
Portland State University Portland State University

PDXScholar PDXScholar

Computer Science Faculty Publications and
Presentations Computer Science

7-16-2014

COEL: A Web-based Chemistry Simulation COEL: A Web-based Chemistry Simulation

Framework Framework

Peter Banda
Portland State University, banda@pdx.edu

Drew Blount
Reed College

Christof Teuscher
Portland State University, teuscher@pdx.edu

Follow this and additional works at: https://pdxscholar.library.pdx.edu/compsci_fac

 Part of the Computational Engineering Commons

Let us know how access to this document benefits you.

Citation Details Citation Details
Banda, Peter et al. "COEL: A Web-based Chemistry Simulation Framework" http://arxiv.org/abs/1407.4027

This Pre-Print is brought to you for free and open access. It has been accepted for inclusion in Computer Science
Faculty Publications and Presentations by an authorized administrator of PDXScholar. Please contact us if we can
make this document more accessible: pdxscholar@pdx.edu.

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/compsci_fac
https://pdxscholar.library.pdx.edu/compsci_fac
https://pdxscholar.library.pdx.edu/compsci
https://pdxscholar.library.pdx.edu/compsci_fac?utm_source=pdxscholar.library.pdx.edu%2Fcompsci_fac%2F116&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/311?utm_source=pdxscholar.library.pdx.edu%2Fcompsci_fac%2F116&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/compsci_fac/116
mailto:pdxscholar@pdx.edu

COEL: A Web-based Chemistry Simulation

Framework

Peter Banda*1, Drew Blountt2, and Christof Teuschert3

1Department of Computer Science, Portland State University

2Artificial Life Lab, Reed College

3Department of Electrical and Computer Engineering, Portland State

University

July 16, 2014

Abstract
The chemical reaction network (CRN) is a widely used formalism to describe

macroscopic behavior of chemical systems. Available tools for CRN modelling
and simulation require local access, installation, and often involve local file stor­
age, which is susceptible to loss, lacks searchable structure, and does not support
concurrency. Furthermore, simulations are often single-threaded, and user inter­
faces are non-trivial to use. Therefore there are significant hurdles to conducting
efficient a.nd oolla.borative chemical research.

In this paper, we introduce a new enterprise chemistry simulation framework,
COEL, which addresses these issues. COEL is the first web-based framework of
its kind. A visually pleasing and intuitive user interface, simulations that run on
a large computational grid, reliable database storage, and transactional services
make COEL ideal for colla.borative research and education.

COEL's moat prominent features include ODE-based simulations of chemical
reaction networks and multicompartment reaction networks, with rich options
for user interactions with those networks. COEL provides DNA-strand displace­
ment transformations and visualization (and is to our knowledge the first CRN
framework to do so), GA optimization of rate constants, expression validation,
an application-wide plotting engine, a.nd SBML/Octave/Matlab export. We
also present an overview of the underlying software and technologies employed
and describe the main architectural decisions driving our development. COEL
is available at coel-sim.org for selected research teams only. We plan to provide
a part of COEL's functionality to the general public in the near future.

Keywords
COEL, chemical reaction network, chemical modelling tool, web tool, computational
grid, DNA-strand displacement transformation

*banda@pdx.edu

t dblount@reed.edu

l:teuscher@pdx.edu

1

mailto:l:teuscher@pdx.edu
mailto:dblount@reed.edu
mailto:banda@pdx.edu
http:coel-sim.org

1

1 INTRODUCTION 2

Introduction

The main motivation behind the development of the COEL framework is the often
monotonous and low-level management of scientific models. Further, running simu­
lations on multiple threads and CPUs requires non-trivial effort. Research avenues
built on solid theoretical ideas often run into trouble because of a lack of appropri­
ate tools and software, leading to unnecessary delays, implementation of proprietary
(home-made) solutions for basic tasks and reinventions of standard design patterns.
As is true with most desktop applications, most existing tools provide access to only
a single user on a local machine, requiring version-management software to enable
collaboration, and general usability and visual appeal are usually low priorities. We
argue that the way we work and conduct research must dramatically change to keep
pace with the amount of data produced by simulations, to provide immediate and in­
tegrated visualization, and to enable geographically dispersed teams to work together
on a single platform.

In this paper we introduce the COilective cELlular computing (COEL) framework,
the first web-based simulation framework for modeling and simulating chemical reac­
tion networks (CRNs). COEL's web client is immediately accessible without any in­
stallation or download. The computational load of simulations is handled by COEL's
grid rather than the client's machine. Remote teams can share and manipulate chemi­
cal models in real time. Data is stored remotely and safely in COEL's database, which
is backed up daily. In developing COEL we emphasized platform-wide visualization,
providing quick and embedded insight for users.

It is important to emphasize the significance of COEL's database storage. Even
though raw file storage (as opposed to structured databases) has been obsolete in
industry for more than two decades, the scientific community still widely practices this
approach. Storing data in files is not only ineffective, but its textual representation
requires cumbersome parsing and tedious serialization for later structured searches or
data mining. More so, files are inherently local, and without proper back-up, it is not
uncommon that scientific data are lost. A recent study by Vines et al. in Current
Biology [1] found that 80% of scientific data are lost within two decades, disappearing
into old email addresses and obsolete storage devices. Alarmingly, the authors found
that the average rate of data loss is 173 each year. Furthermore, because of private
and local storing only 11%of the academic research in the literature was reproducible
by the original research groups, as reported in Nature [2]. This is intuitively more
prevalent in experimental science, but computer-based research is affected as well.
We suggest that with current scientific approaches this problem will only worsen
in the age of big data. We argue that storing all (even intermediate) models and
results remotely and in a reliable long-term fashion, and malting them accessible to
the general scientific community should become the new standard. With remote
data storage and a convenient web client, users do not have to deal with version­
compatibility of data structures, as it is the case with traditional approaches. Since a
new application release is deployed together with a central migration of the database,
version updates are worry-free for users.

Accessibility has two important consequences: collaboration and transparency.
Using COEL, as with so-called 'cloud-based' web applications, individuals can work

2

2 RELATED WORK 3

on different facets of the same project and see each other's modifications in real-time.
This has allowed the authors of this paper, for example, to study the same system,
run parameter evolutions and performance evaluations, modify simulation dynamics
and so on from separate campuses.

COEL has been developed as a part of the NSF project "Computing with Biomole­
cules". We have successfully applied COEL as a sole tool to model and evaluate
various types of chemical perceptrons [3, 4, 5], chemical delay lines and time-series
learners [6, 7], and random DNA circuits [8].

In this paper we first discuss the state-of-the-art in chemistry simulation frame­
works (Section 2), then present COEL's functionality (Section 3) and technical archi­
tecture (Section 4). We conclude with a discussion of COEL's place in the ecosystem
of chemistry simulation frameworks, and the future of COEL (Section 5).

Related Work

COEL is not the first software made to simulate chemical reaction networks. There
are already many programs which do so, and together the field of CRN simulators
[9, 10, 11, 12, 13] offers a huge set of technical features, e.g., simulation options and
statistical tools. Our goal with COEL was not (so much) to introduce new simulation
algorithms or methods of analysis, but to include the most common and useful tools
among CRN simulators in an intuitive and modern web-based package. This makes
the tools of systems biology more accessible, and the research done with them more
transparent, collaborative, and replicable.

COPAS! [9] is arguably the most advanced and widely used tool. In a nutshell,
COPAS! simulates a variety of chemical objects and allows for freedom in experiment
design and statistical analysis. COPAS! is quite feature rich, and could be considered
the gold standard of CRN simulation frameworks. There are others worth mentioning,
of course, such as those in the MATLAB Systems Biology Toolbox [11], and CellDe­
signer [12], which is a modeling tool for biochemical networks. Most of these tools
share support for the SBML language for describing chemical systems [13], which as
a standard has been a great boon to the field, enabling cross-platform migration.

Along with SBML support, most simulation environments share a core set of
capabilities. Beyond basic deterministic ODE integration of CRNs (and stochastic
reactions, a feature which COEL notably does not have), it is common to offer pa,­
rameter optimization to help in the design of the networks themselves. Programs such
as COPAS! and CellDesigner can simulate a number of other biochemical objects of
interest, such as cellular compartments. It is common to allow for various kinetic
models of chemical interactions, such as Michaelis-Menten [14] and mass action [15].

In many kinds of frameworks, there is some tension between the depth of features
and the features' accessibility, especially for highly technical applications such as CRN
simulators. In addition to offering rich design capabilities, many developers of CRN
simulators have the explicit motivation of reaching a large audience: The authors of
COPAS! said, " ... the software needs to be available for the majority of scientists ... "
(p. 3069, [9]). The authors of CellDesigner felt similarly, saying that they wish to
"confer benefits to as many users as possible" (p. 1255, [12]). COEL automatically

3 FEATURES AND FUNCTIONALITY 4

runs on any operating system with a web browser, including smartphones or tablets,
so it is accessible anywhere in the world without any installation. Further, COEL's
computational grid centrally runs any difficult tasks which might run slowly on clients'
computers. We strongly believe that there is no more accessible paradigm for research
tools than a web-based interface with computation performed in the cloud.

3 Features and Functionality

COEL provides a unified web environment for the definition, manipulation, and sim­
ulation of chemical reaction networks. In this section, we will discuss COEL's func­
tionality and application-wide features in detail.

3.1 Chemical Reaction Network Definition

At its most basic level, a chemical reaction network (CRN) consists of a finite set
of chemicals and reactions. A CRN represents an unstructured macroscopic simu­
lated chemistry, hence the species labeled with symbols are not assigned a molecular
structure. The state of a CRN is represented by a vector of chemical species concen­
trations.

Each reaction is of the form a1X1 +.. .+anXn--+ biY1 +.. .+bmYm, where species
Xi are reactants and Yi products. Constants ai and bi are stoichiometric factors, i.e.,
positive integers describing how many copies of each molecule are involved in the
reaction. For instance the reaction A + B --+ C describes species A and B binding
together to form species C. Reactions can also involve catalysts or inhibitors, which
speed up or slow down the reaction, but are not consumed.

Note that a legal reaction could have no reactants or no products. For that purpose
we include a special no-species symbol >. to represent a formal annihilation A+ B --+ >.
or a decay A --+ >.. Mass conservation states that matter cannot be destroyed nor
created, i.e., in a closed system the matter consumed and produced by each reaction is
the sarne. Annihilation and decay as we defined them seem to violate that, however,
in the chemical analogy, >. does not signify a disappearance of matter but simply an
inert species, effectively absent from the system of chemical interactions. Similarly
we interpret a reaction >. --+ A as an influx of A rather than a creation of a molecule
A from nothing.

Reaction rates define the strength or speed of reactions, as prescribed by kinetic
laws-Michaelis-Menten [16] kinetics for catalytic reactions, and mass action kinet­
ics [17] otherwise. The rate of an ordinary reaction a18 1 + a28 2 --+ P is defined by
the mass-action law as

r = d[P] = _ _!_ d[81] = _ _!_ d[82] = k[8i]"' 182]"'
dt a1 dt a2 dt '

where k E JR+ is a reaction rate constant, ai and a2 are stoichiometric constants,
[81] and [82] are concentrations of reactants (substrates) 81 and 8., and [P] is a

concentration of product P. The rate of a catalytic reaction 8 ~ P, where a substrate

3 FEATURES AND FUNCTIONALITY 5

Species X X1C X1signal X2signal Y_aux B Sin Sout W+ W- WO W1 W1- W2. W2.- X1 X2 Y +

Reactions

+ New reaction

Do Label Group Reaction Forward Rate Catalysts Inhibitors

er&a DL01 X-X1 +X1C 0.0225 • X1 s~nal •XI (0.0020 + X) X1signal

eio • DL02 X1C-X2 2.0000 • X2s~nal • X1 CI (0.0706 + X1 C) X2signal

eio a DL03 X2signat - X1 signal 1.3648 • X2signa1

\!;(?;. DL04 X1signal- 0.0039 • X1 s~nal

eio a R01 AG 1 Sin+Y - 0.4584 • ~n • Y

eio a R02 RG2 Sin-Y 0.4459 •WO• Sin I (1.8066 + Sin) WO

er&ll R03 RG3 X1 +Y- 0.0203 • Y • X1

eio a R04 RG4 X1 - Y 0.0378 • W1 • X1 I (2.5665 + X1) W1

eioa ROS RG3 X2+Y- 0.0203 • y. X2

eioa ROS RG4 0.0378 • W2 • X2 / (2.5665 + X2) W2

Figure 1: A partial description of a chemical reaction network in COEL. Species are
listed at the top, and their reactions are presented in tabular form. The reactants
and products are described in the third column, the forward reaction rates are in the
fourth colunm, and any catalysts are in the fifth.

S transforms to a product P with a catalyst E, whose concentration increases the
reaction rate, is given by Michaelis-Menten kinetics as

d[P] kcat[EJ[S]
r-----~~~

- dt - Km + [SJ '

where k00t, Km ER+ are rate constants.
COEL is consistent with these general CRN formalisms; next, we will describe

details particular to COEL's implementation. COEL automatically computes ap­
propriate rate functions once given numeric rate constants, yet it also allows users to
define arbitrary rate functions using custom expressions over species labels, giving the
user full freedom over the system's dynamics. Reactions can be uni- or bidirectional,
and bidirectional reactions can have independent forward and backward rates.

Both species sets and reaction sets are extensible, in that new sets can be defined
as expansions of old ones. This promotes reuse and modular design. Further, two
CRNs can be merged combining their reactions and species into one network.

Figure 1 shows an example CRN in COEL, a memory-enabled chemical percep­
tron [6]. The CRN's species, reactions, and reaction rates are presented in a unified
view from which any of these objects can be easily edited in a few steps. Also, users
can export CRNs in Matlab, Octave, or SMBL formats if they wish to study their
systems using different tools. It is also possible to import an SBML-defined CRN into
COEL.

In imitation of biochemical cells or membranes, CRNs in COEL support hier­
archical tree-like compartmentalization. Each compartment hosts an independent
reaction set and vector of chemical concentrations. Compartments communicate with

3 FEATURES AND FUNCTIONALITY 6

Figure 2: Schematic of permeation in e. simple 2-1 multicompartment system from
one of the authors' current projects. The 'tagged' input species X{ and X~ are
injected into the outer compartment. They permeate into the inner compartments
vie. channels which transform them into regular, untagged input species X1 and X2.
The inner compartments' ASPs (Asymmetric Signal Perceptron.s [4], each of which is
a. large CRN) process the input species into the output Y. Each compartment has a.
unique outgoing channel to transform Y into one of the input species, which are then
processed in the outer compartment.

Order Id Label Channels PenT1eabi lity Disassociate?

0 3574 Example subcompartment 1 . 1164:X1 +- X1' . 0.3388 .. . 11 65 : X2 +- X2' . 0.3388 . 1169: Y -+ X1 . 0.4387

. 3575 Example subcompartment 2 . 1171 : X1 +- X1 ' . 0.3388 ..
1172 : X2 +- X2' 0.3388 . 1176 : y-+ X2 . 0.4387

Figure 3: COEL's representation of the permeation schema. depicted in Figure 2.

ea.ch other through permeation, forma.lized. in what we call 'channels.' A channel
works just like an ordinary reaction, except the reactant and product species reside
in adjacent compartments. Among other things, this allows for modular design of
chemical systems, where connected modules reside in nested compartments, as shown
in Figures 2 and 3.

3 FEATURES AND FUNCTIONALITY 	 1

Do Start Time Time Length Cache Write/ Species Action

@0 iii 0 0 • 3- IN
• WO +- random(0.5, 1.5)
• W1 +- random(0.5, 1.5)
• W2 +- random(0.5, 1.5)

@0om 100 0 • (rand()<D.5)'1N - X1 _inj
• (rand()<D.5)'1N - X2_inj
• Sin'+- IN
• X1' +- X1 _inj
• X2' +- X2_inj
• y +- 0

@0 iii 120 0 • Sin+- 1.5

@0om 300 0 • B +- 0.5 • (Y > 0.5 != (X1_inj != 0 11 X2_inj != 0))

Figure 4: The details of a COEL interaction aeries. Left an'OWll denote the setting of
species concentratioDB, and right arrow& .iDdicate888igwneuts ofuser-defined variables.
The interaction at time 100 does the fol.l.owUJg (note that at time 0 the variable IN .ill
set to 3): first, the variables x1,.., and x2,...., a.re randomly set to 0 or 3 with equa.1
probability. The concentration of Sin' is set to 3, then the concentrations of Xl' and
X2' are aet equal to their respective injection variables. Finally, Y is flushed from
the 9)'8tem-its concentration is set to 0.

3.2 	 Chemical Reaction Network Simulation and Interaction
Series

A major feature of COEI., in that it has been crucial to its early users and their
work, is ~ca.lled interaction series. An int.eraction series allows the user to di­
rectly manipulate concentratio11111 of species in the CRN. Thia feature is analogous
to, though more capable thm, automatic chemical injectiOllll mto a reaction chamber.
For compartment-extended CRNs, interaction series ca.n be identically hiere.rchical,
aJ.l.owWg for precise interaction with each component of the network..

ConcentratiOllll can be modified multiple times, not just initially. E.g., for it ­
erative processes it is useful to define a set of periodic int.eractions. In specifying
interactions, a user can define custom conceotratiOD-setting expreseiOllll, as well ae
custom variables for use in those expressions. For example, the bottommost interac­
tion in Figure 4 injects species B (here a 'penalty species') at concentration 0.5 if the
output species Y does not match .&JD of the original input concentrations, Xl,...., and
X2.,.,. The COEI. Interaction Series API, as we call it, is then a scripted. language
th.at can describe a variety of complicated experimental scenatios without touching
the underlying simulation-framework code. Thus end users have the freedom to ma­

3 FEATURES AND FUNCTIONALITY 8

nipulate the chemical system in a dynamic and safe way (basic expression validation
is provided).

To actually simulate a CRN, a user runs a defined reaction network with a selected
interaction series (which might be as simple as setting initial concentrations). Users
can choose from a number of non-adaptive and adaptive deterministic ODE solvers
to integrate their system. Upon running such a simulation, the user is by default
shown an embedded chart of species concentrations over time (Figure 5). If further
post-processing is required, full or filtered data could be easily exported into a CSV
file.

Note that since ODE solvers are deterministic, two simulations using the same
CRN and interaction series will always produce the same concentration traces if the
interaction series is deterministic. That is, however, not the case for the interaction
series in Figure 4, which uses random weight setting and randomly injects binary
inputs at concentration 0 or 3. COEL does not currently have a feature to save
random number seeds to exactly replicate simulations such as these.

UlO

0.75

g
!!: 0.50
~

§
0.25

0.00
2,000 4 ,000 6,000 8,000

Time

[o [a404

Figure 5: A chart showing concentration traces of 5 chemical species over time in
COEL. In this case, an interaction series injects a random combination of Xl and X2
at concentration 1, every 1000 time steps.

3.3 Performance Evaluation and Dynamics Analysis

COEL provides a core set of tools for analyzing and modifying CRNs, enabling statisti ­
cal record-keeping as well as the design ofcomplex networks whose precise architecture
is initially unknown to the user. COEL's basic interpretive tool is the ''translation
series," defined by the user in a similar manner to interaction series, described above.
A single translation is a straightforward function of the current concentrations and
any predefined constants, and can be Boolean or numeric in its output.

One can simply plot the output of a translation series to see the CRN's behavior
through a certain lens, or use the series as the basis of evaluation and optimization.

3 FEATURES AND FUNCTIONALITY 9

Because many CRNs involve a random component, especially in (but not limited to)
their interaction series, COEL allows the user to run large batches of simulations and
collect statistics ba.eed on these translation series.

Because it is usually difficult to precisely translate simulated chemistries into wet
ones, COEL a.1so offers perturbation analysis. Users can evaluate the performance of
the CRN if a. defined set of rates a.re randomly perturbed according to set parameters.
This is useful in measuring the robustness of a chemical system.

COEL a.1so offers dynamics analyses with a detailed statisticalview ofan individual
CRN simulation. This includes Lya.punov exponents, Derrida stability, time and
spatial nonlinearity errors, and more; along with reports about the simulation itself,
like how many species concentrations reached fixed points for given tolerance.

To allow maximum freedom in analysis, COEL offers CSV export of any raw data.
a user might produce. Every cha.rt and data visualization in COEL is accompanied by
a CSV export function, allowing the user to export either the data currently displayed
on-screen (to replicate a chart or precisely modify its appearance) or the entire raw
dataset, aa shown in Figure 6.

• poon:s: 117 "' ,,. >/Perfonnenc.

10 __.,e::.--- 132 -----·- 0

·XOR­]MriotMIKted--PAOJ O.M?S -
oe ligNIOR we ·iMZf§l;5

T

i

I 08 -PAOJ -
O•

02
0 80 120 180

0

Figure 6: A chart of three separate performance evaluations, each one showing the
performance of a binary chemical perceptron averaged over 10,000 repetiti.onB for
given interaction series representing desired binary function (XOR, DR, PRDJ). Note the
data export options on the right.

3.4 Rate Constant Optimization

With defined evaluation criteria, a user can optimi7.e CRN's parameters with COEL'a
flexible genetic algorithm tool. U8el'8 define the space to be optimi7.ed by selecting
which reaction and channel permeation rates a.re to be modified, in what ranges,
and under what constraints (e.g. several reaction rates can be fixed to each other).
Chromosomes are then vectors of rate const ants.

The parameters of COEL's GAs are easily modified, allowing for different rates of

http:optimi7.ed

3 FEATURES AND FUNCTIONALITY 10

mutation, rull'B of reproduction, initial populations, and so on. Chromosomes can be
selected to reproduce either deterministically with elite selection, or probabilistically
relat ive t he measured fitness of each chromosome. Reproduction ca.n be sexual or
a.sexual. In the former case, crossover between two chromosomes can be either one­
point (i.e., in chromosomes of length n, the child's first p :5 n genes are from one
parent and the last n - pare from the other), or a probabilistic shufBe. Supported
mutation types are one-bit, two-bit, exc.bange and per-bit , with content replacement
and perturbation options. COEL's GAs also support fitness renormalization, and
selection of maximization or mimmization of the target function (fitness vs. error) .

• i:onts: 200 Of AJ, @!
Evolution

0 78 • Wolst

~---~~ ·~
• e.•

___....__
0 71

0 57

14 21

0

Figure 7: A chart of a population's fitness over time in a run of a particular GA. This
plot displays several features shared by all plots in COEL, enabling modification of
the plot without refreshing the web page: an x-axis slider to specify the plot's domain,
a drop-down menu to select which series to display, a.nd a slider to select the plot's
resolution relative the data set.

3.5 DNA Strand Visualization and Displacement Reactions

COEL has a convenient web interface for visualizing DNA strands specified by the
Microsoft Visual DSD syntax [18], which decomposes single and (full or partial) double
DNA strands into labeled subsequences called domains. Domains are classified as
either long or short, also called toeholds. These DNA-strand images can be exported
in the svg format , appropriate for publications a.nd educational purposes alike. Note
that the Microsoft Visual DSD web tool (unlikE COEL) requires a.n installation of
Micro80ft Silverlight, wbaie support on Linux ia problematic.

Furthermore, COEL can tra.nsform any CRN based on m88&-action kinetice into
a DNA strand-displacement circuit using the methods of Soloveichik et al. [19]. In
strand displacement systems, populations of these species are typically represented
by the populations of single-stranded DNA molecules. These interact with double­

3 FEATURES AND FUNCTIONALITY 11

fA) Chemistry Picture Generator

DNA Strand String {ls1 1 [d a b'']<u bO'>:[I a']

Image

,,
SI ~-1-•

I* a*

- Export As SVG

Figure 8: COEL's tool for visualizing DNA strands specified in Visual DSD. Red lines
represent toeholds, and gray lines are long domains.

stranded gate complexes which mediate transformations between free signals. In a
nutshell, the mass-action reaction X1 + X2-+ X3 is translated to three displacement
reactions X 1 +L :; H +B (a single strand X 1 displaces an upper strand B from the
complex L), X2 +H --+ 0 +W1 (a single strand X2 displaces an upper strand 0 from
the complex H), and finally 0 + T -+ X3 + W2 (a single strand 0 displaces an upper
strand Xa from the complex T), where L,H, B, 0, T, Hare auxiliary fuel species, and
W1 and W2 are waste products.

Once applied to a reaction set, the transformation produces a CRN with new
intermediate species and reactions, describing displacements of single strands from
partial or full double strands. Besides new reactions, COEL also specifies the DNA
structure of each species in terms of numerically-labeled domains, the output of which
is shown in Figure 9. This is a powerful tool for automatic translation of so-called in
silica systemB to feasible wet chemistries in a user-friendly way. The authors are not
aware ofany other CRN simulation framework that includes DNA strand displacement
transformations as a part of their application toolbox.

3.6 Random Chemical Reaction Network

COEL offers functionality to quickly make a random chemical reaction network with
set specifications. User-defined parameters include the number of species, the number
of reactions, the number of reactants and products in each reactions, and a random
distribution of reaction constants; COEL meets all of these constraints with combina­
torial design. For open systems the user can also specify influx and efflux constraints.

Furthermore, COEL also supports generation of random DNA-stand circuits [8]
using single, full double, and partial double strands. Parameters for this function
include number of single strands, ratio of upper to lower strands, ratio of upper

--

3 FEATURES AND FUNCTIONALITY 12

.. ·­
uo. ACU 1

-
.+ > .i....L • ..L '
•. 'V,{ " TT- " 1'

Figure 9: A DNA strand displacement reaction obtained by COEL's transformation
of arbitrary CRNs into strand displacement circuits.

strands with complement.s, (positive} normal distribution of partial double str&D.ds
per upper strand, (positive) normal distribution of rate constants, ratio of influxes
a.nd efftuxes, and distribution of rate CODBtants. Based on a randomly generated
ordering, DNA strands with higher order ta.lee precedence over lower-order strands
in DNA-strand displacement reactions (Section 3.5). Also, note that the maximum
number ofstrands that could bind together is two, which is justified by assuming that
a single strand does not bind to partial double strand, but always displace its upper
or lower part. We 8B8Ullle wet synthesis of thetie networks is poesible by standard
DNA sequence design [20).

3.7 Platform-wide Features

Numerous features of COEL are omnipresent throughout the platform, creating a fa­
miliar look-and-feel as well as providing intuitive access to common features. Through­
out COEL, users input mathematical functions in the straightforward syntax of the
Java Expression Parser (displayed in Figure 4), and those expressions a.re always vali­
dated by COEL before being input into any simulation. Views, such as COEL's list of
reaction sets or interaction series, have a common search e.nd filter feature, allowing
for easy navigation through huge sets of objects.

All charts in COEL are made with the Google Charts API, e.nd include sliders for
dom.a.in selection and data filtering (see Figure 7), a.swell a.s CSV export options (see
Figure 6). Finally, COEL has rudimentary user privacy protocols, where each user
account is either a 'user' who can see only his/her own projects, or an 'admin' who
ca.n see every project on COEL. In order to share a project, a group of users currently
have to have admin rights. We plan to expand privacy features in later versions.

http:dom.a.in
http:str&D.ds

4 ARCHITECTURE AND TECHNOLOGY 13

4 Architecture and Technology

COEL's architecture is highly modular with strict separation of business logic and
technological application aspects. Nowadays, the main challenge of enterprise appli­
cation development is not programming per se but rather the integration of diverse
technologies and libraries which each address different application needs. The absence
of strict inter-modular / inter-layer dependencies enables quick and easy customiza,­
tion and replacement of technologies and providers.

At this level of abstraction only the domain objects, the data holders of business
data, implemented as POJOs (Plain Java Objects), are shared among all application
parts and layers. Figure 10 presents a high-level overview of COEL's architecture
with call (request) pathways. On the very top we have two clients representing the
only entry points to the application: the web client backed by Grails [21], jQuery [22]
and Bootstrap [23] frameworks (discussed in Section 4.4), and the plain console client
implemented in standard Java for "headless" scripting.

Based on user's requests, the clients call the services such as ChemistryService,
EvolutionService, and UserManagementService (Section 4.2) maintained by the Spring
application container (Section 4.1), which then redirects either to a computational
grid implemented on the top of GridGain HPC technology [24] (Section 4.3) for dis­
tributed task execution, or to the persistence layer with DAOs (Data.Access Objects)
and ORM (Object-Relation Mapping) provided by Hibernate [25] (Section 4.5). In
addition, the web client controllers have a direct link to the persistence layer, which is
beneficial especially for basic CRUD (Create, Read, Update, Delete) operations. At
the very bottom a PostgreSQL [26] database stores and provides data on the demand
of the persistence layer.

The business logic such as chemistry simulation and GA optimization is imple­
mented mainly in the Scala language, leveraging both object-oriented and functional
programming approaches. All technologies and libraries integrated into COEL are
either open-source or free to use.

4.1 Application Container

The Spring Framework [27, 28] provides the COEL's core application infrastructure.
Spring is a leading enterprise solution for Java maintained by the SpringSource com­
munity since 2002. Compared to Enterprise Java Beans, the Spring portfolio is less
invasive and more flexible. Spring is not an application server, it is just a set of
libraries which can be used and deployed anywhere (like e.g., Tomcat and Jetty). It
consists of several sub-projects which can be used separately or together as needed.
Spring is a lightweight tool that shows how little is really needed for enterprise appli­
cation development. It does not have strict dependencies, and it detaches technical
and business concerns.

The IoC (Inversion of Control) container is a central part of the Spring Frame­
work. It controls the creation, number of instances (with singleton and prototype
scopes), lifecycle, inter-dependencies (loose-coupling or wiring) and general config­
uration of application components, modules, adapters, specific utility classes or in
general any POJO whose creation and use should be maintained in the application

----------------•

I
I

4 ARCHITECTURE AND TECHNOLOGY 14

Client

~[iJBootstrap

I

KTTP : ~
Stre~11ing jOuer.'

Client

Command Une

Server (loC Container)

I

_ ~_!t_l_J,!!S_ !

Camputatlanal Grtd

Grid Gain
0 ,..

Figure 10: A high-level overview of COEL's architecture consisting ofweb and console
clients, web servlet, services, business logic, persistence layer, and computational.
grid. The application (IoC) container holding the server-side of the application is
implemented in Spring framework.

4 ARCHITECTURE AND TECHNOLOGY 15

Table 1: A list of the acronyms used in this section.

Acronym Description
JVM Java Virtual Machine
ORM Object-Relational Mapping
POJO Plain Java Object
DAO Data-Access Object
IoC Inversion of Control
JEP Java Expression Parser
JMS Java Message Service
REST Representational State Transfer
HPC High Performance Computing
JDBC Java Database Connectivity
SQL Structured Query Language
PLSQL Procedural Language/Structured Query Language
HQL Hibernate Query Language

context. Spring IoC is a simple and transparent glue or integrator of various com­
ponents and frameworks which are provided either by Spring Portfolio itself or other
parties.

The IoC container encourages the best practices of programming with interfaces,
i.e., each bean (POJO object in the IoC container) should consist of an interface and
implementation class. Therefore, each bean knows that it can talk to a different bean
that does something specific, but not which type of object, how its functionality is
implemented, nor how the call is carried out. The IoC container injects the depen­
dencies into POJOs at the runtime, and so beans take care only about their business
purpose, not creation (and maintenance) of their relationships.

This approach is superior to the factory design pattern because all dependencies
get injected and configured through the application container (annotations and/or
XML), however beans are not aware of the container's existence, i.e., unlike the fac­
tory pattern they do not need to call the application container in order to get their
dependencies. The application code of Spring beans has little dependency on Spring
itself. As a matter of fact, IoC is often described with the Hollywood principle: "Don't
call us, we call you." Besides Spring, other popular IoC containers include GUICE
and Pico.

IoC abstraction results in modular, lightweight and layered architecture with loose­
coupled pluggable components. Programmers are also encouraged to implement beans
as thread-safe and stateless if possible, so several callers could safely query the same
component without worrying about timing and/or call history.

Last but not least, Spring IoC enables COEL to become a truly test-driven project.
Because of loose-coupling and dependency injections, our JUnit tests could switch to
test (rather than production) application context and substitute for instance imple­
mentation classes that require remote access to production systems with mock objects.

4 ARCHITECTURE AND TECHNOLOGY 16

4.2 Services

The service layer is the actual gateway to the business/functional part of the applicar
tion. Services are callable functions provided to the clients (or outside world). COEL
is divided into five functional modules, each exposed by a separate service interface (far
cade): ChemistryService, EvolutionService, NetworkService, AnalysisService and
UserManagementService.

One of the most compelling reasons to use Spring for service management is
its comprehensive transaction support. Spring provides a consistent abstraction for
transaction management that integrates very well with various data access abstrac­
tions. For remote access, the service interfaces can be easily injected by appropri­
ate stubs. Spring supports for example Remote Method Invocation (RMI), Spring's
HTTP invoker, JAX-RPC, JAX-WS or JMS.

Since the web client runs as a part of the application context, i.e., it lives inside the
same server-side JVM (Java Virtual Machine) as Spring, all service calls are local. On
the other side, the console client runs as a separate process and its calls are remote.
More precisely, console clients requests are carried out by RESTFul Web Services and
alternatively by JMS. In the future we might consider exposing a portion of services
to 3rd parties, possibly other universities or teams, through REST.

4.3 Cloud Computing

COEL's computational grid has been built on top of the GridGain In-Memory Com­
puting Platform [24]. The GridGain HPC (High Performance Computing) library
implements a scalable low-latency zero-deplayment computational grid, which fits
seamlessly into our Spring-backed IoC container (Section 4.1).

COEL's grid currently consists of 19 nodes with around 500 cores. All nodes are
hosted on Portland State University hardware, though the technology allows us to
add any geographically remote resource, since the communication is carried out by
TCP/IP protocol with optimized marshaling (serialization) of exchanged data. We
plan to utilize existing grid technology to pool the resources with other geographically
dispersed teams.

COEL's grid acts transparently, as a single computing resource. GridGain enables
COEL's users to be more productive by eliminating the complexity of distributed
computing. Regardless of a user's geographic location, they can add tasks to the grid
from the COEL web page without much effort. When a user submits a task, after
the chain of calls the request is ultimately received by the grid master node running
within the application context. The task splits into many partial jobs, which are then
distributed over the grid.

GridGain provides zero-deployment technology, so a new (slave) node could be
added to the grid on-the-fly by registering with the master node identified by the IP
address or domain name. Therefore the grid's topology might change freely during
its lifetime. COEL's grid supports several enterprise features contributing to effective
and robust execution of jobs. The grid keeps track of various node statistics such as
CPU performance, execution time, and availability, which are constantly updated and
utilized for adaptive job distribution such that high performing nodes obtain more

4 ARCmTECTURE AND TECHNOLOGY 17

jobs. Also, if a node disoonnects from the grid, the exception is noted by a periodic
heartbeat, and disconnected node's jobs are redistributed acroes the grid. Moreover,
if a node finishes its execution sooner that expected and so it sits idle (its wait queue
is empty), it steals jobs from other nodes.

Due to the communication a.n.d task initialization overhead we execute only non­
trivial tasks on the grid, with compute times that ca.n last seconds, hours, or days.
The main grid tasks include chemical ODE simulations, dynamics analyses, and evo­
lutionary optimizations of rate constant.a.

~ C) ,,.

0

Welcome to COEL
n.con~•1n........-.JAVAPRlllld.-on<lnlll.~~~_,............_,..................

-~..-::nrwtbh....,,#ld~d......~~....,,.,Ntlclll

~ltlftk:nlltoolMn~UpdS..Mllchnlil.,C............and~...,....
dlc:lilmon...aJMlnclonllittmbac:m...-.:riGf~aca~-~..,..

._....

Figure 11: COEL's home (welcome) page. URL: coel-sim.org.

4.4 Web Client

COEL's web client is implemented in Grails [21], which is a powerful web 2.0 frame­
work using the Groovy dynamic l.a.nguage for the Java Virtual Machine. JVM compat­
ibility mea.DB that Java, Groovy, e.nd Scala source compiles into Java. byte code, hence
thE'ile three languages a.re natively inter-calla.hie. Grails follows the "Convention over
Configuration" approach, which emphm!izes staoda.rd (conventional) naming, binding
and data flow, so the structure of the application is simply implied if it is not explicitly
con.figured. This approach is heavily utilized in a function called scaffolding, which
based on a domain object structure generates dynamically at runtime the controller
with associated web pages, providing basic CRUD operations without any effort. As
a matter of fact, we could build a COEL prototype web client just with a few lines of
code. Grails internally uses Spring IoC for dependency injection and bean creation.
Furthermore, Grails was officially incorporated into Spring at the end of 2008.

The web front-end relies heavily on Javascript provided by the jQuery library [22],
which makeB UI interactive and intuitive e.nd moves a pa.rt of data proce88ing and
visualization directly to the web hl'OW8er. For instance, although COEL runs all
simulations server-side, if a user wishes to see a c.ba.rt, e.g., of species concentration

http:staoda.rd
http:coel-sim.org

4 ARCHITECTURE AND TECHNOLOGY 18

traces, COEL sends the user raw data which is transformed into a chart by client­
side Javascript using Google Charts APL For styling and some widgets we used the
Bootstrap library [23] created by Twitter.

4.5 Persistence

The persistence layer consists of DAOs (DatarAccess Objects) wrapping storing, re­
trieving, deleting, and filtering functionality for domain objects. To map an object­
oriented domain model to a traditional relational database we use Hibernate [25], an
object-relational mapping (ORM) library for the Java language. DAOs and Hibernate
are widely supported by Spring, which offers hooks for fast integration.

Hibernate solves Object-Relational impedance mismatch by replacing direct persis­
tence-related database accesses with high-level object handling functions. Hibernate
provides declarative strategy for persisting data. We define a mapping of columns, ref­
erence metadata and inheritance strategy mapping. Hibernate handles details about
persistence implementation, like SQL statements and JDBC connection creation. To
obtain data we use SQL or the Hibernate query language (HQL). The actual trans­
lation from the POJO to JDBC result set is automatic. Hibernate also uses various
optimization strategies, such as cache and DB access optimization.

We believe that it is imperative to store data in a structured database, enabling
prompt retrieval, searching and post-processing. PostgreSQL [26] is a mature open
source database providing standard SQL/PLSQL language support with numerous
additional features. The decision to select PostgreSQL as DB provider was driven
mainly by the following factors: a lot of hands-on experience, a comprehensive console
as well graphical UI (PgAdmin), an open source license, and support for array data
types, useful for storing scientific vector data. The database model currently contains
about 90 tables. To assure compatibility for each version of COEL we migrate data
by a set of SQL scripts. Also, each day the whole database is dumped (backed-up),
so we could restore the state of the DB to a certain date and time very quickly. That
means our data is stored safely in structured and indexed format.

4.6 Build, Deploy, and Testing

To build COEL's project and to maintain its library dependencies, we use Apache
Maven [29]. For a new application version we run a set of JUnit tests, which guarantee
that the core functionality works as expected. After that, COEL is deployed to the
Tomcat application server. Figure 12 shows a deployment schematic of COEL's com­
ponents over several resources (machines), each running some part of the application:
the database server, the application server, and the cloud. Due to the extendability of
the computational cloud, the number of resources is not bounded. Also, note that the
database server and the application server are currently hosted on the same machine.

COEL currently has about 30 users (exclusively from the NSF project "Comput­
ing with Biomolecules" and Portland State University), 5 of which are active, i.e.,
they access COEL on a daily basis. Once COEL will be available to the research
community we expect the number of users to grow to hundreds, which would require
more resources and more rigorous testing. If the users find a production issue or want

5

5 CONCLUSION AND FUTURE WORK 19

to recommend a new feature, they will be able to submit a report through a Jira issue
tracking system. More than 60 issues and new feature requests have be reported so
far internally. Currently, the development of COEL is largely driven by the authors'
research needs.

ii- ii

Web/Appllclltlon Server DB Server

(Tomcat) (Postg~QL)

.....
~

•"~IJF= -···--- ..~ ..·/...//;·~1· ~ ······....\

! ii ~dNodo Q \

' .•• Gr1d Node

:, \ 11 Gile ii J.l)

.... ,//

\ .., Grtd Nod• Grtd Node ,,•""

·......... ,•"

···.poud I Computlltlonal Grid_.-_.-··

.................... _................····

Figure 12: Diagram showing a physical deployment of COEL's components.

Conclusion and Future Work

In this paper, we presented a new web-based chemistry simulation framework, COEL.
Its modem layered architecture includes a scalable computational grid, a user-friendly
and interactive web UI, and the safe and transactive persistence of chemistry models
and simulation results. Its wide range of features primarily target chemistry simu­
lations, GA optimization of rate constants, performance evaluations, and dynamics
analysis. We paid particular attention to general usability and lightweight and fluid
layout, and embedded data visualization using Google's charting engine.

COEL can be used without any installation, and from any web browser. As
such, it is easier to start using and has a larger potential audience than existing
desktop-application based frameworks. Keeping COEL in the cloud allows for easy

5 CONCLUSION AND FUTURE WORK 20

collaboration and sharing of results, and makes it simple to build upon another's
work.

COEL's computational grid utilizes CPU resources only, however, it would be ben­
eficial to extend the grid over GPUs as well. GridGain, our current computational grid
library, does not provide native support for GPUs. On the other hand, we argue that
reimplementing all tasks and business logic in (J)CUDA or OpenCL and maintaining
two code branches would not be feasible. Therefore, we plan to explore transparent
compilation mechanism such as Aparapi, where a single Java code compiles to CPU
and GPU version transparently and gets executed based on resource availability.

Furthermore, we often face the situations when we want a newly submitted task
to be executed as soon as possible, or we want to associate more CPU time to the
tasks of a certain user. To achieve that we would like to assign priorities to the tasks
based on their type and users' privileges.

As mentioned in Section 4.2 we might consider exposing certain services and rou­
tines through RestFul API so 3rd party applications could call, integrate and tailor
COEL's functionality for their needs.

To improve the quality of chemistry ODE-based simulations we plan to integrate
the standard LSODA solver. Also, to provide an alternative to the deterministic ODE
solvers our goal is to introduce a stochastic simulator based on the Gillespie method
[30]. The Gillespie method simulates each reaction step stochastically on a molecular
level [31, 32]. It is computationally more demanding than ODE integration, however,
it is physically more realistic, especially if the number of molecules in the system is
low. Therefore, COEL is currently best-suited to simulate systems with large numbers
of each chemical species.

Also, we plan to introduce more advanced sharing permissions, so each user could
specify with which group or user he wants share the models and results for viewing
and editing.

Last but not least, our vision for COEL is to become a common platform for
diverse unconventional computing models. One step toward that goal is a new Net­
work module, which will simulate complex spatial, random, or layered networks with
configurable node functions and interaction series.

Acknowledgment

This material is based upon work supported by the National Science Foundation
under grant no. 1028120. We acknowledge Avi Debnath for his work on DNA­
strand visualization, and GridGain for an academic license to use the GridGain HPC
technology.

21 REFERENCES

References

[l] 	 Vines, T.H., Albert, A.Y.K., Andrew, R.L., Debarre, F., Bock, D.G., Franklin,
M.T., Gilbert, K.J., Moore, J.S., Renaut, S., Rennison, D.J.: The availability of
research data declines rapidly with article age. Current biology 24(1) (January
2014) 94-7

[2] 	 Begley, C.G., Ellis, L.M.: Drug development: Raise standards for preclinical
cancer research. Nature 483(7391) (March 2012) 531-3

[3] 	 Banda, P., Teuscher, C., Lakin, M.R.: Online learning in a chemical perceptron.
Artificial life 19(2) (2013) 195-219

[4] 	 Banda, P., Teuscher, C., Stefanovic, D.: Training an asymmetric signal per­
ceptron through reinforcement in an artificial chemistry. Journal of The Royal
Society futerface 11(93) (2014)

[5] 	 Banda, P., Teuscher, C.: Learning two-input linear and nonlinear analog func­
tions with a simple chemical system. fu Ibarra, O.H., Kari, L., eds.: Unconven­
tional Computing and Natural Computing Conference. Volume 8553 of Lecture
Notes in Computer Science. Springer International Publishing Switzerland (2014)
14-26

[6] 	 Banda, P., Teuscher, C.: An analog chemical circuit with parallel-accessible delay
line learning temporal tasks (accepted). ALIFE 14: The Fourteenth futernational
Conference on the Synthesis and Simulation of Living Systems (2014)

[7] 	 Moles, J., Banda, P., Teuscher, C.: Delay line as a chemical reaction network
(accepted). Parallel Processing Letters (2014)

[8] 	 Banda, P., Teuscher, C.: Complex dynamics in random DNA strand circuits
(extended abstract). In: The 19th International Conference on DNA Computing
and Molecular Programming. (2013)

[9] 	 Hoops, S., Sable, S., Gauges, R., Lee, C., Pahle, J., Simus, N., Singhal, M.,
Xu, L., Mendes, P., Kummer, U.: COPASI-a COmplex PAthway Simulator.
Bioinformatics (Oxford, England) 22(24) (December 2006) 3067-74

[10] 	 Castellini, A., Manca, V.: Metaplab: a computational framework for metabolic
p systems. In: Membrane Computing. Springer (2009) 157-168

[11] 	 Schmidt, H., Jirstrand, M.: Systems Biology Toolbox for MATLAB: a computa,­
tional platform for research in systems biology. Bioinformatics (Oxford, England)
22(4) (February 2006) 514-5

[12] 	 Funahashi, A., Matsuoka, Y., Jouraku, A., Morohashi, M., Kikuchi, N., Kitano,
H.: CellDesigner 3.5: A Versatile Modeling Tool for Biochemical Networks.
Proceedings of the IEEE 96(8) (August 2008) 1254-1265

REFERENCES 22

[13] 	 Hucka, M., Finney, a., Sauro, H.M., Bolouri, H., Doyle, J.C., Kitano, H., Arkin,
a.P., Bornstein, B.J., Bray, D., Comish-Bowden, a., Cuellar, a.a., Dronov, S.,
Gilles, E.D., Ginkel, M., Gor, V., Goryanin, I.I., Hedley, W.J., Hodgman, T.C.,
Hofmeyr, J.H., Hunter, P.J., Juty, N.S., Kasberger, J.L., Kremling, a., Kummer,
U., Le Novere, N., Loew, L.M., Lucio, D., Mendes, P., Minch, E., Mjolsness, E.D.,
Nakayama, Y., Nelson, M.R., Nielsen, P.F., Sakurada, T., Schaff, J.C., Shapiro,
B.E., Shimizu, T.S., Spence, H.D., Stelling, J., Takahashi, K., Tomita, M., Wag­
ner, J., Wang, J.: The systems biology markup language (SBML): a medium
for representation and exchange of biochemical network models. Bioinformatics
19(4) (March 2003) 524-531

[14] 	 Michaelis, L., Menten, M.L.: Die Kinetik der Invertinwirkung. Biochem. Z. 49
(1913) 333-369

[15] 	 Lotka, A.J.: Undamped oscillations derived from the law of mass action. Journal
of the american chemical society 42(8) (1920) 1595-1599

[16] 	 Copeland, R.A.: Enzymes: A practical introduction to structure, mechanism,
and data analysis. Second edn. John Wiley & Sons, Inc., New York, New York
(2002)

[17] 	 Espenson, J.: Chemical kinetics and reaction mechanisms. McGraw-Hill, Singa,­
pore (1995)

[18] 	 Lakin, M.R., Youssef, S., Cardelli, L., Phillips, A.: Abstractions for DNA circuit
design. Journal of the Royal Society, Interface / the Royal Society 9(68) (March
2012) 47{}--86

[19] 	 Soloveichik, D., Seelig, G., Winfree, E.: DNA as a universal substrate for chem­
ical kinetics. Proceedings of the National Academy of Sciences of the United
States of America 107(12) (March 2010) 5393-5398

[20] 	 Zadeh, J.N., Steenberg, C.D., Bois, J.S., Wolfe, B.R., Pierce, M.B., Khan, A.R.,
Dirks, R.M., Pierce, N.A.: Software News and Updates NUPACK : Analysis and
Design of Nucleic Acid Systems. (2010)

[21] 	 Official Grails web site http://www.grails.org.

[22] 	 jQuery website http: I I j query. com/.

[23] 	 Bootstrap website http: I /getbootstrap. com/.

[24] 	 Grid Gain website http: I /www.gridgainsystems.com/wiki/display/GG15UG/GridGain+Book.

[25] 	 Official Hibernate web site http: I /hibernate. org/.

[26] 	 Official PostgreSQL web site http: I /www. postgresql. org.

[27] 	 Official spring source web site http: I /www. springsource. org.

[28] 	 Walls, C.: Spring in Action. Third edition edn. Manning Publications (2010)

www.gridgainsystems.com/wiki/display
http:http://www.grails.org

23 REFERENCES

[29] 	 Official Apache Maven web site http: I /maven. apache. org/.

[30] 	 Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. The
Journal of Physical Chemistry 81(25) (December 1977) 2340-2361

[31] 	 Turner, T.E., Schnell, S., Burrage, K.: Stochastic approaches for modelling in
vivo reactions. Computational biology and chemistry 28(3) (July 2004) 165-178

[32] 	 Jahnke, T., Altntan, D.: Efficient simulation of discrete stochastic reaction
systems with a splitting method. BIT Numerical Mathematics 50(4) (September
2010) 797-822

	COEL: A Web-based Chemistry Simulation Framework
	Let us know how access to this document benefits you.
	Citation Details

	arxiv.org/pdf/1407.4027v1.pdf

