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Brownian motion in a flowing fluid

John D. Ramshaw

Theoretical Division, University of California, Los Alamos Scientific Laboratory, Los Alamos, New
Mexico 87545
(Received 30 October 1978; final manuscript received 7 May 1979)

A phenomenological theory is developed for Brownian motion in a flowing incompressible fluid. The
Brownian particles are regarded as an ideal gas subject to a position- and time-dependent force field that
represents interactions with the host fluid. Ths approach immediately leads to deterministic partial

differential equations of motion for the Brownian particles. These equations are then examined in the limit
of large friction, in which they imply an expression for the diffusional mass flux of Brownian particles.
This expression is a sum of terms representing concentration, forced, thermal, and pressure diffusion.

Comparisons are made with earlier work, and with the corresponding expression for the molecular
diffusion flux of one component in a binary ideal-gas mixture. The Brownian and molecular diffusion
fluxes are found to be identical in form, with the Brownian-particle volume fraction corresponding fo the

molecular mole fraction.

I. INTRODUCTION

This article describes a simple phenomenological
theory for Brownian motion in a flowing incompressible
fluid. The principal result of the theory is an expres-~
sion for the diffusional mass flux of the Brownian par-
ticles.

The foundations of the theory are laid in Sec. II. It is
argued that the Brownian particles may be expected to
behave like an ideal gas (whose local temperature is
that of the host fluid) subject to a position- and time-
dependent force field. The force field represents the
dynamical interaction of the Brownian particles with
the fluid, as well as any external forces that may be
present. This approach leads at once to deterministic
partial differential equations governing the mean motion
of the Brownian particle cloud. It has the advantage
that the underlying random processes need not be con-
sidered explicitly. Assumptions about the stochastic
character oi these processes are therefore unnecessary.

The equations of motion for the Brownian particles
are, of course, coupled to those for the host fluid, and
both sets of equations must be taken together to obtain
a closed system. In Sec. III we examine the behavior
of this system in the limit of large frictional force be-
tween the particles and the fluid. In this limit the mean
particle and fluid velocities become very nearly equal,
and the motion of the particles relative to the fluid be-
comes diffusional in character. An explicit expression
for the diffusional mass flux of the Brownian particles
is obtained. This expression is a sum of terms repre-
senting the effects of concentration, forced, thermal,
and pressure diffusion. When this result is combined
with the continuity equation for the particles, one ob-
tains a generalized Smoluchowski equation in which all
four types of diffusion are simultaneously accounted for.

The literature on Brownian motion has become volum-
inous. Most of it, of course, is concerned with Brown-
ian motion in a uniform quiescent fluid. Although this
is not the case of interest here, a brief discussion of
some of this work may help to put the present approach
into perspective.
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Einstein’ obtained the diffusion coefficient for the
Brownian particles by an ingenious application of equil-
ibrium principles. This approach did not involve sto-
chastic considerations or assumptions. It was largely
superseded by stochastic theories based on the Langevin
equation.? These theories required assumptions of a
stochastic character, but provided a much more de-
tailed physical description. In essence, the basic
stochastic assumption was that Brownian motion is a
Gaussian Markov process. Based on this assumption,
a mature mathematical theory evolved.? Eventually,
however, it became apparent that this theory was
physically unsatisfactory because it did not take into
account the (transient) virtual mass and Basset-
‘Boussinesq forces.*?® The inclusion of these forces,
which, in general, are not negligible, causes the pro-
cess to become non-Markovian. The stochastic theory
is then beset by new complications,'*"?° not all of which
have yet been fully explored.

The complications of non-Markovian behavior can be
avoided by augmenting the description so that the ran-
dom process again becomes Markovian,'* 2! put the
augmented description itself is more complicated than
the original one. Alternatively, these complications
can be avoided by returning to the Einstein approach,
or some appropriate modification thereof, and accepting
a less detailed physical description of the process.?*,25
This, in essence, is the spirit of the present work. Al-
though our development is quite different from Ein-
stein’s, both are based on the recognition that limited
but nontrivial information about the Brownian motion
can be obtained by simple deterministic arguments,
without entering into stochastic considerations.

The high-friction or diffusional limit, which we dis-
cuss in Sec. III, has also been examined recently by
Wilemski®* and Titulaer.?” Both of these investigations
were conducted within the framework of the classical
stochastic theory,® in which the virtual mass and Bas-
set-Boussinesq forces are neglected. In contrast, we
include these forces at the outset, and show explicitly
that they become negligible in the high-friction limit.
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In addition to the phenomenological theories, there
have been several more fundamental investigations of
Brownian motion using the techniques of modern non-
equilibrium statistical mechanics.?®™ This work will
not be discussed here,

Several authors have dealt specifically with various
aspects of Brownian motion in nonuniform fluids,?*™*"
This work, and its relation to the present results, is
discussed in Sec. IV.

In Sec. V we compare our result for the diffusion flux
of Brownian particles with the well-known expression
for the molecular diffusion flux of one component in a
binary ideal-gas mixture.*> The Brownian and mole-
cular diffusion fluxes are found to be identical in form,
with the Brownian-particle volume fraction corres-
ponding to the molecular mole fraction. This agree-
ment is somewhat surprising, since the two cases are
quite different physically.

Il. EQUATIONS OF MOTION

Consider a large number of identical spherical Brown-
ian particles, each of mass m, immersed in a flowing
incompressible host fluid. The particle number density
at position r and time ¢ is denoted by n(r,#). The partial
mass density of the particles is then p,(r,?)=mn(r,!().
The mean velocity field of the particles is denoted by
u,(r,f).

The Brownian particles interact with the host fluid
and with external fields, but are assumed to be suf-
ficiently dilute that they do not interact with each
other. Let T(r,!) be the temperature field of the fluid,
let F(r,!) be the mean force per unit mass on the parti-
cles at (r,/) due to the fluid, and let G,(r,¢) be the total
external force per unit mass (e.g., gravitational, elec-
tromagnetic) on the particles at (r,#). The fundamental
assumption of our theory is that the entire interaction
of the fluid with the particles can be expressed in terms
of the fields T(r,f) and F(r,/). Under this assumption,
the particles cannot distinguish between the actual
physical situation of interest and the hypothetical situa-
tion in which the local temperature is constrained to be
T(r,t), the fluid is absent, and the external force per
unit mass is ¥(r, )+ G,(r,?). In this latter situation the
Brownian particles behave as an ideal gas, since they
do not interact with each other.

We may therefore regard the Brownian particles as
an ideal gas whose local temperature is T(r,?), sub-
ject to an external force field F(r,f)+ G,(r,/). The
pressure in this hypothetical ideal gas is

q(r,O)=n(r, 0k T(r, )= (k/m)p,(r,t) T(r,1), (1)

where k is Boltzmann’s constant. (According to van’t
Hoff’s law, ¢ is also the local osmotic pressure of the
Brownian particles in the particle-fluid system.) The
motion of the hypothetical ideal gas is governed by the
continuity and momentum equations of fluid dynamics,

80,

a7tV (Pw)=0, (2)

1596 Phys. Fluids, Vol. 22, No. 9, September 1979

Dy <%B/i+up°Vu,>=—Vq+ppF+ppGp, (3)
where viscous stresses have been neglected, for sim-
plicity. The mean motion of the Brownian particle cloud
is determined by Eqgs. (2) and (3), with ¢ defined by

Eq. (1). These equations form a closed system if

T(r,!) and F(r,/) are regarded as known.

To proceed further it is necessary to specify the form
of the fluid-particle interaction force field F(r,#), which
must include all forces that are important in the physi-
cal problem of interest. We shall take F(r,/) to be

F(r, ()= 580w, —v,) = (1/00)vp - (n/m)vInT
+ Fp(r,0+ Fg(r, ), (4)

where 8 is the Stokes friction coefficient, u/(r,/) is
the mean fluid velocity field, pJ is the mass density of
the pure particulate material, p(r,?) is the true pres-
sure field in the particle-fluid system, 7 is the ther-
mophoretic force coefficient,”** F,(r,/) represents
the virtual mass force,”™"® and Fgz(r,/) represents the
Basset-Boussinesq force.’ %% In terms of the particle
radius R and the fluid viscosity 4, we have

B=6ruR/m (5)
pp= 3ni/(4TR*) . (6)
Fy(r, 1)= (027209 [ (1)~ ,(0)] ™

Fpl(r,1)=[(9/27) (03/pg) BT/

t
X J A (¢ =112 [ (1) ~ 1, (11)]. (8)
where p? is the mass density of the pure fluid. Here,

u; and l'lp denote the total time derivatives of u, and u,
taken along the particle trajectory passing through
{r,#). Equation (4) is not the most general possible
form for F(r,t) (for example, it neglects diffusiophore-
sis* and stressphoresig?®®! forces), but it is suffic-
iently general for our purposes. In any case, the in-
clusion of additional force terms in Eq. (4) would nec-
essitate only trivial modifications to the subsequent
development.

The second term in the right member of Eq. (4) rep-
resents the force on a particle due to the ambient pres-
sure gradient. This term is the source of the buoyant
force on a particle in a stationary fluid in a gravita-
tional field, and failure to include it may lead to seri-
ous errors.

1. THE LIMIT OF LARGE FRICTION

In order to examine the limit of large friction, it is
necessary to consider the overall momentum equation
for the particle-fluid system. Provided that u, and u,
are not very different, this equation takes the familiar
form

p(z—;+V'Vv> =-~Vp+p,G,+p; Gy, (9)
where pf(r,t) is the partial mass density of the fluid,
G,(r,t) is the total external force per unit mass on the
fluid at (r,?),p(r,!) is the total mass density of the par-
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ticle-fluid system,
p(r,t)=p,(r,t)+ p,r,1), (10)
v(r,?) is the mass-averaged velocity field,
v(r,t)=(p,u,+ p,u,)/p, (11)

and viscous stresses have again been neglected, for
simplicity.

The limit of large friction is accomplished by letting
B— . We shall not consider the question of how large
8 must be for this limit to be achieved in practice, nor
are we concerned with the transient initial-condition
effects that cause the limit to be approached nonuni-
formly in the neighborhood of the initial time., We
simply rely on the intuitive expectation, justified a
posteriori, that a diffusional description will result in
the limit B~ <. Notice that3— < as R—-0.

In the limit 8- =, Eq. (4) implies that u, —u, must
tend to zero at least as rapidly as 87'; otherwise, the
term 3(u, —u;) would not remain finite. Equations (7)
and (8) then immediately imply that

FV(ryi)=o(B-1) +
Fp(r,1)=0(37172),

(B~ ) (12)

The virtual mass and Basset—Boussinesq forces there-
fore vanish in the limit of large friction. This explains
why the conventional stochastic theory,® in which these
forces are neglected, nevertheless yields the correct
diffusion coefficient. (An alternative and complement-
ary explanation of this circumstance was recently sug-
gested by Batchelor.?®)

Using Eq. (11), we find that
u, —v=(p,/p) (v, ~;), (13)

which implies that u, —v also tends to zero at least as
rapidly as 8! in the limit 3 - ®, In this limit, there-
fore, u, may be replaced by v in the left member of

Eq. (3). This replacement, together with Eq. (9),
yields
PF+ LG, ~Gs)=(p/p,) Vg - Vp . (14)

Combining Eq. (14) with Egs. (1) and (4), and using the
fact that F,, and F; now vanish, we obtain

J,==DVp, - DV InT+D,Vp+(p,p,/08) (G, -~ G,), (15)

where J, is the diffusional mass flux of Brownian parti-
cles relative to the fluid,

J,=py(u, —u;) (16)
D is the diffusion coefficient found by Einstein,
D=kT/m3, am
Dy is the thermal diffusion coefficient,
Dp=p,D(1+1/kT), (18)
and D, is the coefficient of pressure diffusion,
D,=(p,/p=0,)/B=(1-a,)(1-p3/pd) (p,/pB);  (19)

here, a, is the local particle volume fraction, defined
by

a,(r,t)=p,(r,t)/p. (20)
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Equation (15) is our basic result for the diffusional
mass flux of the Brownian particles., The net flux is the
sum of terms representing concentration, thermal,
pressure, and forced diffusion. The pressure diffusion
term vanishes when pj =p; i.e., when pj=p?. Thus,
there is no pressure diffusion when the pure particulate
material has the same density as the pure fluid. The
forced diffusion term vanishes when G,=G;; i.e., when
the external force per unit mass on the particles is the
same as that on the fluid. Thus, there is no forced dif-
fusion when the only external force is that of gravity.
Sedimentation and centrifugation of Brownian particles
are therefore driven by pressure diffusion rather than
forced diffusion, just as in the molecular case.”’

For theoretical purposes, it is often preferable to
deal with a diffusion flux J} defined relative to v rather
than u,,

Ji=p,(u, -v). (21)

It follows from Eq. (13) that J, and J} are simply rela-
ted by

33=(0;/P)d, . (22)

It is also sometimes preferable to regard V(pp/p),
rather than Vp,, as the driving force for concentration
diffusion. Since the fluid is incompressible, these two
gradients are simply proportional to one another,

Vp,=(1-a,)(p?/p,) V(p,/p) . (23)

Combining Eqs. (15), (19), (22), and (23), we find that
J3 can be expressed in the form

J3=-pD*V(p,/p)-D%VInT

pgm D* P _ ) (&ﬁa) B ]
" -a,)okT [(p %) v+ 6 -Gr]

p
(24)
where
D*=(1-a,)D=(1-a,)kT/m3, (25)
AN ) n_)
D% <p>DT TR <1+kT . (26)

The particle continuity equation, Eq. (2), can be re-
written in terms of either J, or J},

2,

57 + Ve {pu)=~V+J,, (27)
8p,
Et—’+V'(ppv)=—V°J§. (28)

Equations (27) and (28) are convective diffusion equa-
tions, either of which may be regarded as the general-
ization of the Smoluchowski equation® to the case of
Brownian motion in a flowing fluid.

In the limit of large friction, the fundamental equa-
tions of motion for the particle-fluid system may be
taken to be Egs. (28) and (9), with the diffusion flux J}
determined by Egs. (22) and (15). To obtain a closed
system, one must add to them the equation for overall
mass conservation,

8p

§+V'(PV)=0, (29)
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and an energy equation to determine the temperature
T(r,t).* The energy equation and Egs. (9),(28), and
(29) then constitute four equations in the four unknown
functions T,v,p,, and p. [Since pj and p§ are assumed
known, p, determines p; and p via Eqs. (10) and (20)
and the relation p,=(1 —a,)p}.]

V. COMPARISONS WITH EARLIER WORK

In its entirety, Eq. (15) for J, appears to be new.
However, several authors have considered various as-
pects of Brownian motion in nonuniform fluids, and it
is of interest to compare the individual terms in Eq.
(15) with the corresponding earlier results.

Nicolis®*® restricts his attention to concentration and
thermal diffusion, and he evidently considers the host
fluid to be stationary. Using the methods of nonequili-
brium statistical mechanics, he recovers the usual
Einstein relation for D, and obtains a formal expres-
sion for D,. [A factor of (3kT)™ appears to be missing
from the right side of Nicolis’ Eq. (1), and u, should be
replaced by », in his Eq. (8).] To lowest order in the
mass ratio 7, his result for D, is of the form of our
Eq. (18) with

n=kTA,, (30)

where A is the integral of a certain time-correlation
function. Since 7 is simply a phenomenological coeffi-
cient in the present theory, no further comparison is
possible. Nicolis’ expression for 4,, together with

Eq. (30), constitutes a fluctuation-dissipation theorem?®
for the thermophoretic force coefficient 7.

Brownian motion in a nonuniform fluid has also been
considered by Efros.*” He does not allow for the pres-
ence of physical external force fields, and hence ob-
tains no information about forced diffusion. Within this
restriction, he considers the problem from two points
of view. He first considers the case in which the pres-
sure field is uniform and the host fluid may be either a
gas or a liquid. The result of the analysis is that D is
given by the Einstein relation, Eq. (17), and D, is given
by our Eq. (18) with n=0. Thus, Efros has, in effect,
neglected the thermophoretic force.

The second case considered by Efros is that in which
Vp may be nonzero, but the host fluid is an ideal gas.
The analysis of this case leads to the same expressions
for D and D, as those found in the first case, and also
predicts that

D,=(m/my)p,D/p, (31)

where m, is the mass of a single gas molecule. Since
the Brownian particles are assumed to be very dilute,
p is essentially equal to (p/m,)k#T. Equation (31) may
therefore be rewritten as

D,=p,/pB , (32)

where use has been made of Eq. (17). Comparison with
Eq. (19) shows that Efros’ result for D, lacks the term
—a,/ﬁ. This term arises from the direct pressure
force on the Brownian particles. [It is easy to verify
that if the second term in the right member of Eq. (4)
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had been omitted, we would have obtained Eq. (32) in-
stead of Eq. (19).] The second equality in Eq. (19)
shows that the term —a,/3 is negligible only when the
host fluid is a low-density gas, with pf<< p), and the
Brownian particles are sufficiently dilute so that a,

<< 1. This was indeed the case considered by Efros.
However, the use of Eq. (32) when &, is comparable to
p,,/p would lead to serious errors, a limitation that was
not revealed by Efros’ analysis.

The fact that Eq. (19), rather than Eq. (32), is the
correct general form for D,, can be confirmed by con-
sidering a spatially uniform distribution of neutrally
buoyant particles (p;=p}) in a stationary isothermal
fluid in a gravitational field G. In this situation the con-
centration, thermal, and forced diffusion terms all
vanish. Since the particles are neutrally buoyant, it is
physically clear that the total diffusion flux J, will also
vanish. Therefore, the pressure diffusion term D, Vp
must be zero. But, hydrostatic equilibrium requires
that vp=pG# 0. Thus, D, must be zero for neutrally
buoyant particles, a condition that is fulfilled by Eq.
(19), but not by Eq. (32).

Zubarev and Bashkirov®®*® derive a Fokker-Planck
equation for Brownian motion in a flowing fluid, and
also evaluate the diffusion flux of the particles relative
to the fluid. For the latter purpose they specialize (al-
though it seems unnecessary) to the case of a uniform
pressure field. Consequently, they do not obtain the
pressure diffusion flux. They also omit external force
fields, and hence do not obtain the forced diffusion flux.
Zubarev and Bashkirov find that D is given by the Ein-
stein relation, Eq. (17), and that D, is of the form of
our Eq. (18) with

n=kT A, -~ (47 /3)R%p , (33)

where A, is the same correlation-function integral as
that appearing in the theory of Nicolis.®®

Both Nicolis and Zubarev and Bashkirov obtain ex-
pressions for the Brownian particle diffusion flux which
are consistent with the phenomenological theory of the
present article. However, they disagree on the proper
microscopic expression for the net thermophoretic
force coefficient 7. For reasons explained in the Ap-
pendix, we believe that the Nicolis result, Eq. (30), is
correct while the result of Zubarev and Bashkirov, Eq.
(33), is in error.

Mazo*® developed a theory of Brownian motion in a
nonuniform fluid that extends the work of Nicolis and
Zubarev and Bashkirov. Mazo’s principal result is a
Fokker~Planck equation which generalizes that of Zub-
arev and Bashkirov. He does not examine the diffusion-
al limit, and hence does not obtain expressions for J,
or the diffusion coefficients.

Brownian motion in a nonuniform gas has been studied
by Slinn and Shen.?! The analysis is restricted to the
case in which the Knudsen number based on particle
radius is much larger than unity. The gas molecules
are assumed to experience specular reflection at the
surface of the Brownian particles. Under these re-
strictions, Slinn and Shen obtain a Fokker-Planck
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equation for the Brownian-particle distribution function.
They also examine the diffusional limit, in which they
obtain a convective diffusion equation for the number
density of Brownian particles. This equation [obtained
by combining Egs. (77) and (63) of Slinn and Shen] can
be written in the form of Eq. (27), thereby enabling J,
to be identified. If the viscous stresses are neglected,
the resulting expression for J, becomes

(34)

Here, D and D, are still given by Egs. (17) and (18), but
B is now given by the Epstein formula [Eq. (28) of Slinn
and Shen] instead of Eq. (5), and 71 is given by

n= (mBAT/5p) ,

J,==DVp,-DyVInT+(p,/B)G,.

(35)

where A is the thermal conductivity of the host gas.
The replacement of the Stokes 8 by the Epstein 8 is, of
course, to be expected here, and Eq. (35) is indeed the
correct expression for the thermophoretic force co-
efficient in the case of present interest.** Comparison
of Eqs. (34) and (15) then shows that the theory of Slinn
and Shen and the present theory are in agreement with
regard to concentration and thermal diffusion, but not
with regard to pressure and forced diffusion.

The nature of this disagreement is clarified by ex-
amining the effect of neglecting the mass averaged ac-
celeration (8v/8f+ v+ Vv) in the present theory. Equa-
tion (9) then reduces to

Vp=p, G+ 0y Gy (36)
which combines with Egs. (15) and (19) to yield
J,=-DVp,-DpVInT+(p,/B)G, - (@,/B)Vp.  (37)

We have already seen that the last term in Eq. (37) ari-
ses from the direct pressure force on the Brownian
particles, and that this term is negligible when p}’<< Py
and ®,<<1. We may therefore omit this term in the
rarefied-gas regime of interest to Slinn and Shen, pro-
vided that the Brownian particles are sufficiently dilute.
Equation (37) then becomes identical to the expression
of Slinn and Shen for J,, Eq. (34). We therefore con-
clude that Slinn and Shen have effectively neglected the
local mass-averaged acceleration of the particle -fluid
mixture. This approximation is entirely unrelated to
the diffusional limit, as is clear from the development
of the preceding section.

This concludes our comparisons with earlier work.
In summary, we note that (a) there is general agree-
ment on the concentration diffusion coefficient; (b) there
is some disagreement about the thermophoretic part of
the thermal diffusion coefficient; and (¢) none of the
work discussed®®™! provides a general treatment of
pressure and forced diffusion. However, the correct
form of the pressure diffusion flux is not unknown in
other contexts. It has previously been obtained in con-
nection with two-phase flow,* but its relevance to
Brownian motion has apparently not been appreciated.

V. COMPARISON WITH MOLECULAR DIFFUSION

It is of interest to compare the diffusional mass flux
of Brownian particles with the corresponding molecular

1599 Phys. Fluids, Vol. 22, No. 9, September 1979

diffusion flux in a binary ideal-gas mixture. Let the
two molecular species be A and B. According to the
kinetic theory of gases,*? the diffusive mass flux of the
molecular species A relative to the mass-averaged
velocity may be cast into the form

J%=—pD, s V(ps/p)-DEVInT

PetiaDap [(p_A_ ) v 4 PaPs G. -G ]
(1 —x ) pkT p T Fa) VP, (Gu-Gs)]

(38)

where D,, is the binary diffusivity of thé pair AB, DY
is the thermal diffusion coefficient, x, is the mole
fraction of species A, m, is the mass of a single A
molecule, p, and pp are the partial mass densities of
species A and B, respectively, G, and Gy are the ex~
ternal forces per unit mass acting on species A and B,
respectively, and p=p,+pg. Comparison with Eq. (24)
shows that the molecular and Brownian diffusion fluxes
are of identical form, with the mole fraction of species
A in the molecular case corresponding to the volume
fraction of the particles in the case of Brownian motion.
This circumstance is really quite remarkable, since
the two cases are very different physically.

V1. CONCLUDING REMARKS

A phenomenological theory of Brownian motion in a
flowing fluid has been developed. In the limit of large
friction, the theory leads to a new expression for the
diffusional mass flux of the Brownian particles. This
expression is a sum of terms representing concentra-
tion, forced, pressure, and thermal diffusion.

Our development has been based on the use of Eq. (4)
to represent the mean force per unit mass F(r,/) of
the fluid onthe particles. This form for F(r,!) was felt
to include most of the important physical effects in the
problem. It is clear that the development would pro-
ceed along the same outline if a more general form for
F(r,f) were adopted, in which case a correspondingly
more general form for the diffusion flux would result.

The assumption that the Brownian particles are in
local thermodynamic equilibrium with the fluid is an
essential ingredient of our theory. This assumption is
tenable only when the characteristic time for attaining
this equilibrium (which is of order 8™)% is much shorter
than that over which the fluid temperature changes along
a particle trajectory. The equation of motion for the
particles, Eq. (3), is therefore valid only when

(BT)|8T /ot +u,*VT| <1, (39)

In general, this condition will differ from that for the
validity of the diffusional description. However, the
diffusional description is unconditionally valid in the
limit 3= <, since Eq. (39) is identically satisfied in that
limit.

It is hoped that the present theory will find applica-

tion in biophysics, colloid science, aerosol science,
and related areas.
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APPENDIX

Here, we examine the theory of Zubarev and Bash-
kirov®®3® in greater detail. A comparison of their Fok-
ker-Planck equation with the conventional Fokker-—
Planck equation for Brownian motion in an external
force field® shows that the mean force per unit mass of
the fluid on the particles in their theory is given by

F(r,t)=8(u, —u,)+{(FDi/m - (kTA,/m)VInT, (Al)

where (%) is the “local equilibrium” force of the fluid
on a representative particle, which Zubarev and Bash-
kirov approximate by

(Foi=—4n/3)RRT V(p/kT). (A2)

Equation (A2) is Eq. (13) of Ref. 39, rewritten in our
notation with the sign error corrected. If we combine
Egs. (Al) and (A2) and compare the result with Eq. (4),
we again find that the net thermophoretic force coeffi-
cient, according to Zubarev and Bashkirov, is given by
Eq. (33). (We also see that Zubarev and Bashkirov have
omitted the virtual mass and Basset-Boussinesq forces,
whose relevance to Brownian motion was not then un-
derstood. This, of course, is how they are able to ob-
tain a Markovian Fokker-Planck equation.)

From a macroscopic point of view, Eq. (A2) is a
curious relation, for it involves V(p/T) instead of Vp.
We therefore try to reconstruct the argument that led to
it., Zubarev and Bashkirov appear to have arrived at
Eq. (A2) by considering the special case of a fixed par-
ticle surrounded by a nonuniform ideal gas in local
thermodynamic equilibrium. The local number density
of gas molecules in the presence of the particle is then
given approximately by

n,(r)=nd(r)exp [- V(r)/kT(r)], (A3)

where V(r) is the interaction energy of the fixed particle
with a gas molecule located at the point r, and #)(r) is
the number density of the gas in the absence of the par-
ticle. The ambient pressure field of the gas is simply
given by

P(r)=nd(r)eT(r). (A4)
In terms of n (r), the force (#); is given by
(F)l= fdrng(r)VV(r). (A5)

Combining Eqs. (A5) and (A3), and making use of the
identity
exp(-V/kT)VV

=kT V[l ~exp(-V/kT)]+Vexp(-V/kT)VInT, (A6)
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we obtain

<5ﬁ>§=-fdr[1 —exp(~V/kT)]Vp(r)

+ fdrVexp(—V/kT)nf,’(r)VlnT(r). (A7)
where use has been made of Eq. (A4), and an integration
by parts has been performed.

Since the particles are much larger than the gas mol-
ecules, a negligible error is incurred by regarding
V(r) as a hard sphere potential, which is infinite inside
the particle and zero elsewhere. The last term in Eq.
(A7) then vanishes identically, and we obtain

(F1=—(4n/3)R3Vp |

where we have made use of the fact that Vp is essen-
tially uniform over distances of order R. Equation (A8)
states that (#,); is simply the ambient pressure force
that one would have written down macroscopically, and
which is represented by the second term in the right
member of Eq. (4). We therefore conclude that the ex-
pression of Zubarev and Bashkirov for (%), Eq. (A2),
is in error, and should be replaced by Eq. (A8). If Eq.
(A8) is combined with Eq. (Al), a comparison of the re-
sult with Eq. (4) shows that 7is correctly given by the
Nicolis result, Eq. (30), rather than the result of Zub-
arev and Bashkirov, Eq. (33).
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