes. Again, these nodes do not 
participate in the damage spreading. The remaining set of 
nodes is the relevant nodes (or relevant component). Their state 
changes and each relevant node is connected to at least another 
relevant node. As their name suggests, the relevant nodes are 
the crucial ones, which determine the number and the period 
of attractors in a given network. For our purpose, studying 
the scaling behavior of the Hamming distance is important for 
the study of damage spreading because the Hamming distance 
between the damaged and the undamaged network can be 
viewed as a quantitative measure of the distance between the 
two different attractors the networks settle in. 

In this article, we use three exemplary types of network 
topologies: (1) random, (2) spatially local, and (3) small world. 
In the following we will describe the models we used to 
create each of these network topologies and what the relevant 
parameters are. For more details see the text in the next 
three sections (II A- II C). Note that in all of these network 
topologies, the links are directed, seif-Ioops are allowed, and 
multiple links between the same pair of nodes are excluded. 

a. Random topology. Each of the N nodes has a uniform 
probability to be connected to any other node in the network. 
The average connectivity is X. This topology corresponds to 
the original N K model proposed by Kauffman [3]. 

b. Spatially local topology. N nodes are uniformly and 
randoruly distributed in a unit d-dimensional spatial area 
(nonperiodical). Each node randomly connects to its nearest 
neighbors (including itself) until the designated X is reached. 
This network topology can be classified as a spatial graph. In 
the limit of small X (X « N), such a d-dimensional, spatially 
local network has an average path length of ~ Nl/d [21], which 
is similar to a d-dimensional regular lattice [22]. 

c. Small-world topology. Starting from two-dimensional 
(W) spatially local networks as described above, we apply 
a rewiring method to obtain a small-world network topology. 
The source of every existing link will be rewired with 
probability p to a randomly chosen node in the network. Thus, 
when p --> 0, we obtain the original spatially local network, 
while for p --> 1 we obtain a random graph as described above. 

A. RBNs with a random network topology 

Rohlf et al. [I] have systematically investigated damage 
spreading, i.e., the evolution of the Hamming distance dR, of 
random Boolean networks at the SP limit By using finite-size 
scaling, they fonnd a new characteristic connectivity Ks = 
1.875 at which the damage spreading is independent of the 
system size N. 

In the limit of a small average degree X --> 0, the initial 
perturbation persists ouly when the damage hits nodes that 
are in loops of length two or that have self-connections. For a 
random network topology, the probability of generating such 
loops scales with l\oop ~ 1/ N 2, where N is the system size. 
Thus, the Hamming distance is proportional to the number of 
simpleloops,dR ~ 1\.oopXN ~ N-I • For large X,therelevant 
component grows comparable with the system size, so the 
initial damage now percolates through the entire network, and 
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FIG. 1. (Color online) The Hamming distance iI as a functinn of 
the system size N for (a) random networks, (b) networks with spatially 
local connections, and (c) small-world networks, for different it. it 
takes the valnes 2.6, 2.2, 2.0, 1.8, 1.5, and 1.0, from top to bottom. 
The data for the random networks cnofums the data as first presented 
in [I]. Averaged over 10 000 randomly generated networks and 100 
random initial configurations for each value of it. T = 1000 system 
updates, initial damage size d(O) = 1. 

we have ilR ~ N. For arbitrary it, the Hamming distance ilR 
scales as follows [1]: 

(6) 

where YR --> -1 at it --> 0 and YR --> 1 at large it. At 
criticality (Le., K = 2), the asymptotic dynamics are deter­
mined entirely by the relevant component, which scales as 
n, ~ N'/3 [171, thus YR(Ke ) "" 1/3. As already seen above, 
at it = K, = 1.875 we have YR(K,) = 0, and the Hamming 
distance il is independent of the system size N [11. This means 
that at the "critical connectivity of stability" K" the dantage 
caused by initial perturbations is confined at a finite level (i.e., 
the proportion of damage goes to zero as N --> (0), regardless 
of the system size N. 

Figure 1 shows the power-law dependence of the Hamming 
distance il as a function of the system size N for multiple K 
and for our three types of random network classes. YR as a 
function of the average degree K is shown in Fig. 2. 

B. RBNs with spatially local connections 

Many real-world networks are spatially extended and have 
a more structured interconnect topology than pure random 
networks have. Such networks are commonly called complex 
networks. Spatial networks with local connections only, such 
as regular grids, have a large average path length (I ~ N'/d) 
and are highly clustered. In this section, we look at the 

1.0 

0.5 

-0.5 
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FIG. 2. (Color online) Scaling exponents y(K) as afunctinn of it 
for random networks (open squares), networks with local connections 
(open triangles), and small-world networks (open circles). This figure 
is obtained from the best fit of the data of Fig. I using Eqs. (6), (7), 
and (10). The data for the random networks cnofums the data as first 
presented in [I]. 

dynamics of spatial RBNs with local connections only. The 
underlying network structure is constructed based on the model 
of uniform spatial graphs [211, in which vertices may connect 
uniformly at random to other vertices within a spatial distance 
Ie in Rd. We do this as follows: N nodes are randomly 
distributed in a d-dimensional space (only d = 2 will be 
cnnsidered here); we then randomly pick a pair of nodes 
u,v and create edge (u, v) if the spatial distance is within the 
cut-off distance Ie, disallowing repeated edges. This procedure 
is repeated until the required average degree K is reached. For 
a small cutoff distance, or any finite cutoff when N --> 00, e.g., 
Ie ~ 0(1), the characteristic path length remains similar to that 
of d-dimensional regular lattices [211. Establishing links as a 
functinn of the distance, was also considered by [23,241. 

For very large K, the system is in the chaotic regime and 
any initial damage quickly percolates through the network. 
Thus, the dantage is only bounded by the system size N, 
which gives us ilL ~ N'. In the limit of K ~ 0, nonzero 
dantage can emerge only when the initial perturbation hits 
a short loop of oscillating nodes. Let us assume we have a 
single connection from node A to node B (A --> B). In order 
to fiuish a simple loop between A and B, we need to first 
select node B as the starting point, which has a probability 
of about ~ liN. The probability to pick A as a neighboting 
node from B to close the loop is ~ I/nB, where nB is the 
possible number of B's local neighbors. For a purely local 
network, n B « N. In a network of extreme local connections, 
the probability of forming simple oscillating loops scales with 
l'Ioop ~ I/(nBN) ~ N-'. The number of such loops scales 
with ~ l\oopK N ~ const, and is thus independent of the system 
size N. We expect to see coinciding Hamming distances at low 
K for different system sizes N on extremely local networks. 
This remains valid until the network reaches the percolation 
threshold where segregated simple loops become connected 
and a giant cluster emerges. Furthermore, compared to random 
networks, the local connections lowered the probability of 
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forming the relevant component at criticality because each 
relevant node needs to be controlled by another relevant node. 
We thus expect that the damage increases slower compared to 
random networks. In particular, the exponent is smaller than 
1/3 at K, because)' = 1/3 at K, for random networks [1]. 

Figure 1(b) shows the Hamming distance as a function of 
the system size N for different connectivities it. AIl one can 
see, for small K, the damage remains constant as N increases, 
whereas for large it (above the percolation limit) the damage 
spreading increases with the system size N according to a 
power law. We therefore have 

(7) 

where )'L --> ° at it --> 0, and )'L --> 1 for large it. If we do 
a best fit for the data as shown in Fig. 1(b) using Eqs. (6) and 
(7), we obtain )'L as a function of it. This is shown in Fig. 2. 

Finally, Fig. 3(d) shows the average Hamming distance for 
an initial damage size of one for local networks with different 
system sizes N. As one can see, all curves coincide below the 
percolation threshold. This confirms again our assumption of 
the scaling behavior for low it. 

C. RBNs with a small-world topology 

Both purely random and purely local networks are extreme 
network topologies. Many biological, technological, and social 
networks lie somewhere between these two extremes and 
are categorized as "small-world networks" [25]. Small-world 
networks typically exhibit a number of advantages over locally 

(a) 
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connected networks, such as a short average path length, 
synchronizability, and improved robustness against certain 
types of failures [22]. It is therefore of fundamental interest 
to study the damage spreading in RBN networks with a 
small-world interconnect topology. 

Starting from the 2D uniform spatial graph we have used 
above for the locally interconnected network, we apply a 
simple rewiring strategy to construct a small-world network. 
Each existing connection in the uniform spatial graph is 
rewired with probability p to a randomly chosen node. Thus, 
a fraction of p links in the network are random long-range 
links, or small-world links, while the remaining fraction of 
q = 1 - p links are local links connecting geometrically local 
neighbors. We will use q as the main parameter to represent the 
"strength" of the local connections. Note that for the extreme 
case of complete random spatial networks, by definition the 
density of the local connections is ~ 1/ N. Combined with 
the system size N, N q is approximately the number of nodes 
that have a local connection (at the sparse percolation limit). 
For N q ~ 1 the network is in the random regime (see Sec 
II A); and for N q » 1 we obtain a spatially local network (see 
Sec. II B). 

We will now use a similar scaling approach for small-world 
RBNs as presented above for local and random networks. 
Again, at very large it, the damage will ouly be bounded by 
the system size, thus ilsw ~ N

I . But for it --> 0, the network 
is now composed of both local and random (longer range) 
connections and the probability of forming simple loops thus 
scales differently. Let us assume we have a local link that has 

(b) 

N ---0-32 
-<>- 64 
~128 

--v- 256 
--+- 512 
--<!- 1024 
-+-2048 

FIG. 3. (Color ooline) Average Hamming distaoce (damage) d after 200 system updates, averaged over 10 ooOraodomly generated networks 
and 100 random initial configurations for each value of K. The initial damage size is one. Network topologies: (a) raodom networks (p = 1.0, 
q = 0), (b) small-world network with p = 0.9 (q = 0.1), (c) small-world networks with p = 0.8 (q = 0.2), and (d) networks with completely 
local connections (p = 0, q = 1.0). (aHc) suggest that all curves of random and small-world networks for different N approximately intersect 
in a characteristic point K,. K, moves toward small K as the fraction oflocal connections increases [K, '" 1.875 in (a), K, '" 1.80 in (h), aod 
K, '" 1.75 in (c)]. For coroplete local networks all corves coincide below the percolation threshold independently of N. 
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already been connected (A ~ B). The probability of having 
such a local link is q, and to complete a simple loop that 
contains this local connection, we first need to pick node B 
with probability 1/ N. Node B will then establish connections 
again with his local neighbors with probability q, and finally 
choose node A to finish the loop with probability l/nB. 
Thus, the final probability of having a simple loop in this 
case scales with l'Ioop L ~ q2 / N. Similarly the probability of 
generating a simple loop involving random long-range links 
is l'Ioop R ~ p2 / N 2. We compare these two probabilities by 
dividing one by another: 

l'IoopL = q2/ p2 = (Nq).'!..... 
l'Ioop R N N2 p2 

(8) 

In the spatially local network limit (Nq» I), l'IoopL is the 
leading term and the scaling follows Eq. (7). In the random 
networklimit(q ~ o and Nq ~ I), l'IoopR dominates and the 
scaling follows Eq. (6). However, when the network is in the 
small-world regime, l'Ioop L and l'Ioop R become comparable. 
With some corrections, we therefore have 

q2 p2 I 
l'Ioop sw = l'Ioop L + l'Ioop R = N + N2 "" N P , (9) 

where fJ is somewhere between I and 2 and depends on the 
value of N q. The damage spreading scales therefore with 
ilsw ~ N1-P. And for general K, we obtain 

(10) 

where Ysw is somewhere between I - fJ and 1. Figure 2 shows 
YR, YL, and Ysw. As one can see, Ysw goes from I - fJ, 
which is below zero, to I as K increases. In addition, the 
critical connectivity K, where Ysw = 0, is different from that 
of random networks and depends on q. In random networks 
this point is defined as the critical degree of stability K, [1]. 
Our results show that the introduction of local connections 
in random networks changes K, toward lower K. As we have 
seen above, in extreme local networks, Ks is undefined because 
the Hamming distance for different system sizes N simply 
coincide below the percolation threshold. Figure 3(c) shows 
the deviation of K, from the observed value K, = 1.875 for 
random networks. 

D. Scaling of damage spreading in random small-world RBNs 

While Eqs. (6) and (7) provide the scaling of the Hannning 
distance for random and local networks, we are interested in 
this section in how q (i.e., the fraction of local links) affects 
the damage spreading. 

Figure 4 shows the Hannning distance as a function of q. 
For sufficiently large N q, i.e., close to the local network limit, 
we assume (see Fig. 4) that the HaIlll!'ing distance approaches 
an asymptotic power law ilsw ~ qa(K). On the other hand, the 
Hamming distance also depends on the system size with ilsw ~ 
NYSw(it) [see Eq. (10)]. Thus, in the small-world regime (close 
to the local network limit) the Hannning distance depends 
on both the system size and the density of local (random) 
connections: 
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FIG. 4. (Color online) Hamming distance ii for different average 
degrees it as a function of the density of local connections q. The 
inset shows il in the range of random networks (q -+ 0) to local 
networks (q ~ I). The different curves raoge from (top to bottom) 
it = 2.2 to it = 1.02 with ao interval of 0.2. 

When q ~ I, Ysw(K) ~ YL(K), so ilsw --> ilL, While in the 
random network limit (Nq ~ I), il ouly depends on N, ilR ~ 
NYR(K) with YR(K) as illustrated in Fig. 2. Th connect the 
above two cases and to capture the finite-size behavior in the 
small-world regime, one can construct the full scaling behavior 
ofilsw(q,K,N): 

(12) 

where f(x) is a scaling function such that 

if x ~ 1 
{
x~ 

(x) ~ f const 
(13) 

if x»1. 

The random network limit is obtained provided that 

il ~ qa(it)Nrsw(it)(Nq)-a ~ Nrsw-a ~ NY', (14) 

i.e., 

YR = Ysw - a(K). (15) 

Given YR we can express Ysw by measuring a(K) at different 
K. Figure 5 shows the reconstructed Ysw with the measured 
data, which satisfy the above proposed asymptotic scaling 
relation. 

To analyze our data, Eq. (12) can also be written as 

_ _ (Nq)YSw I 
dsw(q,K,N) ~ f(Nq) ~ -g(Nq), (16) 

q 'YSw-O q Ylt 

where g(x) = xYSW f(x). Thus plotting ilqYR vs Nq should 
yield coinciding data with g(x). The limits of random and 
spatially local networks correspond to the asymptotic small 
and large argument of g(x), which gives us the exponents YR, 
and YL, 

{

XYR if x ~ 1 
g(x) ~ xYSw --> X"- if x»l. (17) 

Figure 6 shows the scaling plots of the Hannning distance as 
a function of the product of the system size N and strength of 
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FIG. 5. (Color oo1ine) Reconstructed Ysw from Eq. (15) by mea­
suring a(it) from best fits of Fig. 4 at q = 0.2 (p = 0.8). Squares 
(black) and circles (red) are measured YR and Ysw, respectively, from 
Fig. I, while triangles (blue) are reconstructed Ysw from YR and.,(it). 

the local connections q, as predicted by the proposed finite-size 
scaling for small-world RBNs. Aiso, given that YR and YL 
are functions of the average degree it, as shown in Fig. 2, 
the shapes of f (x) or g(x) also change with it. As one can 
see in Figs. 6(a}-6(c), g(x) coincides under different K. In 
addition, the asymptotic behavior of g(x) at x ~ I and x » 
1 agrees very well with our measured ''phenomenological'' 
exponents YR(.it), and YL(K) at K = lA, K = 2.0, and K = 
4.0, respectively. 

ill. WIRING COST 

From an engineering perspective, one wants to typically 
minimize the wiring cost of a network, maximize the commu­
nication characteristics, and maximize the robustness against 
failures. The electric power grid is a good example and so are 
nanoscale interconnect networks [26]. In this section we will 
look at these three trade-offs for RBNs. 

(a) K= 1.4 
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FIG. 7. (Color online) The product of damage size d, the network 
wiring cost "cost," and the average shortest path length 1 as a function 
of the average connectivity K and the density of random connections 
p. The color density corresponds to the value of d x I x cost. d, I. 
and cost were normalized. 

The average shortest path length is generally a good 
measure for the communication characteristics of a complex 
network. In a directed network we define I as the mean geodesic 
(Le., shortest) distance between vertex pairs in a network [22]: 

(18) 

where d'j is the geodesic distance from vertex i to vertex j. 
Here we have excluded the distance from each node to itself. 
Equation (18) will be problematic if the network has more than 
one component, which is very likely for small K. To avoid the 
problem of disconnected networks, we compute the average 

(b) K=2.0 
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10' 10' 

FIG. 6. (Color oo1ine) Scaling plots of the Hamming distance in small-world networks as predicted by the finite-size sca1ing argument 
[Eq. (16)]. (a) it = 1.4; (b) it = 2.0; and (c) it = 3.0. The straight line segments correspond to asymptotic power-law bebavior of the scaling 
function g(x) with exponents YR and YL, measured from Fig. 2 at given it, for small and large arguments, respectively, as desctibed in the text 
[Eq. (17)]. 
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d +/+cost 

FIG. 8. (Color online) Contour projection of Fig. 7. The color 
density corresponds to the valne of d + I + cost. At P = 0 the 
network topology is completely local; p = I corresponds to the 
random network; and for 0 < p < 1 the network is in the small-world 
regime. The circles indicate the position of lowest possible K and 
corresponding p for given tolerance level of d x I x cost. d, I, and 
cost were normalized. 

path length only for those vertex pairs that actually have a 
connecting path between them. 

For real-world networks, if sbortcuts, i.e., the random 
small-world links, bave to be realized physically, the cost 
of a long-range connection is likely to grow with its length. 
For example, the power consumption for wireless broadcast 
communication in free space generally conld be a cubic power 
of geometric distance, while the implementation of directional 
antenna will reduce the transntission cost siguificantly [27]. 
Petermann et al. [28] discuss the witing cost for some spatial 
small-world networks ranging from integrated circuits, the 
Internet to cortical networks. For simplicity, we assome here 
that the witing cost has a linear dependency on the geometrical 
distance between two nodes. 

Figure 7 shows the aggregate sum of the wiling cost, the 
average shortest path length I, and the damage size a as a 
function of the average connectivity K and the density of 
random connections p. For a given K and p, one can therefore 
find the network with the lowest cost, the best performance, 
and the highest robustness. The contnur lines allow one to 
determine the optimal K and p for a fixed aggregated som. 
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Iv. CONCLUSION 
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to determine the lowest connectivity K and the amount of 
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