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Existence of the dielectric constant in fluids of nonlinear 
rigid polar moleculesa) 

John D. Ramshaw 

Theoretical Division, University of California, Los Alamos Scientific Laboratory, Los Alamos, New 
Mexico 87545 
(Received 5 January 1978) 

The existence of the dielectric constant E is investigated for fluids composed of nonlinear rigid polar 
molecules. The investigation is performed using the functional-derivative approach previously employed to 
establish sufficient conditions for the existence of E in fluids of linear (axially symmetric) molecules. It is 
shown that these same conditions are sufficient for nonlinear molecules of arbitrary symmetry. An 
expression for E in terms of the direct correlation function emerges automatically from the development. 
This expression, which involves the inversion of a 3 X 3 matrix, is a slight generalization of one obtained 
earlier by H(J'ye and Stell using an entirely different approach. 

I. INTRODUCTION 

This article is the fourth in a series concerned with 
dielectric behavior and pair correlations in fluids com
posed of rigid (unpolarizable) polar molecules. As in 
the previous articles, 1-3 our primary concern is with 
the conditions under which the dielectric constant E 

may be shown to exist. Attention was previously re
stricted to linear (axially symmetric) molecules, so 
that the essential features of the problem could be iden
tified and clarified in the absence of peripheral com
plications. It was discovered that the direct correla
tion function c(12) is of central importance to dielec
tric behavior, and that sufficient conditions for the 
existence of E could be simply expressed in terms of 
it. Z The least restrictive such conditions were ob
tained3 by explOiting the functional-derivative inter
pretation of c(12) in terms of an inverse response ker
nel. 4 

The purpose of the present article is to extend this 
previous work to nonlinear molecules of arbitrary sym
metry. The development follows the same outline as 
that of the axially symmetric case,3 but is naturally 
somewhat more complicated in its details. However, 
the final sufficient conditions for the existence of E are 
the same as before: E exists if c(12) is the sum of a 
short-range term that depends only on relative posi
tions and orientations of molecules 1 and 2, and the long
range term - ¢4(12)/kT (where ¢4 is the dipole-dipole 
potential) . 

As usual, an expression for E in terms of c(12) 
emerges automatically from the development. In con
trast to the simplicity of the axially symmetric case, 
this expression involves the inverse of a 3 x 3 matrix 
whose elements are formed from spatial integrals of 
various angular moments of c(12}. This expression is 
a slight generalization of one derived earlier by Hs1Iye 
and Stell5 using an entirely different approach. (Hs1Iye 
and Stell derived their expressions for E by considering 
electrostatic interactions in the interior of an infinite 
sample. 5

•
6 They were not specifically concerned with 

alWork performed in part under the auspices of the United 
States Department of Energy. 

the existence of E, the investigation of whiCh requires 
one to consider a finite sample of arbitrary shape in a 
nonuniform external electric field. 1) 

II. THE EXISTENCE OF € 

Consider a finite volume V, of arbitrary shape, con
taining N identical rigid polar molecules of arbitrary 
symmetry. The number density N Iv is denoted by p. 
The position and orientation of molecule k are denoted 
by rio and wk respectively; they are collectively repre
sented by the shorthand notation (k). Orientations are 
usually specified by the Euler angles7

; then wk =(6", 
¢k, l/7,)andn= Jdw,,=81T 2• Lete",,, (a=1,2,3)be a set 
of orthogonal unit vectors rigidly affixed to molecule k. 
The e",,, are defined similarly for all the molecules, so 
that if molecules j and k can be made coincident by a 
translation alone then e"'i =e",,,. The dipole moment of 
molecule k can then be expressed as 

(1) 

where IJ. .. is simply the component of IJ. along the a axis 
in the molecular frame. The magnitude of the molecu
lar dipole moment is 

IJ.o= (~ IJ.! y/2. (2) 

Imagine that the sample is subjected to an externally 
applied field that adds the term 

L ¢(k) 
10 

to the total potential energy of the system. The linear 
(first-order) deviation on(l) of the single-molecule 
generic distribution function n(l) from its zero-field 
value of pin then satisfies3 

-j3¢(1)=(nlp)on(l)- f d(2)on(2)c(12), (3) 

where c(12) is the direct correlation function4 of the 
system in zero applied field, and {3 = (kT)"1. The spatial 
part of the integral Jd(2) of course extends only over 
the sample volume V. Equation (3) is our basic starting 
equation, just as it was for linear molecules. 3 

The external field is taken to be a position-dependent 
electric field Eo(r), so that 

J. Chern. Phys. 68(11), 1 June 1978 0021-9606/78/6811-5199$01.00 © 1978 American Institute of Physics 5199 

Downloaded 08 Jun 2012 to 131.252.4.4. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



5200 John D. Ramshaw: Existence of the dielectric constant 

ct>(1) = - ~1 • EO(r1) = - L /.L",ea1· EO(r1). (4) 

'" 
The macroscopic response of the system to the field is 
measured by the polarization (dipole moment per unit 
volume), which is given by 

P(r1) = J dW1~1Iin(1) = L /.L",Qa(r1), 
a 

(5) 

where 

(6) 

We now substitute Eq. (4) into Eq. (3), multiply the 
resulting equation by ell10 and integrate over W1' The 
result is 

(7) 
where use has been made of the easily-verified relation 

(8) 

in which 1i",11 is the Kronecker delta and U is the unit 
dyadic. Although it is clear from the context, we em
phasize that when (3 appears as a subscript it simply 
represents 1, 2, or 3 and is unrelated to the tempera
ture. 

To proceed further something must be known about 
the direct correlation function c(12). Fortunately 
something is; a number of independent treatments 
(most of which were cited in Ref. 3) imply that c(12) 
becomes asymptotic to -{3ct>~(12) at long range, where 
ct>~(12) is the dipole-dipole potential. We can therefore 
write 

c(12) =cs(12) +(3~1' T 5(r12)· iJ.z, (9) 

where cs(12) is a short-ranged function of (12), r 1Z 

=r1-rZ, T 5(r)=H(lrl -Ii) VVlrl-1
, and H(x) is unity 

if x ~ 0 and zero otherwise. It is understood that the 
limit Ii - a is to be taken after the performance of any 
spatial integral in which T 6(r) appears. Combining 
Eqs. (7) and (9) and making use of Eqs. (1), (8), and 
(5), we obtain 

t J30/.LIIEL(r1 ) = (01 p)QII(r1) - J d(2) dW11in(2) cs (12) ell1 , 

(10) 
where the Lorentz electric field EL(r) is defined by 

(11) 

Since c/12) is short-ranged, the integral over r z in 
Eq. (10) can be extended over all space instead of just 
over the volume V. 

We restrict attention to external fields Eo(r) that 
vary slowly with r in a molecular sense, i. e., com
pared to the range of cs (12). Then Iin(2) will also vary 
slowly with r z, so that Eq. (10) may be rewritten as 

-J dWzlin(rlJ wz) J drzdwlcs(12)eal' 

(12) 
Now assume that cs (12) depends only on relative posi
tions and orientations of molecules 1 and 2. [Since 
cs (12) is a short-ranged function, this assumption is 
very reasonable even though the system is finite.] Then 
it is clear that the inner integral in Eq. (12) can be ex
pressed as a linear combination of the vectors e",2, 

J drz dW1 c. (12) ea1 = 0 L caa e",2' 
'" 

(13) 

where the coefficients ca", are independent of r1 and wz• 
Since the e",z are orthonormal, these coefficients are 
given by 

(14) 

where we have performed a further average over Wz 

to make the result look more symmetrical. Since all 
the molecules are identical, cs (12) is symmetric and 
hence cOla =caa . 

Combining Eqs. (12) and (13), we obtain 

t j3p/.LtlEL(r1) =~(r1) -p L Caa~(r1)' 
'" 

(15) 

Let ~ be the column vector with elements /.La, Q(r) be 
the column vector with elements Q .. (r), and C be the 
3 x 3 symmetric matrix with elements C alt. Then Eq. 
(15) can be written in matrix form, 

Q(r1)-pCQ(r1)=tepEL(rl)~' (16) 

which has the formal solution 

(17) 

in which i denotes the 3 x 3 unit matrix with elements 
001 11' Now the polarization, given by Eq. (5), can also 
be written in matrix form, 

P(r1)=~TQ(r1)' (18) 

where ~T is the row vector corresponding to the column 
vector ~. Combining Eqs. (17) and (18), we obtain 

1 [AT A A -1 A] () P(r1) ="3ep iL (I - pC) iL EL r1 . (19) 

Therefore, z the dielectric constant exists and is given 
by 

(E - l)/(E + 2) = (4n' 19)~p~Ta _pcr1 ~ 

4rr" [ A A_I] =9 J3p L.J iL", Mil (I -pC) .. a· 
",a 

(20) 

Since the matrix (j - pC) is only 3 x 3, it can be inve rled 
fairly easily. This w ill not be done, however, as it 
has no advantage for our purposes. 

To complete the development we show that c.(12) may 
be replaced by c(12) in Eq. (14) without changing cOla. 
To do so, it suffices to show that the quantity 

d",ll(r) = J dWl dwz [~1 'T 6(r). iJ.zl (ea 1 • e/l2) (21) 

vanishes. Using Eqs. (1) and (8), it is easy to show that 
d",tI reduces to 
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(22) 

But 

T 6(r): u=H(!r!-o)v 2 !r!-l=-41TH(!r!-o)oD(r), (23) 

where 0D(r) is the Dirac delta function. This clearly 
vanishes for all r; thus d",~(r) = 0 and c"'~ can be com
puted from the alternative expression 

c"'~ =O-a f dradw1 dwac(12) e",1' e~a, 

where the integral over ra can be extended over all 
space, just as in Eqs. (12)-(14). 

III. THE FORM OF E 

(24) 

We now wish to consider Eq. (20) for E: in greater de
tail. First we verify that Eq. (20) reduces properly to 
the form appropriate to axially symmetric molecules. 3 

Let the molecular axis a = 3 be the symmetry axis, so 
that jJ.1 = jJ.a = 0 and jJ.3 = jJ.o. The orientation of the sym
metry axis of molecule k is specified by W~ = (Ok' ¢k) 
and the angle of rotation about this axis is denoted by 
<Pk' Thus wk =(w~, <P1l) zIid dWk =dw~d<pk' Clearly c(12) 
is independent of <P t and <P2, so that Eq. (24) becomes 

c",s = (81Tzt a f dra dw; dw~ c(12) (J dl/1 e",1 ) • (f d~ esa ). 

But 

therefore, 

c",S = O"'30~3B = OotSoa3B, 

where 

(25) 

(26) 

(27) 

(28) 

Since the only nonzero element of C is C3S, cJ - pC) is a 
diagonal matrix and its inverse can be computed trivial
ly. The result is 

[<1 -pC)"t]",~=o"'B(l-pO"'3B)"1. 
Equation (20) then becomes 

(e: -1)/(02) =(41T/9)i3PjJ.~[(i -PC)"t]33 

=(41T/9)i3pjJ.~(l-pBrl, 

(29) 

(30) 

which is just the result obtained earlier under the re
striction of axial symmetry. 2, 3 

We next compare Eq. (20) with the result derived by 
H!&ye and Stell (HS)5 in their Appendix A. To perform 
this comparison it is necessary to express the CaB in 
terms of the Euler angles. Let aa be a set of orthogonal 
unit vectors fixed in the laboratory, and let the Euler 
angles (Ok> ¢k, <P1l) correspond to the rotation that trans
forms the aa into the eak • This transformation is per
formed using the rotation matrixA, whose elements 
Aa/l are functions of the Euler angles of the molecule in 
question: 

(31) 

The matrix A is given by Eq. (4-46) of Goldstein?; 
it is just the transpose of the matrix Ml defined by Eq. 
(A5) of HS, whose elements they denote by f~/l' Thus 
A,,/l(k) =f~Ol(k), which together with Eq, (31) implies 
that 

(32) 
y 

Equation (14) can therefore be rewritten as 

COtB =o-aJ dradw1 dwz cs (12) L f~a(1)f!s(2). (33) 
y 

Now it follows from Eqs. (A7)-(A9) of HS that, in 
their notation, 

Cl j = (ploa) J drad01 d!2zco(12) ~ f ~i(1)nJ(2). (34) 

Since our cs (12) is the same as HS's co(12), we see that 
our peaB is the same as their C~8' This equivalence en
ables us to write their expression for e: [obtained by 
combining their Eqs. (2.12a), (A13), (A15), and (A16)] 
in our notation as 

(35) 

But HS have assumed, in effect, that the molecular co
ordinate system has been chosen so that the dipole mo
ment lies along the molecular axis a = 3. When Eq. (20) 
is specialized to this choice, we obtain precisely Eq. 
(35). We thereby confirm the result of HS by an entire
ly different method. However, Eq. (20) is more gen
eral in mathematical form then the HS expreSSion, since 
we allow an arbitrary choice of the molecular coordinate 
system. Moreover, since our expression for CaB in
volves the eak directly it is independent of the choice of 
orientational coordinates, thereby allowing the use of 
descriptions other then the Euler angles if desired. 

Finally, we show that the inverse of the matrix 
(t- pC) can be directly expressed in terms of the short
range total correlation function h 0(12) defined by 

(36) 

Multiply Eq. (36) by eal • ellz and integrate over ra, wi> 
and wz• After manipulati ons similar to those performed 
earlier, one obtains 

y 

where 

ha~ =O-z !dradWl dWaho(12)eal' eu • 

Let fI denote the matrix with elements hOtS; then Eq. 
(37) can be written in matrix form as 

A A 

H= C+pCH. 

(37) 

(38) 

(39) 

Multiply this equation by p and add j to both sides.' Then 
after rearrangement one finds 

(40) 
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so that 

(j - pct1 = (j + pH). (41) 

Substitution of Eq. (41) into Eq. (20) then yields 

E-141T '" ( ) --2 = -9 (3p L.J iJ.", iJ.a o",a + ph",a 
E + ",a 

= ~1T (3p [iJ. ~ + pO-2 J dr2 dw1 dW2 ho(12) J.l.l 0 iJ.2J ' (42) 

where Eqs. (1) and (2) have been used. This expression 
is identical to the result of combining Eqs. (2.12a), 
(2.12b), and (2.12e) of H~ye and Stell, 5 since our func
tion ho(12) is the same as their function (O/p)2W(12). 
Conversely, if one begins with Eq. (42) the relation (41) 
provides the simplest route to Eq. (20). 

IV. SUMMARY 

We have shown that if the direct correlation function 
is of the form given in Eq. (9), where c .• (12) is a short-

ranged function that depends only on relative positions 
and orientations of molecules 1 and 2, then E exists and 
is given by Eq. (20). Equation (20) is identical in physi
cal content to the expression for E in terms of c(12) de
rived earlier by H~ye and Stell, but is more general in 
mathematical form. The matrix inverse appearing in 
Eq. (20) was found to be simply related, via Eq. (41), 
to the short-range total correlation function conjugate 
to cs (12). 
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