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Gravity Drainage Prior to Cake Filtration

Scott A. Wells and Gregory K. Savage
Department of Civil Engineering
Portland State University
Portland, Oregon 97207-0751
Voice (503) 725-4276 Fax (503) 725-4298
http://www.ce.pdx.edu/~wellss
e-mail:  scott@eas.pdx.edu

Abstract

During the initial stages of a Buchner funnel or specific resistance test, gravity drainage occurs prior to
application of the pressure differential.  Some allow time for a small cake to form by gravity drainage.
Filtrate data from the gravity drainage period can be used to determine constitutive properties of the
cake under a hydrostatic pressure gradient. The constitutive properties that define the structure of the
cake include the permeability and porosity as functions of the applied stress. Equations governing the
drainage rate during a gravity filtration experiment assuming a constant and a non-constant average cake
permeability and cake porosity were developed. Numerical solutions were shown predicting the gravity
drainage rate given known constitutive relationships. Also, a procedure was shown illustrating how
constitutive relationships could be determined using gravity drainage data.
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Introduction

During the initial stages of the Buchner Funnel test, gravity drainage occurs prior to application of the
pressure differential.  Some researchers recommend allowing time for a thin cake to form by gravity
prior to application of the pressure differential (Vesilind, 1979). Christensen and Dick (1985a, 1985b)
and Wells and Dick (1988) evaluated the impact of allowing a gravity drainage period (or cake
formation period) on computed values of specific resistance.

This research note explores the theory and application of gravity filtration data prior to application of the
pressure differential in a Buchner funnel test.

Governing Equations: Constant Average Cake Permeability and Porosity

For flow through a series of cake layers of varying permeability, Greenkorn (1982) showed that
Darcy’s Law could be written as
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For gravity filtration, the applied pressure differential and the cake length is a function of time, such that
Darcy’s Law can be written as
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surface water free  tocake of  topfrom distance :where h

Using mass conservation, the relationship between L(t) and h(t) can be determined as follows:

For gravity drainage, the rate of filtrate production is equal to the change of volume of the initial slurry
(assuming no solids are lost through the filter medium), i.e.,
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                 in time change :
slurry ofheight in  change :where

t
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The initial mass of solids in the slurry is

Mass initial = ∀ =C h Ci i iΑ (4)

slurry ofion concentrat initial :
       slurry     ofheight  initial:where

i

i

C

h

  ∀: volume of slurry added to filtration cell

If the cake is formed at an average concentration of Cc , then the initial mass is equal to the mass of
solids in the slurry (at concentration Ci) and the mass of solids in the cake (at concentration Cc), such
that

h C hC LCi i i cΑ Α Α    = + (5)

Simplifying and solving for L,

( )L
C
C

h hi

c
i   = − (6)

Also, note that Cc can be described by the porosity of the cake, εc, as

( )Cc s c   = − ∈ρ 1 (7)

density solid where :sρ

Also, the initial concentration of suspended solids can be determined using the initial porosity, ε i, as

( )isiC ∈−= 1   ρ (8)

Then substituting Eqs. 3 and 6 into Eq. 2 and simplifying,
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Using an initial condition that  h = hi  at  t = 0,  the solution to Eq. 9 assuming k Cc and  are not a f(t) is
an implicit equation of the form
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Hence, if data of  h(t) are determined from experimental results, the value of k c and ∈  can be
determined assuming they are constant as a f(t).  Note that Eq. 10 can be rearranged as
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There is also a minimum value of hmin or conversely a maximum value of L.  These can be determined
from a mass balance as in Eq. 6 such as
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The relationship between L and h is shown in Figure 1.
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Figure 1. Relationship between cake length L and height of slurry in filtration vessel.

Governing Equations: Non-Constant Average Cake Permeability and Porosity

The average cake permeability and porosity (k c and ∈ ) can be assumed to be functions of time by
assuming appropriate constitutive relationships. For example, the permeability can be described as a
function of porosity, i.e., k = f(∈), and  the relationship between pressure differential and cake porosity
can be defined using the definition of the average cake coefficient of volume compressibility, mv, such
that

mv   -   = ∈ = ∈∂
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∂
∂σ'

(15)

        = stress effective :'
                     pressure water pure  :where
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p

−∆σ

Any functional relationships for k and mv can be chosen, but for mathematical convenience and
according to data from Wells (1990a), the following forms were chosen:

( )cbak ∈=  exp   (16)

( )m c dv c   exp = ∈ (17)

where a [L2], b[-], c[ML-1T-2], d[-]:  empirical constants.

Substituting Eq. 17 into Eq. 15, integrating, using ( )∆p g h hi= −ρ , and solving for ∈c ,
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Then, rewriting Equation 8 by substituting Eq. 7 and Eq. 16,
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Then substituting Eqs. 18 and 8 into Eq. 19, we have the final differential equation for h,
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This non-linear ordinary differential equation can be solved numerically.
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Numerical Results

Eqs. 12 and 20 were solved for a given set of constitutive relationships for kaolin clay shown in Table 1.
Eq. 12 was solved implicitly for h as a f(t). Eq. 20 was solved using a Runge-Kutta numerical technique.
Figure 2 shows the resulting height of fluid in a column or Buchner funnel and Figure 3 shows the
expected filtrate volume as a function of time for both Eq. 12 and Eq. 20.

Table 1 . Constitutive parameters for kaolin clay (Wells, 1990a).

Parameter values for Eqs. 16
and 17

Value Units

a 2.04E-20 m2

b 28.9 -
c 2.0E-16 kg/m/s2

d 28.9 -
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Figure 2. Predictions of slurry height from Eq. 12 and 20 for constitutive parameters from Table 1,
εc=0.7, A=150 cm2, ρs=1.5 g/cm3, hi=30 cm, ε i=0.95, Ci=75 kg/m3, µ=0.01 g/cm2/s, ρ=0.9982
g/cm3.
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Figure 3. Predictions of filtrate volume from Eq. 12 and 20 for constitutive parameters from Table 1,
εc=0.7, A=150 cm2, ρs=1.5 g/cm3, hi=30 cm, ε i=0.95, Ci=75 kg/m3, µ=0.01 g/cm2/s, ρ=0.9982
g/cm3.

Determination of Constitutive Properties from Gravity Drainage Data

The inverse problem is to determine the permeability and porosity of the cake given the drainage rate.
Eqs. 16 and 17 introduced 4 empirical coefficients necessary to specify the constitutive properties.
Other constitutive relationships also usually require a minimum of 4 parameters (Vorobjov et al., 1993).
The technique would be similar to one developed by Wells (1990b) where a non-linear, least-squares
curve fitting procedure was used to determine those coefficient values with the minimum error.

Summary

The rate of filtrate production data from a gravity filtration experiment can be used to determine
constitutive properties of the slurry. These properties include cake porosity and cake permeability as a
function of pressure differential. Equations determining the drainage rate over time were presented for
the both constant and non-constant average cake porosity and permeability. The constant average cake
permeability and porosity model predicted a slower rate of filtrate production than the non-constant
porosity and permeability model. These models can be used to determine slurry properties by using
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laboratory filtrate data to calculate the relationship between permeability and porosity and porosity and
effective stress. Slurry properties allow researchers to compare slurry characteristics and to develop
complex models of the dewatering behavior.
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