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Debye-HOckel theory for particles of arbitrary electrical 
structurea) 

John D. Ramshaw 

Theoretical Division, University of California, Los Alamos Scientific Laboratory, Los Alamos, New 
Mexico 87545 
(Received 10 April 1980; accepted 7 July 1980) 

Classical linearized Debye-Hiickel theory is formulated for a finite fluid system, of arbitrary shape, 
composed of rigid particles with arbitrary internal electrical structure. The multipole description is eschewed 
in favor of the more basic description of a particle in terms of its charge density function. This function is left 
arbitrary, so the particles may be charged or neutral, polar or nonpolar, etc. The theory implies that the direct 
correlation function c(l2) = - v(12)/kT, where v(12) is the Coulomb interaction energy between the charge 
densities of particles 1 and 2. In the case of uncharged polar molecules, the dielectric constant may be 
evaluated in closed form from c(12); the result is the Langevin-Debye equation. This development removes 
the nonuniqueness in the original formulation of dipolar Debye-Hiickel theory [J. Chern. Phys. 64, 3666 
(1976)], and demonstrates that this nonuniqueness was an artifact of the multipole description rather than the 
mean-field approximation. Specialization to the case of simple finite dipoles shows that the nonuniqueness is 
associated with premature passage to the point dipole limit. 

I. INTRODUCTION 

The Debye-Huckel (DH) mean-field theoryl was the 
first major advance in our understanding of ionic sys­
tems. An analogous theory for dipolar fluids was re­
cently formulated. 2 A curious and unsatisfactory fea­
ture of the dipolar Debye Huckel (DDH) theory is its 
nonuniqueness, which resulted from an ambiguity in the 
choice of a local electric field. The ambiguity arises 
because the local field is defined as the field inside an 
infinitesimal cavity, and this field depends on the cavity 
shape in a medium described by a dipole moment 
density. 3,4 

Attempts to define a local field in the presence of 
higher multipole densities meet with even more serious 
dififculties. 4 However, use of the multipole descrip­
tion is not compulsory: A polarized medium may alter­
natively be described in terms of an induced charge 
density. The cavity field in a continuous charge distri­
bution is well defined and independent of the cavity 
shape; it is just the macroscopic Maxwell electric 
field. 3

,4 These considerations suggest that the non­
uniqueness of the DDH theory may be an artifact of the 
multipole description rather than the mean-field ap­
prOXimation, and that it may be possible to remove the 
nonuniqueness by using the charge-density description 
instead. 

In order to pursue these questions, we formulate the 
linearized DH theory for particles of arbitrary internal 
electrical structure. The multipole description of this 
structure is eschewed in favor of a particle charge den­
sity function/(r), which represents the charge density 
at the point r of a particle whose affixed coordinate 
frame coincides with the laboratory frame. Since /(r) 
is left arbitrary, the theory encompasses charged par­
ticles, uncharged particles with dipole moments, etc. 
(In the case of charged particles, a uniform neutralizing 
background is inCluded to ensure neutrality of the sys-

a)Work performed in part under the auspices of the United 
States Department of Energy. 

tem as a whole.) A synthesis of ionic and dipolar DH 
theory is thereby effected within a framework more 
general than either. 

The present theory, like the original DH and DDH 
theories, is based on the familiar DH mean-field ap­
proximation, in which the potential of mean force is 
replaced by the interaction energy of a particle with the 
local electrostatic field that results from holding an­
other particle fixed. Since this field is now unique, the 
theory leads to unique results for any /(r), including 
the dipolar case. Linearization of the Boltzmann 
weighting factor then yields an integral equation of the 
Ornstein-Zernike form, enabling the direct correlation 
function c(12) to be identified. It is found that c(12) 
= - flv(12), where fl = (kTt1 is the reciprocal temperature 
in units of energy, and v(12) is the Coulomb interaction 
energy between the charge densities of particles 1 and 2. 

The nonuniqueness of the original DDH theorr led to 
a nonunique value for the dielectic constant E. Since the 
present theory removes this nonuniqueness, it is of in­
terest to specialize the theory to the case of uncharged 
polar molecules to see what unique value of E now re­
sults. This value may be determined by the known ex­
pressions ,8 for E in terms of c(12). It is found that E 

depends on/(r) only through the molecular dipole mo­
ment /l, and that the resulting expression for E in terms 
of /l is simply the Langevin-Debye equation. This 
equation is obtained in the original DDH theory2 by set­
ting the nonuniqueness parameter e = 1, which corre­
sponds to identifying the local electric field with the 
macroscopic Maxwell electric field. Since this identi­
fication is unique and unambiguous in the present theory, 
it is not surprising that we obtain the corresponding 
result for E. 

Finally, to obtain further inSight into the underlying 
cause of the original DDH nonuniqueness, we consider 
the special case of a finite dipole composed of point 
charges ± q separated by a length 2d. It is of interest 
to examine the behavior of this case in the point dipole 
limit, namely q - ao, d - 0, 2qd = /l = constant. In this 
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limit c(12) becomes nonunique and assumes the form it 
had in the original DDH theory.2 If E is evaluated using 
this form for c(12), the nonunique DDH result is ob­
tained. However, the unique E of the present theory 
remains unchanged in the point dipole limit, since it 
depends only on qd to begin with. The nonuniqueness 
in E therefore appears to be an artificial consequence of 
taking the point dipole limit prematurely. This was im­
plicitly done in the original DDH theory by assuming 
that only dipole moments produce and interact with the 
mean field. 

II. THE DEBYE-HUCKEL DIRECT CORRELATION 
FUNCTION 

We consider a finite volume V, of arbitrary shape, 
containing N identical rigid particles of arbitrary inter­
nal electrical structure. The number density Nlv is 
denoted by n. The position and orientation of particle k 
are denoted by r k and w~, respectively, and are collec­
tively represented by the shorthand notation (k). The 
angular measure f dw~ is denoted by n. 

To each particle is rigidly affixed a coordinate frame 
that translates and rotates with the particle. These co­
ordinate frames are defined in the same way for all the 
particles, so that two particles coincide if their coordi­
nate frames coincide. The internal electrical structure 
of a representative particle is described by a charge 
density functionj(r), which represents the charge den­
sity at the point r of a particle whose affixed coordinate 
frame coincides with the laboratory frame. The charge 
density of particle k is denoted by p(r; Ill, which is re­
lated to j(r) by 

p(r; k) =j(A(wk )' (r - r k » , (1) 

where A(w) is the rotation tensor. If orientations are 
specified by the Euler angles, 7 then w=«(},<jJ,~), n=8rr2, 
and A(w) is the tensor whose components in the labora­
tory frame are just the matrix elements in Eq. (4-46) 
of Ref. 7. 

The net charge carried by each particle is Q = f drj(r), 
which mayor may not be zero. To allow for the latter 
possibility, we endow the system with a uniform back­
ground charge density of - nQ, so that the system as a 
whole is neutral. This global neutrality is necessary 
to prevent pathological behavior. B 

Suppose that particle 1 is held fixed at (rl, WI)' The 
resulting mean charge density at the point r is then 

p(r 11) = p(r; 1) + (nln) J d(2) p(r; 2) n2(12) - nQ , (2) 

where n2(12) is the two-particle generic distribution 
function. Since f d(2) p(r; 2) = nQ, Eq. (2) may be re­
written as 

p(rll)=p(r;O+(n/n)jd(2)p(r;2)h(12) , (3) 

where h(12) = cn/n)2 n2(12) - 1 is the total correlation 
function. The electrostatic potential field produced by 
p (r 11) is 

<jJ(rIO = j dr' Ir -r' 1-1 p(r' 11) (4) 

The interaction energy of a representative particle, say 
particle 2, with ct>(rll) is 

U(211) = jdrp(r; 2) ct>(rlll . (5) 

We now adopt the fundamental DH approximation of re­
placing the potential of mean force by U(211), so that 
h(12) =exp[ - ,8U(211)] -1. Linearization of the Boltz­
mann factor then yields the linearized DH approximation 
to h(12): 

h(12)=-,8U(211) . (6) 

Combining Eqs. (3)-(6), we obtain the following 
closed equation for h(12): 

h(12) = - ,8v(12) + (nln} J d(3) h(13)[ - ,8v(32)] , (7) 

where 

v(12) = J drdr'lr - r'I'lp(r; 2)p (r'; 1) (8) 

is just the Coulomb energy of interaction between the 
charge densities of particles 1 and 2. Equation (7) is of 
the Ornstein-Zernike form, and shows that the di­
rect correlation function c(12) is given by 

c(12) = - /3v(12) (9) 

Equation (9) is the DH result for c(12). Since j(r) has 
been left arbitrary, this result applies to charged par­
ticles, to uncharged particles with dipole moments, and 
so on. Of course, c(12) is a functional ofj(r); this 
functional is determined by Eqs. (1), (8), and (9). The 
DH result for h(12) is implicitly determined by the in­
tegral equation (7), in which the spatial integral extends 
only over the sample volume V. 

III. THE DIELECTRIC CONSTANT FOR UNCHARGED 
POLAR MOLECULES 

In this section we specialize to the case of uncharged 
particles with dipole moments. Our objective is to 
evaluate the dielectric constant E, which was nonunique 
in the original DDH theory but which will now be unique­
ly determined by our unique result for c(12). 

Since the particles are uncharged, the interparticle 
potential v(12) clearly becomes asymptotic to the dipole­
dipole potential at large I ~l - ral. Therefore E exists6 

and is given bys,s 

E-l 3 ~ ~ 
02 =y L (ll allbI1l2)[(I -nCr1]ab 

4,lJ;::1 

(10) 

where y=(4rr/9)/3nIl 2 , Il is the magnitude of the molecu­
lar dipole moment, Ila is its component along the ath 
axis in the molecular frame, i is the 3 x 3 unit matrix 
with elements 0ab' C is the 3 x 3 matrix with elements 

cab =a-2 J dradwldwac(12)eal·eb2 , (11) 

and ea. is the unit vector along the ath axis of molecule 
k. 

The dipole moment of molecule k is given by 

Ilk= I>ae.k= j dr(r-r.)p(r;k) (12) 

• 
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However, Eq. (1) shows that 

p (r; k):; p (r; r k , wk) = P (r - rk; 0, wk) 

Therefore, Ilk may also be written as 

Ilk= f dssp(s;O,wk) , 

which is the form we shall need below. 

(13) 

(14) 

We now proceed to evaluate Cab' Combining Eqs. (8), 
(9), and (11), we obtain 

x f drdr'lr - r' I-I p(r; 2)p(r'; 1) (15) 

The variable transformations s =r - rz, s' =.r' - rio and 
roO: rZ-rl, together with Eq. (13), allow Cab to be re­
written as 

The integrals over ro, s, and s' extend over all space. 
The easiest way to evaluate them is to restrict the 
range of the ro integral to the spherical region 1 ro 1 < R, 
with the understanding that the limit R - 00 is ultimately 
to be taken. It is then easy to show that 

fdrolro+s -s' I-I = 2n{lf -il s -s' 12) 

so that Eq. (16) becomes 

Cab = (21T{3/3n2
) f dWI d W2 eal . e b2 f ds ds' p (s; 0, wz) 

(17) 

xp(s';O,wI)(lsl z+ IS'1 2 -2s' s'-3R2
) • (18) 

Since the molecules are uncharged, Jdsp(s;k)=O and the 
terms involving 1 s 1

2
, 1 S' 12

, and R2 do not contribute to 
Cab' Equation (18) therefore reduces to 

Cab = - (41T{3/3n2
) f dWI dW2eal' eb2IlI' 112 , (19) 

where use has been made of Eq. (14). By virtue of Eqs. 
(1) and (8) of Ref. 6, this expression further reduces to 

cab =-(41T/9){3J.1. a J.1.b • (20) 

It is now a Simple matter to evaluate the inverse of 
the matrix (i - nC). This task is made even easier by 
choosing the molecular coordinate frame so that Ilk and 
e 3k are collinear. Then J.1. a = J.1.6 a3 , nCab = - y 6 ab6a3' and 

(f - n C)ab = 6ab(1 + Y 6a3 ) (21) 

Since (i - nC) is now a diagonal matrix, its inverse fol­
lows trivially: 

[(i - nC)"I]ab = 6ab(1 + Y 6a3 )"1 

Equation (10) for E now becomes 

E -1 = i(i _ nC)"I]33 = _y_ 
E+2 l+y 

(22) 

(23) 

This expression for Ii: may be obtained in the original 

DDH theory'l by setting the nonuniqueness parameter () 
= 1. This choice corresponds to the use of a needle­
shaped cavity to define the local electric field, which 
makes the local field equal to the macroscopic Maxwell 
electric field. In itself this is not surprising, since the 
local field in the present treatment is independent of 
cavity shape and is unambiguously equal to the Maxwell 
field. However, it is somewhat remarkable that re­
gardless of the form of j(r), E depends only on the dipole 
moment J.1.; more complicated functional dependences on 
j(r) might easily have been imagined. 

One readily verifies that Eq. (23) is equivalent to 

Ii: = 1 + 3y (24) 

which is just the Langevin-Debye equation. 3 In t he lin­
earized DH approximation, therej ore, Ii: is uniquely and 
unambiguously given by the Langevin-Debye equation. 
This equation, of course, is known to be an unsatisfac­
tory approximation for Eo This reflects the fact6 that Ii: 

is determined by the short-range part of c(12), which 
one cannot expect to be accurately obtained in the linear­
ized DH approximation. 

IV. ORIGIN OF THE DDH NONUNIQUENESS 

It is apparent from the preceding development that the 
nonuniqueness of the original DDH theory was an arti­
fact of the multipole description rather than the mean­
field approximation. To obtain further insight into the 
origin of the nonuniqueness, we consider the special 
case of a simple finite dipole composed of point charges 
± q separated by a length 2d. Then J.1. = 2qd and 

(25) 

where d k =d(wk) is the vector of length d from the point 
r k to the charge +q of molecule k. Clearly, Ilk=2qdk• 

It is of particular interest to examine the behavior of 
this case in the point dipole limit (q - 00, d - 0, 2qd = J.1. 

= constant), in which all the higher multipole moments 
vanish. It is clear that E remains unchanged in this 
limit, since it depends on j(r) only through J.1.. We 
may therefore restrict our attention to the limiting be­
havior of c(12). 

Combining Eqs. (8), (9), and (25), we obtain 

c(12) = - (3/(1 rz - rl +dz -dll-I - I rz - rl +dz+dll-I 

- I r z - rl - dz - dll-I + I rz - rl - dz + dll-I) 

However, 

Therefore, 

c(12) = - (3/[ - 4dl . T(rz - rl) . dz] + (J(q Zd 3) 

= (31l1 • T(r2 - rl)' "'2 + ()(q 2a3
) , 

. (261 

(28) 

where T(r) = VV 1 r I-I is the dipole tensor. In the point 
dipole limit, therefore, c(12) becomes simply 

(29) 

However, c/Id(12) is effectively nonunique, because in­
tegrals in which it appears in the integrand are in gen-
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eral nonunique. 3 The nonuniqueness is a consequnece 
of the singularity at r2 '" rl, which makes such integrals 
improper. They must therefore be evaluated by exclud­
ing from the integration a small cavity enclosing the 
singularity, and taking the limit as the cavity size goes 
to zero. 9 This limit, however, depends on the shape of 
the cavity, and hence is nonunique. The nonuniqueness 
may be parameterized by considering the cavity to be 
spheroidal2

; the effect is to replace T(r) by 

(30) 

where H(x) = 1 if x? 0 and is zero otherwise, e is related 
to the e!lip tic ity of the cavity, 2 U is the unit dyadic, and 
it is understood that the limit 0 -0 is ultimately to be 
taken. Replacement of T(r) by T9(r) in c M( 12) yie Ids 

cM (12)=-(41Te/3){:31L1'1L2 0(r2- r l) 

+ (:3H(lr2 - rll - 0) IlllLz :V2V2 1 r z - rll- 1 
, (31) 

where V2 is the gradient with respect to r 2 • We observe 
that cM (12) is now precisely the same as the nonunique 
direct correlation function in the original DDH theory. 2 

If E were evaluated using cM (12) instead of c(12), we 
would obtain the original nonunique DDH result for E. 

It is clear, however, that this nonuniqueness in E is not 
intrinsic in the mean-field approximation, but simply 
results from taking the point dipole limit prematurely. 
If this limit is deferred until after E has been evaluated, 
the unique E of the present theory results. 

V. CONCLUDING REMARKS 

We have formulated the linearized DH theory for par­
ticles of arbitrary internal electrical structure, and 
thereby have resolved the nonuniqueness in the original 
DDH theory. The Langevin-Debye equation now emerg­
es as the unique expression for E in the linearized DH 
approximation. One may at first wonder how this 
uniqueness can be reconciled with the various other ex­
pressions for E (such as the Clausius-Mossotti and On­
sager equations) which one thinks of as mean-field ap­
proximations. The answer is that the DH choice of the 
mean field is not the only possible choice. In the DR 
theory, the mean field is taken to be the field inside an 
infinitesimal mathematical cavity, which is small com­
pared to any physical length scale in the problem (in-

cluding the molecular length scale) and which is not al­
lowed to disturb the surrounding medium. If either or 
both of these conditions are relaxed, other mean fie Ids 
result. The Lorentz local field is the field inside a 
finite mathematical cavity of spherical shape, which is 
small macroscopically but much larger than an individ­
ual molecule. The onsager local field is the field in­
side a finite physi cal cavity of spherical shape, which 
is allowed to disturb the surrounding medium in a man­
ner consistent with macroscopic electrostatics. (The 
Onsager reaction field is immaterial here; it has no ef­
fect when the molecular polarizability is zero. 3) The 
superiority of the Onsager equation over the Langevin­
Debye and Clausius-Mossotti equations may be regarded 
as a consequence of the fact that a phYSical cavity is 
more physical than a mathematical one. 

Both the Lorentz and Onsager local fields would be 
different if a different cavity shape were chosen. In the 
former case, the shape dependence and its attendant 
nonuniqueness are again related to the point dipole limit. 
If this limit is taken, it is no longer possible to make 
the cavity small in comparison to the molecular length 
scale; this has the same effect as a restriction to cavi­
ties that are much larger than an individual molecule. 

Finally, we recall that the nonuniqueness of the ori­
ginal DDH theory also appears when the mean-field ap­
proximation in a dipolar system is approached via the 
modern y - 0 limiting procedure. 5 It seems likely that 
the nonuniqueness of the y - 0 limit in dipolar fluids is 
again associated with the multipole description, and that 
this limit would be unique within the framework of the 
charge density description. 
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