Getting to Know the Data: Understanding Assumptions, Sensitivities, Uncertainty, and Being "Conservative" While Using ITE's Trip Generation Data in the Land Development Process

Kristina Marie Currans
Portland State University, curransk@gmail.com

Follow this and additional works at: https://pdxscholar.library.pdx.edu/trec_seminar

Part of the Transportation Engineering Commons, and the Urban Studies and Planning Commons

Let us know how access to this document benefits you.

Recommended Citation
https://pdxscholar.library.pdx.edu/trec_seminar/117

This Book is brought to you for free and open access. It has been accepted for inclusion in TREC Friday Seminar Series by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: pdxscholar@pdx.edu.
Getting to Know the Data

Kristina M. Currans

Friday Transportation Seminar | April 14th, 2017
Getting to know the data

Understanding Assumptions, Sensitivities, Uncertainty, and Being “Conservative” While Using ITE’s Trip Generation Data in the Land Development Process

“an example of poor professional judgment is to rely on rules of thumb without understanding or considering their derivation or initial context” (Institute of Transportation Engineers, 2014, p. 3).
What’s a Traffic Impact Analysis?
Why conduct transportation impact studies?

• Planning needs
• Addressing mitigations
• Evaluating performance
• Capacity analysis as part of concurrency or adequate public facility requirements
• Assessing fees or charges for projects
• Environmental impact studies
• Safety studies
• Transportation contributions to health impacts
Assessing travel demand for development

Caliper Corporation: accessed September 2016
http://www.caliper.com/transmodeler/transmodeler-se-analysis-software.htm
State-of-the-Practice

- Historic Data
 - 550 sites
 - ~5,000 data points
 - 172 land uses
- Average rates or regressions
- Vehicle trip counts
- Based on:
 - Square footage
 - Employees
 - Seats
 - Dwelling units
Overestimation of Urban Land Uses

Overestimated

Problems in Data And Methods

- Adjustments to ITE methods are band aid
- Inability to link to goals & plans
- Limited set of independent variables
- Focus on peak hour
- Cannot compute new performance measures
- Person trips
- Pricing
- Vehicle occupancy
- Who are the People
- Clearer distinctions for land use types
- Location info
- Travel time
- Data gaps limit advancement of new methods
- Limited Statistical Rigor
- Only estimate vehicle trips
- Changes over the day, week, season
- All urban environments
- All modes
- Trip length distribution
- Site & immediate environment
- No access
- Limited set of independent variables
- Rely on too many assumptions
- Age of data
- Inability to link to goals & plans
- Not consistent with theory
- Cannot compute new performance measures
- Focus on peak hour
- Limited Statistical Rigor
- Only estimate vehicle trips
- Changes over the day, week, season
- All urban environments
- All modes
- Trip length distribution
- Clearer distinctions for land use types
- Location info
- Travel time
- Data gaps limit advancement of new methods
- Limited set of independent variables
- Rely on too many assumptions
- Age of data
- Inability to link to goals & plans
- Not consistent with theory
- Cannot compute new performance measures
- Focus on peak hour
- Limited Statistical Rigor
- Only estimate vehicle trips
- Changes over the day, week, season
- All urban environments
- All modes
- Trip length distribution
- Clearer distinctions for land use types
- Location info
- Travel time
- Data gaps limit advancement of new methods
- Limited set of independent variables
- Rely on too many assumptions
- Age of data
- Inability to link to goals & plans
- Not consistent with theory
- Cannot compute new performance measures
Problems in Data And Methods

- Adjustments to ITE methods are band aid
- Inability to link to goals & plans
- Limited set of independent variables
- Focus on peak hour
- Cannot compute new performance measures
- Not consistent with theory
- Changes over the day, week, season
- All modes
- Person trips
- Pricing
- Vehicle occupancy
- All urban environments
- Clearer distinctions for land use types
- Location info
- Travel time
- Data gaps limit advancement of new methods
- Only estimate vehicle trips
- Limited Statistical Rigor
- Limited set of independent variables
- Rely on too many assumptions
- Age of data
- Inability to link to goals & plans
- Clearer distinctions for land use types
- Person trips
- All modes
- Pricing
- Vehicle occupancy
- All urban environments
- Site & immediate environment
- MIND THE GAP
- No access
- Clearer distinctions for land use types
- Travel time
- Data gaps limit advancement of new methods
1985 - Average age of data – 32 years

1986 – I was born
1981 – LRT
1984 – Minivan
1990s – Internet & Popularized SUVs
2000 – Carsharing
2001 – Modern Streetcar
2004 – Google Transit
2005 – BikeShare
2007 – iPhone first released
2010 – Peer-to-Peer Carshare

Proportion

Date of Observation
1956 – Oldest Full Enclosed Mall Opens

1987 – Starbucks sold to Schultz

1992 – Point-of-Sale Technology

1994 – Amazon.com Founded

2000s – Fast-Fashion

2007 – No new malls built

1 http://www.bbc.com/culture/story/20140411-is-the-shopping-mall-dead
Problems in Data And Methods

- Adjustments to ITE methods are band aid
- Inability to link to goals & plans
- Limited set of independent variables
- Focus on peak hour
- Cannot compute new performance measures
- Not consistent with theory
- Changes over the day, week, season
- All modes
- Person trips
- Pricing
- Vehicle occupancy
- All urban environments
- Trip length distribution
- Who are the People
- Site & immediate environment
- Clearer distinctions for land use types
- Limited Statistical Rigor
- Location info
- Age of data
- Only estimate vehicle trips
- Rely on too many assumptions
- Travel time
- Data gaps limit advancement of new methods
- Rely on too many assumptions
- Adjustments to ITE methods are band aid
- Limited set of independent variables
- Focus on peak hour
- Cannot compute new performance measures
- Not consistent with theory
- Changes over the day, week, season
- All modes
- Person trips
- Pricing
- Vehicle occupancy
- All urban environments
- Trip length distribution
- Who are the People
- Site & immediate environment
- Clearer distinctions for land use types
- Limited Statistical Rigor
- Location info
- Age of data
- Only estimate vehicle trips
- Rely on too many assumptions
- Travel time
- Data gaps limit advancement of new methods
Urban Context

• Urban context influences travel decisions
 • Often defined by built environment
• No consensus on method to address trip rates and context
• Important to collect & incorporate a variety of urban built environment measures
• Geo-referencing needed for changes over time
• Important factors well known
Site-level Attributes

• Range of variables not including metadata
 • E.g., parking, pricing, orientation, setbacks, turning bays
 • Not including: densities, regional accessibility, market area
• Not typically included in analysis
• Common mitigations in land development negotiations
• Synergy with context
Other contextual aspects

• Socio-demographics
 • Food retail
 • Controlling for accessibility

• Grocery stores:
 • Positive w/Income
 • 77 to 83 transaction/SQFT

• Convenience Markets:
 • Negative w/Income
 • 220 to 280 transaction/SQFT

Problems in Data And Methods

- Adjustments to ITE methods are band aid
- Inability to link to goals & plans
- Limited set of independent variables
- Focus on peak hour
- Cannot compute new performance measures
- Person trips
- Vehicle occupancy
- Pricing
- All modes
- Trip length distribution
- Clearer distinctions for land use types
- All urban environments
- Changes over the day, week, season
- Not consistent with theory
- Who are the People
- Site & immediate environment
- No access
- Only estimate vehicle trips
- Limited Statistical Rigor
- Location info
- Age of data
- Rely on too many assumptions
- Travel time
- Data gaps limit advancement of new methods
- Adjustments to ITE methods are band aid
- Inability to link to goals & plans
- Limited set of independent variables
- Focus on peak hour
- Cannot compute new performance measures
- Person trips
- Vehicle occupancy
- Pricing
- All modes
- Trip length distribution
- Clearer distinctions for land use types
- All urban environments
- Changes over the day, week, season
- Not consistent with theory
- Who are the People
- Site & immediate environment
- No access
- Only estimate vehicle trips
- Limited Statistical Rigor
- Location info
- Age of data
- Rely on too many assumptions
- Travel time
- Data gaps limit advancement of new methods
Donation-based Sampling

• Data provided through calls for data, donated
• “Suburban”
 • Little to no bike/ped/transit;
 • Single land use development;
 • Free and unconstrained parking, not shared
• “Region” is the lowest level of context
 • Pacific, Central, Mountain, Eastern
• Newer data is likely to be categorized a priori
 • E.g., “urban core”, “suburban”
 • Undetermined process, TBD
Problems in Data And Methods

- Adjustments to ITE methods are band aid
- Inability to link to goals & plans
- Limited set of independent variables
- Focus on peak hour
- Person trips
- Pricing
- Vehicle occupancy
- Who are the People
- Trip length distribution
- Site & immediate environment
- Travel time
- Location info
- 15 Age of data
- Rely on too many assumptions
- Data gaps limit advancement of new methods
- Not consistent with theory
- Changes over the day, week, season
- All urban environments
- Clearer distinctions for land use types
- All modes
- Only estimate vehicle trips
- Limited Statistical Rigor
- Cannot compute new performance measures
- No access

- Cannot compute new performance measures
- No access
- Site & immediate environment
- Limited Statistical Rigor
- Adjustments to ITE methods are band aid
- Inability to link to goals & plans
- Limited set of independent variables
- Focus on peak hour
- Person trips
- Pricing
- Vehicle occupancy
- Who are the People
- Trip length distribution
- Site & immediate environment
- Travel time
- Location info
- 15 Age of data
- Rely on too many assumptions
- Data gaps limit advancement of new methods
- Not consistent with theory
- Changes over the day, week, season
- All urban environments
- Clearer distinctions for land use types
- All modes
- Only estimate vehicle trips
Person Trips

Adopted from (Clifton, Currans, Muhs 2013)

State-of-the-Practice

State-of-the-Art
Assumption No. 1

State-of-the-Art
Assumption No. 2

Do person trips vary?

Restaurants in Portland

Examining average person trip rates by mode

Vehicle trips decreases

Person trips vary

Problems in Data And Methods

- Adjustments to ITE methods are band aid
- Inability to link to goals & plans
- Limited set of independent variables
- Focus on peak hour
- Cannot compute new performance measures
- Person trips
- Pricing
- Vehicle occupancy
- Who are the People
- Site & immediate environment
- No access
- Travel time
- Trip length distribution
- All modes
- Location info
- Age of data
- Rely on too many assumptions
- Limited Statistical Rigor
- Only estimate vehicle trips
- All urban environments
- Clearer distinctions for land use types
- Changes over the day, week, season
- Not consistent with theory
- Limited sets of new methods
Common Conversion: Office

Under-Estimate Person Trips

Over-Estimate Person Trips
Common Conversion:
Residential

Under-Estimate Person Trips

Over-Estimate Person Trips
Common Conversion: Service

Underestimate Person Trips

Overestimate Person Trips
Common Conversion: Retail

Underestimate Person Trips

Overestimate Person Trips
Problems in Data And Methods

- Adjustments to ITE methods are band aid
- Inability to link to goals & plans
- Limited set of independent variables
- Focus on peak hour
- Cannot compute new performance measures
- Not consistent with theory
- Changes over the day, week, season
- All urban environments
- Clearer distinctions for land use types
- Only estimate vehicle trips
- Limited Statistical Rigor
- Limited set of independent variables
- Rely on too many assumptions
- Inability to link to goals & plans
- Age of data
- Data gaps limit advancement of new methods

- Person trips
- Pricing
- Vehicle occupancy
- Who are the People
- Site & immediate environment
- Travel time
- Location info
- Trip length distribution
- All modes
% Inflation

Housing

Trips by ITE’s Definition

Retail/Service

Trips by ITE’s Definition
How do they vary in time?
Modal “Peak Hour”

- Puget Sound Regional Council Household Travel Survey
- Dining Out

<table>
<thead>
<tr>
<th></th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bike</td>
<td>20</td>
</tr>
<tr>
<td>Transit</td>
<td>54</td>
</tr>
<tr>
<td>Vehicle</td>
<td>3,228</td>
</tr>
<tr>
<td>Walk</td>
<td>533</td>
</tr>
</tbody>
</table>

Problems in Data And Methods

- Adjustments to ITE methods are band aid
- Inability to link to goals & plans
- Limited set of independent variables
- Focus on peak hour
- Cannot compute new performance measures
- Person trips
- Pricing
- Vehicle occupancy
- Who are the People
- All modes
- Trip length distribution
- No access
- Site & immediate environment
- Only estimate vehicle trips
- Changes over the day, week, season
- All urban environments
- Clearer distinctions for land use types
- Limited Statistical Rigor
- Location info
- Age of data
- Rely on too many assumptions
- Travel time
- Data gaps limit advancement of new methods
- Cannot compute new performance measures
Predictions Distributions

A single prediction may derive an average estimate of \textbf{550 counts} with a 95% confidence interval of \textbf{350 to 1250 counts}.

If 550 counts just barely warrants that adjacent street must be widened, that implies that approximately 50% of the time the warrant would apply (and 50% it wouldn’t).

And now you know that these data represent an Average \textbf{Maximum} count…

…and this is an urban location…

What if this problems represents the PM peak hour—which accounts for 8% of the day?
Mechanisms for Change

Conclusions
Relationships

• Broader & coordinated stakeholder involvement
• Independent efforts across the US (and elsewhere) but little coordination
• ITE has control of their “product” – *Trip Generation Handbook*
• State DOTs involvement somewhat limited - concurrency new & performance measures
 Strategic partnerships are key
 • ITE-NACTO-Universities
 • TRB-ULI-ITE
• Who takes the lead?
Invest in the data you use

- Wide variety of travel metrics to choose from
- Move away from unsolicited submissions to ITE
- Strategic sampling
- Make use of new technologies
- Monitoring & adjustments over time
- QA/QC
- Transparency
- Legal barriers & precedent

Continue to Study the Data We Have/Use

“an example of poor professional judgment is to rely on rules of thumb without understanding or considering their derivation or initial context”

(Institute of Transportation Engineers, 2014, p. 3).